
A Formal Full Bus TLM Modeling for Fast and 
Accurate Contention Analysis 

Abstract—This paper presents an effective Cycle-count Accurate 
Transaction level (CCA-TLM) full bus modeling and simulation 
technique. Using the two-phase arbiter and master-slave models, an 
FSM-based Composite Master-Slave-pair and Arbiter Transaction 
(CMSAT) model is proposed for efficient and accurate dynamic 
simulations. This approach is particularly effective for bus 
architecture validation and contention analysis of complex Multi-
Processor System-on-Chip (MPSoC) designs. The experimental 
results show that the proposed approach performs 23 times faster 
than the Cycle-Accurate (CA) bus model while maintaining 100% 
accurate timing information at every transaction boundary.

I. INTRODUCTION

Due to the relentless demands for high-performance computation 
and low power consumption in embedded systems, multi-processor 
system-on-chip (MPSoC) has become the mainstream design approach. 
For MPSoC design, one of the most critical issues is the on-chip 
communication design (e.g., shared bus, bus matrix) because of the 
multiplied data exchange rate among the large number of components. 
As design complexity continues to increase, having an efficient and 
effective tool for early-stage system verification and validation is 
indispensible before committing a design to real hardware. 

For communication architecture validation, designers are 
particularly interested in the rate of bus contentions and the 
effectiveness of contention handling. In practice, an arbiter is used to 
resolve contentions and determine transaction execution order 
according to certain arbitration policy, such as the round-robin (RR) or 
fixed priority (FP) policy. Contentions cause certain transactions to 
change or defer their execution order. Hence, accurate contention 
analysis is essential for performance evaluation during validation. 

For early-stage validation, designers demand accurate contention 
analysis, correctness verification, and performance estimates by 
efficient system simulation. However, the complexity of traditional 
RTL simulation approaches makes these procedures prohibitively 
difficult. The transaction-level modeling (TLM) approach [1], which 
raises the abstraction level to speed up simulation performance, has 
been proposed as a solution. 

To accurately simulate bus behaviors, traditional TLM bus 
modeling approaches adopt fine-grained models, such as cycle-
accurate (CA) models, which simulate arbitration behaviors cycle by 
cycle. The heavy simulation overhead associated with these fine-
grained approaches for handling the interactions between bus 
transactions and the arbiter limits the practicality of such approaches. 

In contrast, for better performance, some researchers embrace 
coarse-grained modeling approaches, such as functional-level or 
cycle-approximate (CX) modeling [6, 11, 14]. However, these 

approaches can be misleading when used for validation purposes when 
arbitration information is inaccurate or missing. 

Although various TLM bus models have been proposed, none can 
accurately perform arbitration analysis with efficiency. The main 
challenge is that the arbitration behaviors are irregular and 
unpredictable due to complicated combinations of requests and 
arbitration policy. 

To effectively and accurately capture the timing behaviors of 
arbitration, we propose a Two-Phase arbiter model to abstract the 
procedure of arbitration and bus transactions in this paper.  The 
arbitration is a dynamic handshaking process that can be split into 
Request phase and Grant phase according to the specific handshake 
signals controlling arbitration. Since the Request phase and Grant 
phase alternate repeatedly and synchronously with bus transactions, 
we can utilize the repetition property to pre-analyze the arbitration 
procedure without cycle-by-cycle simulation and guarantee the correct 
transaction execution order and the accurate handshaking process.  

Furthermore, we extend the Finite State Machine (FSM)-based 
formal model proposed by Lo [4], which employs the regularity of bus 
transaction to statically analyze accurate cycle counts of each Master-
Slave-pair bus transaction. Combining the above two abstracted 
models, we then have a formal Composite Master-Slave-pair and 
Arbiter Transaction (CMSAT) model to statically capture complete 
arbitrated bus transaction behaviors. 

With the proposed CMSAT model, a dynamic simulation 
algorithm is designed to simulate the interleaving of Request phase
and Grant phase effectively in order to maintain correct arbitration 
results without incurring redundant simulation overhead. 

