
A Formal Full Bus TLM Modeling for Fast and
Accurate Contention Analysis

Abstract—This paper presents an effective Cycle-count Accurate
Transaction level (CCA-TLM) full bus modeling and simulation
technique. Using the two-phase arbiter and master-slave models, an
FSM-based Composite Master-Slave-pair and Arbiter Transaction
(CMSAT) model is proposed for efficient and accurate dynamic
simulations. This approach is particularly effective for bus
architecture validation and contention analysis of complex Multi-
Processor System-on-Chip (MPSoC) designs. The experimental
results show that the proposed approach performs 23 times faster
than the Cycle-Accurate (CA) bus model while maintaining 100%
accurate timing information at every transaction boundary.

I. INTRODUCTION

Due to the relentless demands for high-performance computation
and low power consumption in embedded systems, multi-processor
system-on-chip (MPSoC) has become the mainstream design approach.
For MPSoC design, one of the most critical issues is the on-chip
communication design (e.g., shared bus, bus matrix) because of the
multiplied data exchange rate among the large number of components.
As design complexity continues to increase, having an efficient and
effective tool for early-stage system verification and validation is
indispensible before committing a design to real hardware.

For communication architecture validation, designers are
particularly interested in the rate of bus contentions and the
effectiveness of contention handling. In practice, an arbiter is used to
resolve contentions and determine transaction execution order
according to certain arbitration policy, such as the round-robin (RR) or
fixed priority (FP) policy. Contentions cause certain transactions to
change or defer their execution order. Hence, accurate contention
analysis is essential for performance evaluation during validation.

For early-stage validation, designers demand accurate contention
analysis, correctness verification, and performance estimates by
efficient system simulation. However, the complexity of traditional
RTL simulation approaches makes these procedures prohibitively
difficult. The transaction-level modeling (TLM) approach [1], which
raises the abstraction level to speed up simulation performance, has
been proposed as a solution.

To accurately simulate bus behaviors, traditional TLM bus
modeling approaches adopt fine-grained models, such as cycle-
accurate (CA) models, which simulate arbitration behaviors cycle by
cycle. The heavy simulation overhead associated with these fine-
grained approaches for handling the interactions between bus
transactions and the arbiter limits the practicality of such approaches.

In contrast, for better performance, some researchers embrace
coarse-grained modeling approaches, such as functional-level or
cycle-approximate (CX) modeling [6, 11, 14]. However, these

approaches can be misleading when used for validation purposes when
arbitration information is inaccurate or missing.

Although various TLM bus models have been proposed, none can
accurately perform arbitration analysis with efficiency. The main
challenge is that the arbitration behaviors are irregular and
unpredictable due to complicated combinations of requests and
arbitration policy.

To effectively and accurately capture the timing behaviors of
arbitration, we propose a Two-Phase arbiter model to abstract the
procedure of arbitration and bus transactions in this paper. The
arbitration is a dynamic handshaking process that can be split into
Request phase and Grant phase according to the specific handshake
signals controlling arbitration. Since the Request phase and Grant
phase alternate repeatedly and synchronously with bus transactions,
we can utilize the repetition property to pre-analyze the arbitration
procedure without cycle-by-cycle simulation and guarantee the correct
transaction execution order and the accurate handshaking process.

Furthermore, we extend the Finite State Machine (FSM)-based
formal model proposed by Lo [4], which employs the regularity of bus
transaction to statically analyze accurate cycle counts of each Master-
Slave-pair bus transaction. Combining the above two abstracted
models, we then have a formal Composite Master-Slave-pair and
Arbiter Transaction (CMSAT) model to statically capture complete
arbitrated bus transaction behaviors.

With the proposed CMSAT model, a dynamic simulation
algorithm is designed to simulate the interleaving of Request phase
and Grant phase effectively in order to maintain correct arbitration
results without incurring redundant simulation overhead.

We implemented and tested the proposed approach on a few real
designs. The encouraging experimental results demonstrate 23 times
better performance than CA bus models while maintaining 100%
accurate timing results in terms of cycle counts.

