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Abstract— This paper proposes a formal approach to design-
ing arithmetic circuits over Galois Fields (GFs). Our method rep-
resents a GF arithmetic circuit by a hierarchical graph structure
specified by variables and arithmetic formulae over GFs. The
proposed circuit description is applicable to any GF (pm) (p ≥ 2)

arithmetic and is formally verified by symbolic computation tech-
niques such as polynomial reduction using Gröbner basis. In this
paper, we propose the graph representation and show some exam-
ples of its description and verification. The advantageous effect
of the proposed approach is demonstrated through experimental
designs of parallel multipliers over Galois field GF (2m) for dif-
ferent word-lengths and irreducible polynomials. An inversion
circuit consisting of some multipliers is also designed and veri-
fied as a further application. The result shows that the proposed
approach has a definite possibility of verifying practical GF arith-
metic circuits where the conventional simulation and verification
techniques failed.

I. INTRODUCTION

The use of arithmetic algorithms over Galois fields (GFs)

have been rapidly increasing due to the high demand of error

correction codes and cryptographic systems in recent depend-

able and secure devices. On the other hand, most of such arith-

metic algorithms are devised by researchers who had trained

in a particular way to understand GF arithmetic. Even the

state-of-the-art Hardware Description Languages (HDLs) and

high-level languages (e.g., SystemC and System Verilog) do

not handle high-level arithmetic data structures, arithmetic op-

erations and formulae over Galois fields. Such conventional

design environments sometimes require us to describe and ver-

ify structural details of arithmetic circuits at the lowest level of

abstraction.

Previous researches on arithmetic circuit verification are pri-

marily based on Decision Diagrams (DDs) or Binary Moment

Diagrams (BMDs) [1, 2, 3, 4]. Reference [3], for example,

presents a hardware description language, called ACV lan-

guage, to verify arithmetic circuits in a hierarchical fashion

using *BMDs. However, the conventional approaches are ba-

sically limited to binary arithmetic over integer since they are

inherently based on bit-level integer operations. Binary Deci-

sion Diagrams (BDDs) can be applied to GF arithmetic, but

BDDs are not effective for verifying arithmetic circuits. There

is another decision diagram for Galois fields based on the de-

composition of multiple-valued functions[5], but it is still dif-

ficult to handle practical fields such as GF (216), GF (232) and

larger algorithms including many operators. Some GF arith-

metic circuits were verified effectively in [6][7], but their ap-

plications are limited to specific GF (2m)s which are given as

a form of GF ((2n)p)s.

Addressing the above problem, this paper proposes a for-

mal approach to describing and verifying arithmetic algo-

rithms over Galois fields using symbolic computer algebra.

Our method describes arithmetic circuits directly by high-level

mathematical graphs associated with variables and arithmetic

formulae over GFs. The graph can represent any GF (pm)
arithmetic circuit (where p ≥ 2) in a hierarchical manner,

where each component (i.e. sub-circuit) has a function and

an internal structure defined by Galois-field equations. (A pre-

liminary study presented in [8] was limited to GF (2m) arith-

metic.) Such description is formally verified by checking for

every sub-circuit whether the function is obtained from the in-

ternal structure. The equivalence checking can be performed

by formula manipulations based on Gröbner basis and a poly-

nomial reduction technique [9], which makes it possible to ver-

ify arithmetic circuits over practical GFs such as GF (2128).
In this paper, we also demonstrate the advantageous effect of

the proposed verification method in comparison with conven-

tional simulation and verification methods through experimen-

tal designs of parallel multipliers over GF (2m) for different

word-lengths and irreducible polynomials. The result shows

that the proposed approach has a definite possibility of verify-

ing GF arithmetic circuits where the conventional techniques

failed.