We implemented and tested the proposed approach on a few real 
designs. The encouraging experimental results demonstrate 23 times 
better performance than CA bus models while maintaining 100% 
accurate timing results in terms of cycle counts. 

The rest of the paper is organized as follows. In section 2, we first 
review related work. Then, section 3 introduces a formal approach for 
describing the generic bus model. The proposed CMSAT model 
generation is then presented in section 4 and the experimental results 
in section 5. Finally, section 6 concludes this paper. 

II. RELATED WORK

The TLM idea has been deemed the most promising solution to 
system-level modeling problem. TLM provides system designers 
components and bus models of various abstraction levels. To 
implement the abstraction models, a system-level description 
language such as SystemC [6] is used. For example, Caldari et al. [7] 
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apply the concept of program state machine and implement it in 
SystemC to establish a cycle-accurate AMBA bus model [5].  

Coware [9] proposes a cycle-accurate-level proprietary modeling 
library for several different bus architectures, such as Advanced 
Micro-controller Bus Architecture (AMBA) [5] and Open Core 
Protocol (OCP) [8]. Through a cycle-by-cycle simulation approach, it 
can precisely reflect the effect of arbitration behavior and offer high 
simulation accuracy. However, due to considerable simulation 
overhead, the performance may not be acceptable for architecture 
validation of complex MPSoC designs. 

To improve simulation performance, Pasricha et al. [3] propose a 
cycle-count-accurate at transaction boundary (CCATB) approach, 
which eliminates unnecessary computations within a bus transaction 
while computing the precise cycle count. However, only 55% 
performance speedup over the pin-accurate bus cycle-accurate (PA-
BCA) modeling approach is reported. To include arbitration and 
accurately resolve contentions, their approach essentially needs to 
check for bus requests at every cycle and hence no significant 
performance improvement is achieved. 

To seek even better simulation performance, some researchers use 
simplified read/write functions and abstract arbitration procedures 
with approximate timing to represent various types of bus transfers 
(e.g., burst). The resultant cycle-approximate (CX) bus models have 
fewer simulation details and hence achieve higher simulation 
performance [6, 11, 14]. These approaches are suitable for fast early 
system prototyping. However, because of the inaccuracy, arbitration 
policy cannot be faithfully exercised and therefore the CX approaches 
are not reliable for communication architecture validation.  

Although the above modeling techniques each meet certain design 
requirements, they lack of a systematic modeling mechanism. 
Therefore, D’sliva et al. propose synchronous protocol automata 
(SPA) [10] that systematically describe communication interfaces, 
including master, slave, arbiter and bridge, etc., for cycle-accurate 
level bus property verification.  

Furthermore, Lo et al. [4] adopt the SPA modeling approach and 
automatically generate high-performance cycle-count-accurate 
composite master/slave models. However, the proposed method is 
good only for single master and single slave pair and it does not 
consider the effects of arbitration. 

In contrast, we propose a two-phase (Request phase and Grant 
phase) arbitration model and extend Lo’s model to cover multiple 
master-slave pairs. The proposed Composite Master-Slave-pair and 
Arbiter Transaction (CMSAT) model can effectively and efficiently 
capture full bus behaviors, including the most important contention 
effect. Furthermore, the cycle count of each phase can be obtained by 
analyzing FSMs, according to the repetition of the two-phase arbiter 
model, instead of cycle-by-cycle simulation. We simply manage the 
phase interleaving correctly and then can easily and accurately 
compute cycle count information of each phase, or full bus timing 
information, with no extra simulation overhead. 

Before we introduce our proposed full bus simulation algorithm, 
we first present a generic bus modeling method. 

III. GENERIC TLM BUS MODELING

A generic bus model involves multiple components (e.g., masters, 
slaves and arbiters). In MPSoC designs, it is common to have multiple 
bus requests contending for bus access at the same time. To resolve 
contention, an arbiter is implemented to perform arbitration. When 
arbitration is considered, the bus behavior becomes fairly complicated.  
In this section, we introduce a few definitions first and explain the 
basic idea of applying FSMs to our proposed approach. In the 

following, we will present a FSM-based formal model for 
communication interfaces description and then propose a simple two-
phase arbiter model that can effectively and efficiently model a 
generic bus design. 