The rest of the paper is organized as follows. In section 2, we first
review related work. Then, section 3 introduces a formal approach for
describing the generic bus model. The proposed CMSAT model
generation is then presented in section 4 and the experimental results
in section 5. Finally, section 6 concludes this paper.

II. RELATED WORK

The TLM idea has been deemed the most promising solution to
system-level modeling problem. TLM provides system designers
components and bus models of various abstraction levels. To
implement the abstraction models, a system-level description
language such as SystemC [6] is used. For example, Caldari et al. [7]

Mao-Lin Li, Chen-Kang Lo, Li-Chun Chen, Ren-Song Tsay
The Department of Computer Science
National Tsing Hua University, Taiwan

Hsin-Chu City
Tel : +886-3-571-5131

e-mail : {mlli, cklo, lcchen,rstsay}@cs.nthu.edu.tw

Hong-Jie Huang, Jen-Chieh Yeh
Industrial Technology Research Institute, Taiwan

Hsin-Chu City
Tel : +886-3-582-0100
Fax : +886-3-582-0045

e-mail : { giffea, jcyeh}@itri.org.tw

SASIMI 2012 ProceedingsR2-1

- 147 -

apply the concept of program state machine and implement it in
SystemC to establish a cycle-accurate AMBA bus model [5].

Coware [9] proposes a cycle-accurate-level proprietary modeling
library for several different bus architectures, such as Advanced
Micro-controller Bus Architecture (AMBA) [5] and Open Core
Protocol (OCP) [8]. Through a cycle-by-cycle simulation approach, it
can precisely reflect the effect of arbitration behavior and offer high
simulation accuracy. However, due to considerable simulation
overhead, the performance may not be acceptable for architecture
validation of complex MPSoC designs.

To improve simulation performance, Pasricha et al. [3] propose a
cycle-count-accurate at transaction boundary (CCATB) approach,
which eliminates unnecessary computations within a bus transaction
while computing the precise cycle count. However, only 55%
performance speedup over the pin-accurate bus cycle-accurate (PA-
BCA) modeling approach is reported. To include arbitration and
accurately resolve contentions, their approach essentially needs to
check for bus requests at every cycle and hence no significant
performance improvement is achieved.

To seek even better simulation performance, some researchers use
simplified read/write functions and abstract arbitration procedures
with approximate timing to represent various types of bus transfers
(e.g., burst). The resultant cycle-approximate (CX) bus models have
fewer simulation details and hence achieve higher simulation
performance [6, 11, 14]. These approaches are suitable for fast early
system prototyping. However, because of the inaccuracy, arbitration
policy cannot be faithfully exercised and therefore the CX approaches
are not reliable for communication architecture validation.

Although the above modeling techniques each meet certain design
requirements, they lack of a systematic modeling mechanism.
Therefore, D’sliva et al. propose synchronous protocol automata
(SPA) [10] that systematically describe communication interfaces,
including master, slave, arbiter and bridge, etc., for cycle-accurate
level bus property verification.

Furthermore, Lo et al. [4] adopt the SPA modeling approach and
automatically generate high-performance cycle-count-accurate
composite master/slave models. However, the proposed method is
good only for single master and single slave pair and it does not
consider the effects of arbitration.

In contrast, we propose a two-phase (Request phase and Grant
phase) arbitration model and extend Lo’s model to cover multiple
master-slave pairs. The proposed Composite Master-Slave-pair and
Arbiter Transaction (CMSAT) model can effectively and efficiently
capture full bus behaviors, including the most important contention
effect. Furthermore, the cycle count of each phase can be obtained by
analyzing FSMs, according to the repetition of the two-phase arbiter
model, instead of cycle-by-cycle simulation. We simply manage the
phase interleaving correctly and then can easily and accurately
compute cycle count information of each phase, or full bus timing
information, with no extra simulation overhead.

Before we introduce our proposed full bus simulation algorithm,
we first present a generic bus modeling method.