II. ARITHMETIC CIRCUIT REPRESENTATION

The function of arithmetic circuits is usually represented by

logic functions or lookup tables defining all the input-output

combinations uniquely. Such representations, however, are not

always suitable for representing large arithmetic circuits with

many input variables. Assuming that arithmetic circuits imple-

ment arithmetic functions which should be dealt in the arith-

metic domain rather than the Boolean logic domain, we intro-
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Fig. 1. Galois-field Arithmetic circuit graph.

duce a graph-based representation of arithmetic circuits over

Galois fields in a hierarchical manner based on Galois-field
(GF) equations. This representation can be considered as an

extension of arithmetic circuit graphs (ACGs) presented in [10]

for integer arithmetic circuits.

Fig. 1 shows a Galois-field arithmetic circuit graph (GF-

ACG) for representing a circuit structure. A GF-ACG G is

defined as G = (N , E), where N is a set of nodes, and E
is a set of directed edges. The node represents an arithmetic

circuit which has its functional assertion and internal structure.

The directed edge, on the other hand, represents the flow of

data between the nodes, and defines the data dependency. We

assume that every node has one edge connection at least.

A node n (∈ N) is given by n = (F , G′), where F is the

functional assertion given as a set of GF equations and G′ is

the internal structure given as a lower-level GF-ACG.

A node that does not have its internal structure is said to be

lowest level, and is represented as n = (F , nil). Let El and

Er be expressions given by variables, constants or combina-

tions of the two or more expressions connected by arithmetic

operations +, −, ×, and /. A GF equation is defined as a rela-

tion El = Er, where El and Er indicate the output and input

expressions, respectively.

A directed edge e (∈ E) is defined as e = (src, dest, x),
where src indicates the start node, dest indicates the end node,

and x indicates the variable. A directed edge is said to be a half

edge if one endpoint of the directed edge is not connected to

any node. The half edge represents an external input or output

for the given GF-ACG.

Each variable is associated with a Galois field. A Galois

field GF is represented as GF = (B, C, IP ), where B is

the basis, C is the coefficient vector, and IP is the irreducible

polynomial. More precisely, B, C, and IP are given as

B =
(
βm−1, · · · , βi+1, βi, βi−1, · · · , β0

)
, (1)

C = (Cm−1, · · · , Ci+1, Ci, Ci−1, · · · , C0) , (2)

IP =βm + αm−1β
m−1 + · · · + α1β

1 + α0β
0, (3)

where β is the indeterminate element, Ci is the coefficient set

of degree i, m is the degree of field extension, and αi is the

element of the coefficient set Ci. IP = nil if the GF is a

prime field. Thus, the above description can handle both prime

and extension fields.

Let h (h ≤ m − 1) and l (0 ≤ l ≤ h) be the most and

least significant degrees, respectively. A variable is given as

x = (GF, (h, l)), where the tuple (h, l) is called the degree

range. Using the above notation, we easily handle a specific

variable xi of degree i.
A variable is represented as an expression at a lower level

of abstraction. Let x be a variable and xi (l ≤ i ≤ h) be

a lower-level variable. We have two types of decomposition

nodes whose functions are given as

xh + xh−1 + · · · + xi + · · · + xl+1 + xl = x, (4)

xhβh +xh−1β
h−1 + · · ·+xiβ

i + · · ·+xl+1β
l+1 +xlβ

l = x.
(5)

Eq. (4) indicates that the variable x ∈ GF (pm) is divided

into a number of variables of degree i (i.e. xi(l ≤ i ≤ h) ∈
GF (pm)). On the other hand, Eq. (5) indicates that the vari-

able x ∈ GF (pm) is divided into a number of variables over

the prime field (i.e. xi(l ≤ i ≤ h) ∈ GF (p)). We also

have two types of composition nodes given as inverse relations

between the above inputs and outputs. Using the decomposi-

tion/composition nodes, we can change the level of abstraction

in edge representation. Note here that these nodes are imple-

mented by wiring and have no internal structures.

For example, a variable x ∈ GF (22) is represented as

GF (22) =((β1, β0), ({0, 1}, {0, 1}), β2 + β1 + β0), (6)

x =(GF (22), (1, 0)). (7)

The variable x can be decomposed into two lower-level vari-

ables xi (0 ≤ i ≤ 1), such as x1 + x0 = x, by the decomposi-

tion node of Eq. (4).