A. A Formal Communication Interface Model 

Before we formally specify the FSM-based communication 
interface model, we first illustrate in Fig. 1 a simple example to 
familiarize readers with basic FSM operations. The example shows a 
master and a slave interfaces described in FSMs performing a write 
transaction.  

As shown in Fig. 1, the master and slave interfaces begin 
synchronously from state r0 and state t0, respectively. Initially, the 
master interface MI1 is not granted, and it sends out the signal req1 to 
request bus usage, denoted as req1!1. Once MI1 receives a grant signal 
to use bus, denoted as grant1?1, it progresses its state from r0 to r1.

Then, MI1 emits addr (for data address, denoted as “addr!”) to the 
engaged slave interface, and progresses the state transition from r1 to 
r2. Simultaneously, the engaged slave interface SI1 receives the signal 
addr, denoted as “addr?”, and then progresses its state from t0 to t1. 
This process continues until the state progress reaches the final states 
r3 and t2. At this point, the write transaction is completed. 

Although communication interfaces are more than read/write 
operations, in practice read and write data transfers are the most basic 
communication behaviors. To describe a general and formal 
communication interface model, we modify the syntax of [10] and 
propose a definition in the following. 

Definition 1: A Finite State Machine (FSM)-based communication 
interface model is a tuple (Q, Input, Output, C/O, V, , clk, q0, qf), 
where 

1. Q: a finite set of states 
2. Input: a set of input data and control signals 
3. Output: a set of output data and control signals 
4. C/O: condition/operation 
5. V: a set of internal variables(e.g., the counter in burst transfer) 
6.  Q x Q x C/O x clk?: transition relations 
7. q0, qf Q: the initial state and the final state 

According to the above definition, the FSM for each 
communication interface has certain specified input and output signals 
and performs transitions between states listed in a set Q. The state 
transition in each FSM starts from the initial state q0 and ends at the 
final state qf. Every clk tick triggers a state progress. The operation O 
is a set of signal operations. For example, the action “s!” denotes that 
the signal s is emitted from the interface, and “s?” denotes that the 
signal s is read by the interface. C/O on each state progress edge 
indicates that once the condition C is met, the corresponding operation 
O will be issued.  The condition C is checked against with the value of 
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Figure 1: An example of write transaction described by FSMs.
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the internal variables in V (e.g., the counter in burst transfer) or 
specific input signals (e.g., last). 

The above formal communication interface model describes only 
how one component communicates with others. In the next section, we 
extend the idea and explain how to model a generic bus. 

B. A Two-Phase Arbiter Model 

Like the formal communication interface model, the arbitration 
process can be described as an FSM. In general, the arbiter receives 
bus requests from master components and then arbitrates and grants 
bus access to one of the requests according to a designer-specified 
arbitration policy. The above arbitration procedure is accomplished 
by asserting specific handshake signals. Hence, we further divide the 
arbitration procedure into two phases, Request phase (R) and Grant 
phase (G), according to handshake signals that control arbitration. 
Before arbiter emits a grant signal, the states of arbiter are included in 
the Request phase. Once arbiter emits a grant signal, the arbiter’s 
phase transits to the Grant phase and returns to the Request phase
after the granted transaction finishes its data transfer. Essentially, at 
the Request phase the arbiter receives external requests and selects a 
master-slave pair for bus transaction while at the Grant phase the 
granted master-slave pair executes the transaction.

The example in Fig. 2 illustrates an arbiter FSM which adopts a 
fixed priority arbitration policy. We assume that the request req1 from 
MI1 has higher priority than req2 and the fact is reflected in the arbiter 
FSM. 

We first explain how the request and grant procedures work. In 
example Fig. 2, the state of arbiter will be a0 initially. The annotation 
“req1?1” on the state transition edge from a0 to a1 indicates that the 
arbiter receives a bus request from MI1. Similarly, “req2?1, req1?0”
on the transition from a0 to a3 indicates that the request from MI2 is 
asserted while MI1 has no request. In general, in the Request phase, 
the arbiter collects all incoming request signals and computes which 
master is granted. 