III. GENERIC TLM BUS MODELING

A generic bus model involves multiple components (e.g., masters,
slaves and arbiters). In MPSoC designs, it is common to have multiple
bus requests contending for bus access at the same time. To resolve
contention, an arbiter is implemented to perform arbitration. When
arbitration is considered, the bus behavior becomes fairly complicated.
In this section, we introduce a few definitions first and explain the
basic idea of applying FSMs to our proposed approach. In the

following, we will present a FSM-based formal model for
communication interfaces description and then propose a simple two-
phase arbiter model that can effectively and efficiently model a
generic bus design.

A. A Formal Communication Interface Model

Before we formally specify the FSM-based communication
interface model, we first illustrate in Fig. 1 a simple example to
familiarize readers with basic FSM operations. The example shows a
master and a slave interfaces described in FSMs performing a write
transaction.

As shown in Fig. 1, the master and slave interfaces begin
synchronously from state r0 and state t0, respectively. Initially, the
master interface MI1 is not granted, and it sends out the signal req1 to
request bus usage, denoted as req1!1. Once MI1 receives a grant signal
to use bus, denoted as grant1?1, it progresses its state from r0 to r1.

Then, MI1 emits addr (for data address, denoted as “addr!”) to the
engaged slave interface, and progresses the state transition from r1 to
r2. Simultaneously, the engaged slave interface SI1 receives the signal
addr, denoted as “addr?”, and then progresses its state from t0 to t1.
This process continues until the state progress reaches the final states
r3 and t2. At this point, the write transaction is completed.

Although communication interfaces are more than read/write
operations, in practice read and write data transfers are the most basic
communication behaviors. To describe a general and formal
communication interface model, we modify the syntax of [10] and
propose a definition in the following.

Definition 1: A Finite State Machine (FSM)-based communication
interface model is a tuple (Q, Input, Output, C/O, V, , clk, q0, qf),
where

1. Q: a finite set of states
2. Input: a set of input data and control signals
3. Output: a set of output data and control signals
4. C/O: condition/operation
5. V: a set of internal variables(e.g., the counter in burst transfer)
6. Q x Q x C/O x clk?: transition relations
7. q0, qf Q: the initial state and the final state

According to the above definition, the FSM for each
communication interface has certain specified input and output signals
and performs transitions between states listed in a set Q. The state
transition in each FSM starts from the initial state q0 and ends at the
final state qf. Every clk tick triggers a state progress. The operation O
is a set of signal operations. For example, the action “s!” denotes that
the signal s is emitted from the interface, and “s?” denotes that the
signal s is read by the interface. C/O on each state progress edge
indicates that once the condition C is met, the corresponding operation
O will be issued. The condition C is checked against with the value of

∈
∈

Master interface (MI1)

addr!

data!

last1!

addr

data

clk

addr?
addr

clk

Figure 1: An example of write transaction described by FSMs.

r0

r1

r2

r3

grant1?

t0

t1

t2

data?

last1?

grant1?0
/req1!

data

last1 last1

req1

Slave interface (SI1)

grant1

- 148 -

the internal variables in V (e.g., the counter in burst transfer) or
specific input signals (e.g., last).

The above formal communication interface model describes only
how one component communicates with others. In the next section, we
extend the idea and explain how to model a generic bus.

B. A Two-Phase Arbiter Model

Like the formal communication interface model, the arbitration
process can be described as an FSM. In general, the arbiter receives
bus requests from master components and then arbitrates and grants
bus access to one of the requests according to a designer-specified
arbitration policy. The above arbitration procedure is accomplished
by asserting specific handshake signals. Hence, we further divide the
arbitration procedure into two phases, Request phase (R) and Grant
phase (G), according to handshake signals that control arbitration.
Before arbiter emits a grant signal, the states of arbiter are included in
the Request phase. Once arbiter emits a grant signal, the arbiter’s
phase transits to the Grant phase and returns to the Request phase
after the granted transaction finishes its data transfer. Essentially, at
the Request phase the arbiter receives external requests and selects a
master-slave pair for bus transaction while at the Grant phase the
granted master-slave pair executes the transaction.