The above GF-ACG can be used also for representing logic

circuits. A logic variable is considered as a variable over a

Galois field whose coefficient set is limited to the zero ele-

ment “0” and the unit element “1”. Any logical operation can

be represented with pseudo logic equations. For example, the

functions of NOT, OR, AND, and XOR circuits are given as

NOT (u) = 1 − u, (8)

OR(u, v) = u + v − uv, (9)

AND(u, v) = uv, (10)

XOR(u, v) = u + v − 2uv, (11)

respectively. Each logic variable is associated with a Galois

field Logic defined as

Logic =((β0), ({0, 1}), nil). (12)

Therefore u = (Logic, (0, 0)) and v = (Logic, (0, 0)). Note

that the idempotent law is considered as a functional assertion

in the corresponding node (i.e. u = u2 and v = v2). Thus, GF-

ACG can represent any GF arithmetic circuit from the logic

level.

In the lowest-level node, we usually represent the func-

tional assertion and the internal structure by GF equations and

pseudo-logic equations (i.e.,(8)- (11)), respectively. In order

to evaluate the relationship between the GF equations and the
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TABLE I

TRANSLATION OF GF VALUE TO LOGIC VALUE

(a) Example of GF (2)

GF(2) val. Logic val.

0 0

1 1

(b) Example of GF (3)

GF(3) val. Logic val.

0 00

1 01

2 10

pseud-logic equations, we need to include an encoding func-

tion from GF variable to logic variables in the internal struc-

ture.

Each GF variable in Ci (the coefficient set of degree i) is

encoded by at least �log |Ci|� logic variable(s). For example,

GF values used in GF (2) (∈ {0, 1}) are encoded as shown

in Table I(a). Any encoding including non-minimum-length

encodings is possible also for larger characteristic p (≥ 2). For

example, GF values used in GF (3) (∈ {0, 1, 2}) are encoded

as shown in Table I(b), which corresponds to a standard binary

encoding.

An encoding from GF variable and logic variables is spec-

ified by a specific equation called encoding equation. Let

x and Lj(0 ≤ j ≤ k − 1) be a GF variable over GF (p)
and a logic variable used for encoding. Also, let α(=
(α0, α1, · · · , αk−1) ∈ {0, 1}k) be a k-bit logic value. The

general form of the encoding equation is given as

x =
∑

α∈{0,1}k

(
f(α) × Πk−1

j=0L
αj

j

)
, (13)

where f(α) is the GF value corresponding to α, and L
αj

j is

the jth literal defined as

L
αj

j =
{

1 − Lj (αj = 0)
Lj (αj = 1) . (14)

For example, the encoding equations for Table I (a) and (b) are

given as

x = L0, (15)

and

x = (1 − L1)L0 + 2 × L1(1 − L0), (16)

respectively. Thus, we describe any internal structure of logic

circuit at the lowest level of abstraction with the above encod-

ing equations in addition to pseudo-logic equations. As a re-

sult, GF-ACG can represent any GF (pm) arithmetic circuit

including logical operations in a uniform manner.

Fig. 2 shows the GF-ACGs for 2-input adder over GF (3)
[11]. Tables II and III show the functional assertions and

GF variables, respectively. The functions of n1 and n2 are

to translate a GF variables to logic variables. In contrast, the

function of n10 is to translate logic variables to a GF variable.

Note here that the functional assertions also declare unused in-

puts by an equation such as xL0xL1 = 0, which means that

(xL0, xL1) = (1, 1) is not used.