After the Request phase, a master is selected and then the arbiter 
moves to Grant phase and assigns the master to have the bus for data 
transfer. In Fig. 2, when req1 is asserted, according to the arbitration 
policy the request from MI1 has the priority and hence the arbiter 
asserts grant1, or “grant1!1”, and grants MI1 to start its data transfer. 

After MI1 finishes its transaction, it sends a notification signal, 
last1 to the arbiter, denoted as “last1?1”, and has the arbiter return to 
its initial state a0 and get ready for next request processing.  

If only req2 from MI2 is asserted and req1 is absent, the arbiter 
will grant MI2 for data transfer and the granting process is similar to 
what have been described for MI1. Furthermore, if no request tends to 
use the bus, the arbiter stays in the initial state a0. 

After the Grant phase is completed, the arbiter returns to the 
Request phase. The two phases alternate repeatedly throughout the 
system active period for bus transactions. In fact, an arbiter functions 
exactly as a scheduler. It collects issued requests and grants one for 
execution according to the arbitration policy designed in terms of the 
arbiter FSM. 

One key point is that with the proposed two-phase arbiter model, 
the state progression of an arbiter can be greatly simplified without 
losing functionality or timing correctness. We will elaborate on this 
after we define a formal model for generic buses. 

After adding the arbiter model along with the master and slave 
models, we now can define a formal generic bus model. And in the 
following section, we propose a static model abstraction and dynamic 
simulation algorithm leveraging the two-phase arbiter model to 
achieve fast and accurate full bus simulation. 

IV. CMSAT MODEL GENERATION

In this section, we further elaborate our main idea and demonstrate 
the effectiveness of our approach. The approach has two steps: static 
model abstraction and dynamic simulation. At the static phase, we 
analyze the behaviors of bus transactions and arbitration process and 
create abstract models by optimizing routine simulation procedures. 
Then at the dynamic simulation phase, with the interacting signals and 
actual data we compute accurate arbitration and bus transaction results.  

A. Static model abstraction 

We now explain the concept of static model abstraction. First, we 
review the master-slave pair model, and then the arbiter model and 
finally the composite model. 

1) Master-slave pair model compression 

The basic bus function is essentially data transfer, or data 
read/write, between masters and slaves. In this paper, we adopt and 
extend Lo’s compression approach for model abstraction of the 
master/slave transaction pair with accurate cycle count information 
retained [4]. 

Basically, the compression algorithm analyzes the FSM-pair of 
master/slave interfaces and merging them into one FSM that 
represents the behavior of bus transaction. The compressed FSM 
eliminates confirmed internal handshaking signals between master and 
slave interfaces and reduces unnecessary simulation overhead with 
fewer transition steps while maintaining same cycle count information 
as the CA model.  

On the other hand, we preserve the external interacting signals, 
such as the handshaking signals req, grant and last, which interact 
with the arbiter for accurate dynamic behavior simulation. 

The FSM shown in Fig. 3(a) is the compressed write transaction 
model of the master-slave pair discussed in Fig. 1. The address and 
data transfers are compressed into one state transition step with a 
computed cycle count equivalent to the actual number of cycles taken. 
Note that each rhombus in the compressed model denotes a composite 
FSM node. Details about the compression algorithm can be found in 
[4]. 

With the compressed bus model, once the issued bus transaction is 
granted during simulation, the cycle count of each bus transaction is 
readily obtained without the need to do slow cycle-by-cycle simulation. 
Simulation performance, hence, is significantly improved. 

The compressed bus transaction model is defined as follows. 

req1?1 
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grant2!1 
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last2?1 

Fixed priority

req1 > req2

Figure 2: An example of a fixed priority arbiter described in FSM.
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Definition 2: A compressed bus transaction model tij is a merged 
FSM of a master-slave interface pair generated from the compression 
algorithm, or tij = (mi || sj), where 

tij: the compressed bus transaction model of the pair of mi and sj. 
mi : the i-th master interface in the bus; 
sj: the j-th slave interface in the bus; 
||: compression function; 

2) The composite master-slave pair and arbiter transaction 
(CMSAT) model 

In fact, bus transactions and arbitration process are both FSMs 
synchronized by specific handshaking signals. Moreover, each master-
slave pair bus transaction can also be divided into two phases, Request 
phase and Grant phase, and matches the two-phase arbiter model 
perfectly.  