The example in Fig. 2 illustrates an arbiter FSM which adopts a
fixed priority arbitration policy. We assume that the request req1 from
MI1 has higher priority than req2 and the fact is reflected in the arbiter
FSM.

We first explain how the request and grant procedures work. In
example Fig. 2, the state of arbiter will be a0 initially. The annotation
“req1?1” on the state transition edge from a0 to a1 indicates that the
arbiter receives a bus request from MI1. Similarly, “req2?1, req1?0”
on the transition from a0 to a3 indicates that the request from MI2 is
asserted while MI1 has no request. In general, in the Request phase,
the arbiter collects all incoming request signals and computes which
master is granted.

After the Request phase, a master is selected and then the arbiter
moves to Grant phase and assigns the master to have the bus for data
transfer. In Fig. 2, when req1 is asserted, according to the arbitration
policy the request from MI1 has the priority and hence the arbiter
asserts grant1, or “grant1!1”, and grants MI1 to start its data transfer.

After MI1 finishes its transaction, it sends a notification signal,
last1 to the arbiter, denoted as “last1?1”, and has the arbiter return to
its initial state a0 and get ready for next request processing.

If only req2 from MI2 is asserted and req1 is absent, the arbiter
will grant MI2 for data transfer and the granting process is similar to
what have been described for MI1. Furthermore, if no request tends to
use the bus, the arbiter stays in the initial state a0.

After the Grant phase is completed, the arbiter returns to the
Request phase. The two phases alternate repeatedly throughout the
system active period for bus transactions. In fact, an arbiter functions
exactly as a scheduler. It collects issued requests and grants one for
execution according to the arbitration policy designed in terms of the
arbiter FSM.

One key point is that with the proposed two-phase arbiter model,
the state progression of an arbiter can be greatly simplified without
losing functionality or timing correctness. We will elaborate on this
after we define a formal model for generic buses.

After adding the arbiter model along with the master and slave
models, we now can define a formal generic bus model. And in the
following section, we propose a static model abstraction and dynamic
simulation algorithm leveraging the two-phase arbiter model to
achieve fast and accurate full bus simulation.

IV. CMSAT MODEL GENERATION

In this section, we further elaborate our main idea and demonstrate
the effectiveness of our approach. The approach has two steps: static
model abstraction and dynamic simulation. At the static phase, we
analyze the behaviors of bus transactions and arbitration process and
create abstract models by optimizing routine simulation procedures.
Then at the dynamic simulation phase, with the interacting signals and
actual data we compute accurate arbitration and bus transaction results.

A. Static model abstraction

We now explain the concept of static model abstraction. First, we
review the master-slave pair model, and then the arbiter model and
finally the composite model.

1) Master-slave pair model compression

The basic bus function is essentially data transfer, or data
read/write, between masters and slaves. In this paper, we adopt and
extend Lo’s compression approach for model abstraction of the
master/slave transaction pair with accurate cycle count information
retained [4].

Basically, the compression algorithm analyzes the FSM-pair of
master/slave interfaces and merging them into one FSM that
represents the behavior of bus transaction. The compressed FSM
eliminates confirmed internal handshaking signals between master and
slave interfaces and reduces unnecessary simulation overhead with
fewer transition steps while maintaining same cycle count information
as the CA model.

On the other hand, we preserve the external interacting signals,
such as the handshaking signals req, grant and last, which interact
with the arbiter for accurate dynamic behavior simulation.

The FSM shown in Fig. 3(a) is the compressed write transaction
model of the master-slave pair discussed in Fig. 1. The address and
data transfers are compressed into one state transition step with a
computed cycle count equivalent to the actual number of cycles taken.
Note that each rhombus in the compressed model denotes a composite
FSM node. Details about the compression algorithm can be found in
[4].

With the compressed bus model, once the issued bus transaction is
granted during simulation, the cycle count of each bus transaction is
readily obtained without the need to do slow cycle-by-cycle simulation.
Simulation performance, hence, is significantly improved.