As another example, Fig. 3 shows the GF-ACGs for 2-input

parallel multiplier over GF (22) at various levels of abstrac-

tion, where the square blocks indicate the nodes. The “Mul-

tiplier” block in (a) is in the highest level of hierarchy. The

n3

yx

n1 n2

n4 n5 n6

n7

n8 n9

yL1 yL0xL1 xL0

n10

z

zL0 zL1

G1

n0

(GF(3) Adder)

G0

(a)

n3

yx

n1 n2

n4 n5 n6

n7

n8 n9

yL1 yL0xL1 xL0

n10

z

zL0 zL1

G1

w0 w1 w2 w3

w4

(b)

Fig. 2. GF-ACG for adder over GF (3).

TABLE II

FUNCTIONAL ASSERTIONS IN FIG. 2
[GF(3) Adder] n0 = ({z = x + y}, G1)

n1 = ({(1 − xL1)xL0 + 2xL1(1 − xL0) = x, xL0xL1 = 0}, nil)
n2 = ({(1 − yL1)yL0 + 2yL1(1 − yL0) = y, yL0yL1 = 0}, nil)
n3 = ({w0 = OR(xL1, yL1)}, nil)
n4 = ({w1 = OR(xL1, yL0)}, nil)
n5 = ({w2 = OR(xL0, yL1)}, nil)
n6 = ({w3 = OR(xL0, yL0)}, nil)
n7 = ({w4 = XOR(w1, w2)}, nil)
n8 = ({zL0 = XOR(w0, w4)}, nil)
n9 = ({zL1 = XOR(w3, w4)}, nil)
n10 = ({z = (1 − zL1)zL0 + 2zL1(1 − zL0), zL1zL0 = 0}, nil)

blocks in Figs. 3 (a), (b), and (c) correspond to the shaded

parts in Figs. 3 (b), (c), and (d), respectively. Each block has

its internal structure given by a combination of smaller blocks

in the corresponding shaded part. For example, Partial prod-

uct generator block consists of two smaller blocks PPG0

and PPG1.

For example, an GF-ACG G1 is represented as

G1 =({n1, n2},
{(nil, n1, x), (nil, n1, y),
(n1, n2, t0), (n1, n2, t1), (n2, nil, z)}), (17)

where

n1 =({t0 + t1 = x × y}, G2), (18)

n2 =({z = t0 + t1}, G3). (19)

Tables IV and V show the functional assertions and GF

variables, respectively. Note that decomposition/composition

nodes are not shown in Fig. 3 and Table IV.

III. FUNCTIONAL VERIFICATION USING SYMBOLIC

COMPUTER ALGEBRA

Fig. 4 shows an overview of the verification procedure.

Given a GF-ACG, the FormulaEvaluation is applied to

all the nodes having functional assertions and internal struc-

tures. If GF equations of the internal structure are equivalent

to the functional assertion(s), FormulaEvaluation returns
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Fig. 3. GF-ACG for parallel multiplier over GF (22) .

TABLE III

GALOIS FIELDS AND VARIABLES IN FIG. 2
Galois field

GF (3) = (
`
β0

´
, ({0, 1, 2}) , nil)

Logic = (
`
β0

´
, ({0, 1}) , nil)

Galois field variables

x = (GF (3), (0, 0))
xL0 = (Logic, (0, 0))
xL1 = (Logic, (0, 0))
y = (GF (3), (0, 0))
yL0 = (Logic, (0, 0))
yL1 = (Logic, (0, 0))
z = (GF (3), (0, 0))
zL0 = (Logic, (0, 0))
zL1 = (Logic, (0, 0))
wi = (Logic, (0, 0)), (0 ≤ i ≤ 4, )

TABLE IV

FUNCTIONAL ASSERTIONS IN FIG. 3
[Multiplier] n0 = ({z = x × y}, G1)

[Partial product generator]

n1 = ({t0 + t1 = x × y}, G2)
[PPG0] n3 = ({t0 = x × y0}, G4)

n6 = ({t0,0 = x0 × y0,0}, nil)
n7 = ({t0,1 = x1 × y0,0}, nil)

[PPG1] n4 = ({t1 = x × y1}, G5)
n8 = ({w0 = x0 × y1,1}, nil)
n9 = ({t1,2 = x1 × y1,1}, nil)
n10 = ({t1,3 = x2 × y1,1}, nil)