As illustrated in Fig. 3(a), if the compressed master-slave bus 
transaction model t11 is activated, it will continue asserting the request 
signal (req1!1) until it receives a grant (grant1?1). This portion is 
clearly in the Request phase. After being granted, it enters the Grant 
phase. It then starts data transfer and after completion it sends out a 
finish notification (last1) before returning to the request phase. 

To focus on the arbitration process analysis for req1, we show in 
Fig. 3(b) a partial FSM of the arbiter from Fig. 2 related to req1, grant1

and last1. Once the arbiter is in the Request phase, it checks if any 
request signal is asserted. Following assumed priority policy, when the 
arbiter detects that req1 is asserted, it takes one cycle arbitration time 
and asserts a corresponding grant signal (grant1!1). It then waits for 
the finish notification (last1) from t11 before it returns to the Request 
phase.  

Normally the arbiter Request phase takes a fixed computation time 
to handle received requests. The request processing time in general 
can be pre-analyzed based on the combination of requests. If not, we 
simply compute the arbitration time in terms of cycle count (Cr) at 
runtime. For the fixed-priority case in Fig. 2, the request always takes 
arbiter one cycle time to process grant. 

While in the Grant phase, the arbiter simply waits for the granted 
bus transaction finishing data transfer before entering next request 
phase. In fact, the granted master-slave pair and the arbiter are 
progressing synchronously and hence we can further composite the 
master-slave pair and the arbiter model into an optimized CMSAT 
model for full bus simulation. After composition, the internal 
handshaking signals, such as grant signal and bus transaction 
completion signal, between the active master-slave pair and the arbiter 

can be eliminated following Lo’s compression algorithm. At the same 
time, the cycle count of grant phase (Cg) is statically calculated.  

The resultant CMSAT model shown in Fig. 3(c) is the 
composition of the master-slave pair in Fig. 3(a) and the two-phase 
arbiter model in Fig. 3(b). Note that in the CMSAT model the 
handshaking signals, grant1 and last1, are eliminated and the grant 
phase is determined to consume three cycles, comprising one cycle for 
the arbiter asserting grant1 and two cycles for bus data transfer.  

We now formally define the composite master-slave and arbiter 
transaction (CMSAT) model in the following. 

Definition 3: The composition of a compressed bus transaction tij
and a two-phase arbiter model A is denoted as Tij = (tij || A), where 

Tij : the composite model of tij and A. 
tij : the compressed bus transaction of the pair of mi and sj; 
A: the two-phase arbiter model described in FSM; 
||: compression function; 
Each CMSAT model represents a complete process for the arbiter 

granting a specific request and returning to next request phase after 
the granted bus transaction is finished. This optimized model 
eliminates unnecessary simulation overhead and hence leads to high 
performance simulation.  

Next, we discuss how to apply CMSAT models at the dynamic 
simulation phase. 

B. Full-bus dynamic simulation 

The key for the cycle-count-accurate full bus simulation to 
correctly simulate contention behaviors is to maintain a correct bus 
transaction execution order. Then, with the CMSAT model, accurate 
transaction execution cycle counts are efficiently computed.  

In practice, virtually all bus requests can be viewed as being stored 
in a request queue waiting for arbitration. After a request is granted for 
bus transaction, the remainders stay in the queue and the granted 
request will start bus transaction until completion. Furthermore, at the 
completion of the granted request, only the requesting master or the 
accessed slave (if it is also a master) may generate later new requests 
and affect arbitration subsequently. Hence, we can check the master 
and the slave of the granted request at the completion time point and 
determine whether any new requests should be added into the queue.  