The compressed bus transaction model is defined as follows.

req1?1

grant1!1

last1?0

grant2!1

last2?0

last2?1

Fixed priority

req1 > req2

Figure 2: An example of a fixed priority arbiter described in FSM.

a0

a1

a2

a3

req2?1

a4

Grant Phase (G)

Request Phase (R) req1?0

req1?0&req2?0
/grant1!0&grant2!0

last1?1

- 149 -

Definition 2: A compressed bus transaction model tij is a merged
FSM of a master-slave interface pair generated from the compression
algorithm, or tij = (mi || sj), where

tij: the compressed bus transaction model of the pair of mi and sj.
mi : the i-th master interface in the bus;
sj: the j-th slave interface in the bus;
||: compression function;

2) The composite master-slave pair and arbiter transaction
(CMSAT) model

In fact, bus transactions and arbitration process are both FSMs
synchronized by specific handshaking signals. Moreover, each master-
slave pair bus transaction can also be divided into two phases, Request
phase and Grant phase, and matches the two-phase arbiter model
perfectly.

As illustrated in Fig. 3(a), if the compressed master-slave bus
transaction model t11 is activated, it will continue asserting the request
signal (req1!1) until it receives a grant (grant1?1). This portion is
clearly in the Request phase. After being granted, it enters the Grant
phase. It then starts data transfer and after completion it sends out a
finish notification (last1) before returning to the request phase.

To focus on the arbitration process analysis for req1, we show in
Fig. 3(b) a partial FSM of the arbiter from Fig. 2 related to req1, grant1

and last1. Once the arbiter is in the Request phase, it checks if any
request signal is asserted. Following assumed priority policy, when the
arbiter detects that req1 is asserted, it takes one cycle arbitration time
and asserts a corresponding grant signal (grant1!1). It then waits for
the finish notification (last1) from t11 before it returns to the Request
phase.

Normally the arbiter Request phase takes a fixed computation time
to handle received requests. The request processing time in general
can be pre-analyzed based on the combination of requests. If not, we
simply compute the arbitration time in terms of cycle count (Cr) at
runtime. For the fixed-priority case in Fig. 2, the request always takes
arbiter one cycle time to process grant.

While in the Grant phase, the arbiter simply waits for the granted
bus transaction finishing data transfer before entering next request
phase. In fact, the granted master-slave pair and the arbiter are
progressing synchronously and hence we can further composite the
master-slave pair and the arbiter model into an optimized CMSAT
model for full bus simulation. After composition, the internal
handshaking signals, such as grant signal and bus transaction
completion signal, between the active master-slave pair and the arbiter

can be eliminated following Lo’s compression algorithm. At the same
time, the cycle count of grant phase (Cg) is statically calculated.

The resultant CMSAT model shown in Fig. 3(c) is the
composition of the master-slave pair in Fig. 3(a) and the two-phase
arbiter model in Fig. 3(b). Note that in the CMSAT model the
handshaking signals, grant1 and last1, are eliminated and the grant
phase is determined to consume three cycles, comprising one cycle for
the arbiter asserting grant1 and two cycles for bus data transfer.

We now formally define the composite master-slave and arbiter
transaction (CMSAT) model in the following.

Definition 3: The composition of a compressed bus transaction tij
and a two-phase arbiter model A is denoted as Tij = (tij || A), where

Tij : the composite model of tij and A.
tij : the compressed bus transaction of the pair of mi and sj;
A: the two-phase arbiter model described in FSM;
||: compression function;
Each CMSAT model represents a complete process for the arbiter

granting a specific request and returning to next request phase after
the granted bus transaction is finished. This optimized model
eliminates unnecessary simulation overhead and hence leads to high
performance simulation.

Next, we discuss how to apply CMSAT models at the dynamic
simulation phase.

B. Full-bus dynamic simulation

The key for the cycle-count-accurate full bus simulation to
correctly simulate contention behaviors is to maintain a correct bus
transaction execution order. Then, with the CMSAT model, accurate
transaction execution cycle counts are efficiently computed.