[Accumulator]

n2 = ({z = t0 + t1}, G3)
[GFA] n5 = ({z = t0 + t1}, G6)

n11 = ({z0 = t0,0 + t1,0}, nil)
n12 = ({z1 = t0,1 + t1,1}, nil)

TABLE V

GALOIS FIELDS AND VARIABLES IN FIG. 3
Galois field

GF (22) = (
`
β1, β0

´
, ({0, 1}, {0, 1}) ,

β2 + β1 + β0)
GF (2) = (

`
β0

´
, ({0, 1}) , nil)

Galois field variables

x = (GF (22), (1, 0))
xi = (GF (2), (0, 0)), (0 ≤ i ≤ 1)
y = (GF (22), (1, 0))
yi = (GF (22), (i, i)), (0 ≤ i ≤ 1)
yi,i = (GF (2), (0, 0)), (0 ≤ i ≤ 1)
z = (GF (22), (1, 0))
zi = (GF (2), (0, 0)), (0 ≤ i ≤ 1)
ti = (GF (22), (1, 0)), (0 ≤ i ≤ 1)
ti,j = (GF (2), (1, 0)), (0 ≤ i, j ≤ 1)
w0 = (GF (2), (0, 0))

true. Here, we assume that the lowest-level nodes are given

by logical functions, such as NOT and AND, which are prede-

termined and reliable. The major feature of GF-ACGs is that

the formula evaluation can be preformed by symbolic compu-

tation, which utilizes polynomial reduction and Gröbner ba-

sis techniques [9]. In the following, we briefly describe the

fundamentals of polynomial reduction, normal form, and the

Gröbner basis, and then explain how the symbolic computa-

tion is applied to the formula evaluation.

Given a polynomial p, let HT (p) be the monomial in the

maximal term (or head term) among those in p with respect to

a total ordering of the variables. Let HC(p) be the coefficient

of the maximal term. Given polynomials p and q �= 0, suppose

a term M , which can be divided by HT (q), exists in p. The

polynomial reduction is defined as

p′ = p − CMM

HC(q)HT (q)
q, (20)

where p′ is the resulting polynomial and CM is the coefficient

of M .

For any polynomial p, we have a unique element, which is

reduced repeatedly with respect to a set of polynomials Q =
{q1, · · · , qm}. The element is called a normal form, and is

denoted by NFQ(p).

Input: Arithmetic circuit graph G = (N, E)
Output: Verification result r ∈ {true, false}
1: Function V erify(G)
2: r := true
3: for each (F , G′) ∈ N
4: if G′ �= nil
5: r := r & V erify(G′)
6: for each f ∈ F
7: r := r & FormulaEvaluation(f, G′)
8: end for
9: end if
10: end for
11: return r
12: end

Fig. 4. Proposed verification algorithm.

Here, we denote R[x] = R[x0, x1, · · · , xn−1] as the

ring of all polynomials obtained from variables x =
(x0, x1, · · · , xn−1). Every finite set of polynomials P =
{p0, p1, · · · , pk−1} ⊂ R[x] generates a polynomial ideal (or

simply, ideal) I as follows:

I = {a0p0+a1p1+· · ·+ak−1pk−1 | a0, a1, · · · , ak−1 ∈ R[x]}.
(21)
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Input: Functional assertion f
Internal structure G = (N, E)

Output: Verification result r ∈ {true, false}
1: Function FormulaEvaluation(f, G)
2: P := ∅
3: for each (F , G′) ∈ N
4: P := P ∪ F
5: end for
6: GB := GroebnerBasis(P )
4: if NFGB(f) = 0
5: r := true
6: else
7: r := false
8: end if
9: return r
10: end

Fig. 5. Formula evaluation algorithm.

The set P is called generator or basis of I . A basis is a Gröbner

basis with respect to a ordering of the variables if NFQ(p) =
0 for any polynomial p in an ideal I .