To make the simulation process efficient, in implementation we 
extend the request queue to include also future requests. Nevertheless, 
the arbitration procedure processes only the active requests which are 
initiated before the arbitration starting time. 

We now illustrate our algorithm using an example in Fig. 4 with 
the fixed-priority arbiter in Fig. 2. At first, assume that both req1 and 
req2 are simultaneously active at t1 and are inserted into the request 
queue. The arbiter first advances to time t1, the earliest time new 
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requests occur. Then the arbiter grants req1 according to the specified 
arbiter model (Arbitration1). Consequently, the corresponding 
CMSAT model of req1 is selected and then its Cr and Cg are computed 
accordingly. In contrast, req2 is still stored in the request queue since it 
is not granted and cannot be executed. 

We check if M1 or S1 will generate new requests at t2, the 
completion time of req1, which is activated from master M1 to slave S1. 
Suppose that a new request req3 is generated at time t3. Then this 
future request is inserted into the request queue. Now by advancing 
the arbiter time to t2, the completion time of req1, another run of 
arbitration process begins (Arbitration2). At this moment, the arbiter 
finds that only req2 is active in the queue and hence grants req2 for 
execution. 

Assume that req2 finishes its transaction at time t4, and then we 
check if M2 has a new request generated and find that it does generate 
a new request req4 at time t6, which is inserted into the request queue 
as a future request. 

Now at time t4, the arbiter starts another arbitration process 
(Arbitration3) and finds that req3 at t3 is the only active request and 
hence grants req3 for execution. 

 Assume that at time t5, req3 finishes execution and M1 does not 
generate a new request. Then, when the arbiter tries to start a new run 
of arbitration processes, it finds that there is no active request but only 
one future request req4 at t6. Therefore, the arbiter sets the new 
arbitration time to t6 and determines to grant req4, which completes its 
transaction at time t7. 

The above illustrative cases cover most arbitration situations. A 
more general and formal full bus simulation algorithm is proposed in 
the following. 

Procedure Full_Bus_Simulation()  

0. Init: Generate the CMSAT models of the arbiter and all master-slave pairs.
1. Set the arbiter time to 0 and the request queue to empty. For each master, 

we compute the first request and insert the request into the request queue.
2. Do until the request queue is empty. 
3.     If no active request in the request queue 

a. Advance the arbiter time to the request time of the earliest future
request. 

4.     Else  
a. Select and grant an active request following the given arbitration 

policy. 
b. Compute the Request phase execution time Cr of the active request. 
c. Compute the Grant phase execution time Cg according to the 

CMSAT model of the active request. 
d. Update the arbiter time by adding Cr and Cg to the current arbiter 

time. 
e. Examine the requesting master and accessed slave of the granted 

request, if any of them will generate new request, push the request 
into the request queue. 

We use the request queue to preserve the requesting order and 
apply the CMSAT models to calculate accurately timing information 
rapidly until the request queue is empty. Our approach achieves an 
effective full-bus simulation without need to do cycle-by-cycle 
simulation. Moreover, the algorithm can be implemented in POSIX 
pthread or common simulation engine, e.g., SystemC. Each transaction 
is represented as an individual process and can look ahead to 
determine whether new requests will be generated at the end of the 
transaction.  

C. Discussions 

The main assumption of the proposed CMSAT model is that once 
a transaction enters into the Grant phase, it cannot be preempted and 

no other transactions on the same bus can enter the grant phase until it 
returns to the Request phase again. 

To the best of our knowledge, due to the complexity and limited 
benefits of the circuit design, most practical designs do not allow 
preempting request to terminate a transaction in the middle of data 
transfer (e.g., address, data…). This observation is confirmed with a 
bus protocol survey in [13]. 

In practice, bus preemption can still occur at the end of transaction 
execution. Masters such as DMA (Direct Memory Access) may 
request multiple transactions at a time. For this type of requests, the 
preempted master is designed to complete its current transaction 
before handing over the bus to the preempting master. This 
preemption case can be handled perfectly with our proposed algorithm, 
since the arbitration is performed at the phase boundaries. 