In practice, virtually all bus requests can be viewed as being stored
in a request queue waiting for arbitration. After a request is granted for
bus transaction, the remainders stay in the queue and the granted
request will start bus transaction until completion. Furthermore, at the
completion of the granted request, only the requesting master or the
accessed slave (if it is also a master) may generate later new requests
and affect arbitration subsequently. Hence, we can check the master
and the slave of the granted request at the completion time point and
determine whether any new requests should be added into the queue.

To make the simulation process efficient, in implementation we
extend the request queue to include also future requests. Nevertheless,
the arbitration procedure processes only the active requests which are
initiated before the arbitration starting time.

We now illustrate our algorithm using an example in Fig. 4 with
the fixed-priority arbiter in Fig. 2. At first, assume that both req1 and
req2 are simultaneously active at t1 and are inserted into the request
queue. The arbiter first advances to time t1, the earliest time new

grant1?1

grant1?0/
req1!1

Cycle
count(2)

last!1

(a)

last1?1

a0

a1

a2

a0

req1?1

last1?0

grant1!1

<r3, t2>

<r1, t0>

r0

Request
phase

Grant
phase

The compressed
master-slave pair t11

(b)
A two-phase
arbiter model

(c)
The CMSAT

model T11

<<r3, t2>, a0>

<r0, a1>

a0

Cg

Cr

Cycle
count(3)

Figure 3: An example of static model abstraction for bus transaction
and arbiter.

M1 req event

M2 req event Simulated Arbiter Time

Figure 4: An example of dynamic simulation.

t1

t2

t3

t4

t5

t6

t7

Arbitration1

Arbitration2

Arbitration3

Request queue
(sorted by issue time)

req1@t1 req2@t1

req2@t1 req3@t3

req3@t3

Arbitration4 req4@t6

Active request

Future request

req4@t6

- 150 -

requests occur. Then the arbiter grants req1 according to the specified
arbiter model (Arbitration1). Consequently, the corresponding
CMSAT model of req1 is selected and then its Cr and Cg are computed
accordingly. In contrast, req2 is still stored in the request queue since it
is not granted and cannot be executed.

We check if M1 or S1 will generate new requests at t2, the
completion time of req1, which is activated from master M1 to slave S1.
Suppose that a new request req3 is generated at time t3. Then this
future request is inserted into the request queue. Now by advancing
the arbiter time to t2, the completion time of req1, another run of
arbitration process begins (Arbitration2). At this moment, the arbiter
finds that only req2 is active in the queue and hence grants req2 for
execution.

Assume that req2 finishes its transaction at time t4, and then we
check if M2 has a new request generated and find that it does generate
a new request req4 at time t6, which is inserted into the request queue
as a future request.

Now at time t4, the arbiter starts another arbitration process
(Arbitration3) and finds that req3 at t3 is the only active request and
hence grants req3 for execution.

 Assume that at time t5, req3 finishes execution and M1 does not
generate a new request. Then, when the arbiter tries to start a new run
of arbitration processes, it finds that there is no active request but only
one future request req4 at t6. Therefore, the arbiter sets the new
arbitration time to t6 and determines to grant req4, which completes its
transaction at time t7.

The above illustrative cases cover most arbitration situations. A
more general and formal full bus simulation algorithm is proposed in
the following.

Procedure Full_Bus_Simulation()

0. Init: Generate the CMSAT models of the arbiter and all master-slave pairs.
1. Set the arbiter time to 0 and the request queue to empty. For each master,

we compute the first request and insert the request into the request queue.
2. Do until the request queue is empty.
3. If no active request in the request queue

a. Advance the arbiter time to the request time of the earliest future
request.

4. Else
a. Select and grant an active request following the given arbitration

policy.
b. Compute the Request phase execution time Cr of the active request.
c. Compute the Grant phase execution time Cg according to the

CMSAT model of the active request.
d. Update the arbiter time by adding Cr and Cg to the current arbiter

time.
e. Examine the requesting master and accessed slave of the granted

request, if any of them will generate new request, push the request
into the request queue.