Buchberger [12] has shown that an arbitrary basis can be

transformed into the Gröbner basis. A reduced Gröbner ba-

sis forms a canonical representation for a polynomial ideal,

which enables us to check whether the given polynomial is in

the ideal.

Fig. 5 illustrates the formula evaluation procedure using

Gröbner basis, where GroebnerBasis(P ) indicates Buch-

berger’s algorithm to obtain a Gröbner basis GB from a

set of polynomials P . Given a functional assertion f and

internal structure G, P is generated from functional asser-

tions in the internal structure. GB is then obtained from

GroebnerBasis(P ). If the normal form of f with re-

spect to GB is equal to zero, f is a member of the ideal

generated from P . This means that the functional asser-

tion can be realized with the internal structure. Therefore,

FormulaEvaluation(f, G) returns true.

Example 1 Consider a formula evaluation for the highest-
level node n0 of GF (22) multiplier in Fig. 3, where the ir-
reducible polynomial is IP = β2 + β1 + β0. We first obtain a
set of polynomials P from the internal structure including two
nodes n1 and n2 in G1.

P = {t0 + t1 − x × y,

z − (t0 + t1)}. (22)

Then, we derive the Gröbner basis GB from P as follows:

GB = {x × y + z, t0 + t1 + z}. (23)

The normal form of the function with respect to GB is given
as NFGB(z − x × y) = 0

(
mod β2 + β1 + β0

)
. Therefore,

the formula evaluation returns true.

Buchberger’s algorithm sometimes takes a long time and

requires large memory space. If the set of polynomials con-

sists of linear polynomials, however, the Gröbner basis calcu-

lation is equivalent to Gaussian Elimination [9]. In this case,

TABLE VI

VERIFICATION TIME OF PARALLEL MULTIPLIERS OVER GF (2m) FOR

DIFFERENT DEGREES

Galois fields

Verification time [sec]

HDL sim. BDD
This work This work

(all) (minimum)

GF (24) 0.12 < 0.01 8.69 1.95

GF (28) 0.54 0.01 44.57 2.79

GF (216) 1 day 10.98 183.00 4.91

GF (232) N/A 1 week 747.63 12.67

GF (264) N/A N/A 6241.30 64.10

GF (2128) N/A N/A 18244.04 615.06

the computation cost of the proposed method becomes O(k3),
where k is the number of equations. For many arithmetic cir-

cuits, word-level structures are commonly represented by lin-

ear equations, and thus the proposed verification method can

be effective for verifying such word-level functions.

IV. EXPERIMENTAL VERIFICATION

To evaluate the verification times of the proposed method,

we designed a set of 2-operand parallel multipliers over

GF (2m) (4 ≤ m ≤ 128) as shown in Fig. 3. (Each cir-

cuit structure in Fig. 3 is simply extended according to the

value m.) We describe adders and multipliers over GF (2) with

pseudo logic equations at the lowest level of abstraction. In this

experiment, we implement the proposed verification method in

two ways. One is a straightforward implementation to verify

all the graphs included in the multiplier representation. An-

other is an optimized implementation to verify only a mini-

mum number of the graphs. The GF-ACGs designed here in-

clude a number of the same sub-circuits, such as 1-bit adders,

which have the same internal structures and are different only

in variable names. We can easily extract the same sub-circuits

from the functional assertions. Therefore, we verify such sub-

circuits only once in the optimized implementation in order to

reduce the verification time. This technique is particularly ef-

fective for arithmetic circuits.

These proposed verification methods were performed using

Mathematica (version 6.0) on Intel Xeon E5450 3.00 GHz and

32GB memory. For comparison, we also performed a Verilog-

XL simulation using the corresponding HDL descriptions and

a BDD equivalence checking as conventional simulation and

formal-verification techniques, respectively. We used an open-

source code for the BDD construction [13].

Table VI shows the verification time of 2-operand multi-

pliers over GF (2m) whose operand lengths are m and the

irreducible polynomials are selected from typical ones [14].