V. EXPERIMENTS

To demonstrate the effectiveness of our methodology, we apply 
our modeling and simulation approach on the AMBA AXI-based bus 
matrix of the Parallel Architecture Core Duo (PAC-Duo) platform 
from ITRI [12]. We compare the simulation performance and accuracy 
of our model with the CA model provided by Coware [9], a popular 
commercial tool. 

A. Modeling bus matrix of PAC-Duo platform 

The diagram in Fig. 5 shows the PAC-Duo platform according to 
our formal definition. It consists of two PAC DSP processors, an 
ARM processor, a DMA, LCDC (LCD controller), and memories. The 
AXI-based bus matrix of the platform is modeled through the 
proposed approach, while all IP components are cycle-count accurate 
TLM models [15]. 

To test the practicability of our bus modeling approach, we run an 
H.264 decoder application with a QVGA video stream (320x240 per 
frame) on the platform. The application flow starts by having the 
ARM processor load H.264 decoder program from SRAM and 
configure the PAC-DSP processors for H.264 decoder execution. The 
two DSP processors decode the H.264 frames in a pipeline fashion, 
while DMA helps with image data transfers. Whenever a frame is 
finished decoding, the ARM processor configures LCDC to read and 
display the frame.

B. Accuracy and performance comparison 

To confirm the accuracy of our approach, we verify that all the 
transaction execution beginning and end time points of our bus model 
are the same as that of the CoWare CA model. 

For simulation performance evaluation, Table 1 lists the 
performance comparison in terms of the number of transactions per 
second. The whole platform simulation of our bus model is 5.2 times 
faster than the platform of CoWare CA AXI bus model with the same 
IPs. For clear comparison, our bus model is 23 times faster than the 
Coware CA model if evaluating only on bus execution time. 

Figure 5: The modeled PAC-Duo platform. 
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This huge performance improvement is mainly gained from the 
static analysis of CMSAT model generation. Particularly, for burst-
based bus protocols, such as AXI, simulation performance is 
significantly improved since most simulation overhead from the cycle-
by-cycle data transfer and handshaking with the arbiter are eliminated 
by static analysis. 

TABLE 1: The performance (transactions per sec) comparison 

Whole platform 
performance / Speedup 

Communication 
performance / Speedup 

Coware CA 598/ 1X 708/ 1X 

CMSAT 3121/ 5.2X 16500/ 23X 

C. Architecture performance evaluation 

Finally, we demonstrate bus architecture performance evaluation 
for the PAC-Duo platform. We evaluate the effect of arbitration policy 
by examining four different arbitration policies–a fixed priority policy 
where DMA is of higher priority than LCDC (FP1), another fixed 
priority policy where LCDC is of higher priority than DMA (FP2), a 
Round Robin policy with 25 cycles time slot (RR1) and another Round 
Robin policy with 30 cycles time slot (RR2).

Fig. 6 shows the results of total throughputs of the platform with 
the above four different arbitration policies. In addition, a modified 
platform with only one PAC DSP is listed for reference. It is found 
that the PAC-Duo platform outperforms the single PAC platform, but 
the Duo platform is more sensitive to the choice of arbitration policy. 
For the PAC-Duo platform, performance can differ as much as 15% 
depending on the choice of arbitration policy, while for the single 
PAC platform the difference is only 9%. This is due to the fact that the 
PAC-Duo platform has a much higher contention rate because there 
are more active masters requesting data transfers. 

Through the experiments, we have demonstrated that our proposed 
approach can efficiently and effectively optimize bus architecture 
design. Our approach requires very little modeling effort. It needs only 
a few more lines of system description while the corresponding bus 
models and arbiter models are automatically generated.  

VI. CONCLUSION

In this paper, we have presented a highly efficient FSM-based 
Composite Master-Slave pair and Arbiter Transaction (CMSAT) 
model for full bus simulation. Following the proposed approach, 
designers can easily describe bus designs and perform Cycle-count 
Accurate (CCA) simulation for full bus performance evaluation and 
architecture validation. 

Our approach can handle most bus architectures except some 
advanced features such as out-of-order transfer, which we will 
address in future work. 
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