We use the request queue to preserve the requesting order and
apply the CMSAT models to calculate accurately timing information
rapidly until the request queue is empty. Our approach achieves an
effective full-bus simulation without need to do cycle-by-cycle
simulation. Moreover, the algorithm can be implemented in POSIX
pthread or common simulation engine, e.g., SystemC. Each transaction
is represented as an individual process and can look ahead to
determine whether new requests will be generated at the end of the
transaction.

C. Discussions

The main assumption of the proposed CMSAT model is that once
a transaction enters into the Grant phase, it cannot be preempted and

no other transactions on the same bus can enter the grant phase until it
returns to the Request phase again.

To the best of our knowledge, due to the complexity and limited
benefits of the circuit design, most practical designs do not allow
preempting request to terminate a transaction in the middle of data
transfer (e.g., address, data…). This observation is confirmed with a
bus protocol survey in [13].

In practice, bus preemption can still occur at the end of transaction
execution. Masters such as DMA (Direct Memory Access) may
request multiple transactions at a time. For this type of requests, the
preempted master is designed to complete its current transaction
before handing over the bus to the preempting master. This
preemption case can be handled perfectly with our proposed algorithm,
since the arbitration is performed at the phase boundaries.

V. EXPERIMENTS

To demonstrate the effectiveness of our methodology, we apply
our modeling and simulation approach on the AMBA AXI-based bus
matrix of the Parallel Architecture Core Duo (PAC-Duo) platform
from ITRI [12]. We compare the simulation performance and accuracy
of our model with the CA model provided by Coware [9], a popular
commercial tool.

A. Modeling bus matrix of PAC-Duo platform

The diagram in Fig. 5 shows the PAC-Duo platform according to
our formal definition. It consists of two PAC DSP processors, an
ARM processor, a DMA, LCDC (LCD controller), and memories. The
AXI-based bus matrix of the platform is modeled through the
proposed approach, while all IP components are cycle-count accurate
TLM models [15].

To test the practicability of our bus modeling approach, we run an
H.264 decoder application with a QVGA video stream (320x240 per
frame) on the platform. The application flow starts by having the
ARM processor load H.264 decoder program from SRAM and
configure the PAC-DSP processors for H.264 decoder execution. The
two DSP processors decode the H.264 frames in a pipeline fashion,
while DMA helps with image data transfers. Whenever a frame is
finished decoding, the ARM processor configures LCDC to read and
display the frame.

B. Accuracy and performance comparison

To confirm the accuracy of our approach, we verify that all the
transaction execution beginning and end time points of our bus model
are the same as that of the CoWare CA model.

For simulation performance evaluation, Table 1 lists the
performance comparison in terms of the number of transactions per
second. The whole platform simulation of our bus model is 5.2 times
faster than the platform of CoWare CA AXI bus model with the same
IPs. For clear comparison, our bus model is 23 times faster than the
Coware CA model if evaluating only on bus execution time.

Figure 5: The modeled PAC-Duo platform.

ARM DMA LCDC

SRAM SDRAM DDR DMA LCDC PAC0

PAC1 PAC0

PAC1

AXI-based Bus

General priority: ARM>PAC0>PAC1>DMA>LCDC

- 151 -

This huge performance improvement is mainly gained from the
static analysis of CMSAT model generation. Particularly, for burst-
based bus protocols, such as AXI, simulation performance is
significantly improved since most simulation overhead from the cycle-
by-cycle data transfer and handshaking with the arbiter are eliminated
by static analysis.

TABLE 1: The performance (transactions per sec) comparison

Whole platform
performance / Speedup

Communication
performance / Speedup

Coware CA 598/ 1X 708/ 1X

CMSAT 3121/ 5.2X 16500/ 23X

C. Architecture performance evaluation

Finally, we demonstrate bus architecture performance evaluation
for the PAC-Duo platform. We evaluate the effect of arbitration policy
by examining four different arbitration policies–a fixed priority policy
where DMA is of higher priority than LCDC (FP1), another fixed
priority policy where LCDC is of higher priority than DMA (FP2), a
Round Robin policy with 25 cycles time slot (RR1) and another Round
Robin policy with 30 cycles time slot (RR2).