The verification times of HDL simulation (“HDL sim.”) and

BDD equivalent checking (“BDD”) are smaller than those of

the proposed methods for low extension degrees (i.e., operand

lengths) such as GF (28). However, the simulation time in-

creased exponentially as the operand length increased. We re-

quired one day to finish the complete simulation of GF (216)
in this experiment. The verification time using BDDs also in-
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creased significantly as the operand length increased. We used

one week to verify GF (232) by BDDs in this experiment. This

result shows the verification time of GF multipliers is similar

to that of integer multipliers [15]. Other DDs such as FDDs

and BMDs are defined on integer operations and not directly

applicable to GF arithmetic circuits.

On the other hand, the straightforward implementation

(“This work (all)”) can verify the GF multipliers effectively

even if the operand length is 128 bits. The verification time

of the proposed methods increase in the order of at most m3,

where m is the extension degree. Furthermore, we signifi-

cantly reduced the verification times by the optimized imple-

mentation (“This work (minimum)”) since the GF multipliers

include a number of GF (2) adders, GF (2) multipliers and

GF (2m) adders. The verification of GF (2128) multiplier was

performed about 10 minutes.

Table VII shows the verification times of GF (231) multipli-

ers in both straightforward and optimized implementations for

different irreducible polynomials. This suggests that the veri-

fication time of GF arithmetic circuits is dependent on the type

of irreducible polynomial which changes the circuit structure.

But the maximum time is at most 1.5 times the minimum time

as shown in Table VII.

Other arithmetic operations, such as squaring and inverse,

are usually composed of multipliers. For example, a datapath

of a point addition for ECC (Elliptic Curve Cryptography) pro-

cessors can also be composed of adders, multipliers, squaring

and inverse operations. The computational cost of the other

operations would be comparable to that of the multiplier over

the same GFs. For example, if the inverse function is given as

y = x2m−2, the GF-ACG can be used to represent and verify

it. When GF (28) inversion circuit, which is used in AES hard-

ware, consists of seven squaring circuits and six multipliers, it

was verified by our method in about 5 seconds.

V. CONCLUSION

This paper proposed a graph-based approach for design-

ing arithmetic circuits over Galois fields. The key idea is to

describe arithmetic circuits with high-level graphs based on

Galois-field equations in a hierarchical manner. The proposed

representation can be formally verified by formula manipula-

tions using polynomial reduction techniques. The experimen-

tal result showed that the proposed method can reduce the ver-

ification time significantly as compared with the conventional

simulation and verification techniques. As a result, we can suc-

cessfully verify practical GF arithmetic circuits such as par-

allel multipliers over GF (2128) about 10 minutes. The pro-

posed graph-based representation is capable of describing any

GF arithmetic circuit including logic operation. However, con-

ventional formal verification techniques based on DD still have

advantages in terms of verification time for some circuits over

lower-extension fields such as GF (24). Further investigations

are being conducted to develop the effective combination of the

proposed method and DD-based methods in order to reduce the

verification time. Also, an automated generator for GF arith-

TABLE VII

VERIFICATION TIMES OF MULTIPLIERS OVER GF (231) FOR DIFFERENT

IRREDUCIBLE POLYNOMIALS

Irreducible polynomial

Verification time [sec]

This work This work

(all) (minimum)

β31+ β3 + β0 617.41 11.06

β31+ β6 + β0 620.83 11.12

β31+ β7 + β0 623.53 11.13

β31+β13+ β0 637.69 11.35

β31+β23+β15+ β7 + β0 796.09 12.31

β31+β25+β19+β13+ β0 802.51 12.86

β31+ β3 + β2 + β + β0 862.06 13.46

β31+ β6 + β4 + β2 + β0 868.86 13.57

β31+β13+ β8 + β3 + β0 920.39 15.14

β31+β15+β14+β13+ β0 942.87 15.50

metic circuits would be implemented based on the proposed

design method.
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