Fig. 6 shows the results of total throughputs of the platform with
the above four different arbitration policies. In addition, a modified
platform with only one PAC DSP is listed for reference. It is found
that the PAC-Duo platform outperforms the single PAC platform, but
the Duo platform is more sensitive to the choice of arbitration policy.
For the PAC-Duo platform, performance can differ as much as 15%
depending on the choice of arbitration policy, while for the single
PAC platform the difference is only 9%. This is due to the fact that the
PAC-Duo platform has a much higher contention rate because there
are more active masters requesting data transfers.

Through the experiments, we have demonstrated that our proposed
approach can efficiently and effectively optimize bus architecture
design. Our approach requires very little modeling effort. It needs only
a few more lines of system description while the corresponding bus
models and arbiter models are automatically generated.

VI. CONCLUSION

In this paper, we have presented a highly efficient FSM-based
Composite Master-Slave pair and Arbiter Transaction (CMSAT)
model for full bus simulation. Following the proposed approach,
designers can easily describe bus designs and perform Cycle-count
Accurate (CCA) simulation for full bus performance evaluation and
architecture validation.

Our approach can handle most bus architectures except some
advanced features such as out-of-order transfer, which we will
address in future work.

VII. REFERENCES

[1] L. Cai, D. Gaski. “Transaction Level Modeling: An Overview,” in
CODES+ISSS, 2003

[2] T. Grotker, S.Laio, G. Martin, S. Swan, System Design with SystemC,
Kluwer Academic Publishers, 2002.

[3] S. Pasricha, N. Dutt, M. Ben-Romdhane, “Extending the Transaction
Level Modeling Approach for Fast Communication Architecture
Exploration,” in DAC, 2004

[4] C. K. Lo, R. S. Tsay, “Automatic Generation of Cycle Accurate and
Cycle Count Accurate Transaction Level Bus Models from a Formal
Model,” in ASP-DAC, 2009

[5] ARM Ltd. AMBA Protocol Specification. www.arm.com

[6] Open SystemC Initiative (OSCI). SystemC 2.2.0 Documentation.
www.systemc.org

[7] M. Caldari, et al., “Transaction-Level Models for AMBA Bus
Architecture Using SystemC 2.0” in DATE, 2003

[8] Open Core Protocol International Partnership (OCP-IP). www.ocpip.org.

[9] Coware. www.synopsys.com

[10] V. D’silva, S. Ramesh, and A. Sowmya, “Synchronous Protocol
Automata: A Framework for Modeling and Verification of SoC
Communication Architecture”, in DATE, 2004

[11] M. Radetzki, R. Salimi Khaligh, “Modelling Alternatives for Cycle
Approximate Bus TLMs,” in Proc. Forum on Design Languages(FDL),
2007

[12] Z. M. Hsu, J. C. Yeh, I. Y. Chuang, “An Accurate System Architecture
Refinement Methodology with Mixed Abstraction-Level Virtual
Platform”, in DATE, 2010

[13] W. Klingauf, R. Gunzel, O. Bringmann, P. Parfuntascus, and M. Burton,
“GreenBus: a generic interconnect fabric for transaction level modeling
“, in DAC , 2006

[14] R. B. Atitallah, S. Niar, S. Meftali, and J. L. Dekyser, “An MPSoC
Performance Estimation Framework Using Transaction Level Modeling”,
in RTCSA, 2007

[15] C. K. Lo, L. C. Chen, M. H. Wu, R. S. Tsay, “Cycle-count-accurate
Processor Modeling for Fast and Accurate System-level Simulation,” in
DATE, 2011

Figure 6: Architecture performance evaluation with different arbitration
arbitration policy

- 152 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

