
Model-Based Generation of a Fast and Accurate Virtual Execution
Platform for Software-Intensive Real-Time Embedded Systems∗

Jochen Zimmermann, Martin Küster, Oliver Bringmann Wolfgang Rosenstiel
FZI Forschungszentrum Informatik, Germany Universität Tübingen, Germany
{zimmermann,kuester,bringmann}@fzi.de rosenstiel@informatik.uni-tuebingen.de

Abstract— The shift towards embedded functionality in-
creasingly realized in software and the permanently growing
complexity in design and verification require new method-
ologies in the development process of software-intensive real-
time embedded systems. Major issues related to the software
and hardware architecture have to be found out as early as
possible to reduce subsequent costs and to allow a short time-
to-market. Therefore, system analysis and verification must
be possible in every stage during the design process. In this
paper, we present an approach to generate a virtual execu-
tion platform in SystemC which allows to execute embedded
software with strict consideration of the underlying hardware
platform configuration. Starting from abstract UML/SysML
models of software and hardware architecture or/and ab-
straction of legacy code, model transformation techniques
are used during the generation process. In combination with
source code timing annotations obtained from binary code
analysis this approach allows a fast and accurate simulation
of the embedded system model. To substantiate our allega-
tion we present experimental results from different applica-
tion domains.

I. Introduction

Across application domains, the ratio of embedded systems’
functionality realized in software has significantly increased com-
pared to pure hardware implementations. This process is due to
the strong request for flexible solutions with short time-to-market
and the evolution in the semiconductor industry providing fast
general-purpose hardware platforms with low energy demands.
Further, design complexity and the specialization efforts of most
manufacturers demand for a development process which can han-
dle the integration of software components implemented by dif-
ferent developing entities or re-use existing implementations.
Traditional design processes are strictely aligned to the V-

Model where system analysis and verification activities start right
after implementation and integration are completed. Therefore,
major issues, which are often related to the system architecture
and introduced early in the design process, are discovered late
which usually causes high costs due to an entire system redesign.
Especially during embedded software development the missing
consideration of the target architecture in current design method-
ologies often lead to systems which are either highly oversized or
don’t fulfill hard real-time requirements. A solution is a more it-
erative and incremental approach to software development that is
driven by early validation and verification activities. Therefore,
it must be possible to integrate both already implemented and
abstract specified software components into a single simulation
framework to ensure combined validation and verification.
Besides guaranteeing the strict observance of deadlines in real-

time applications, power consumption has emerged as one of the
most important factors in embedded system design, especially
if systems are part of ultra-portable devices or depend on long
battery lifetimes in general. Even in the automotive industry,
energy-efficiency is becoming a crucial factor as driver-assistance
and entertainment systems are selling points more than ever
before. As today’s embedded functionality is growingly imple-
mented in software due to flexibility and cost reduction reasons

∗This work was partially supported by the ITEA project VERDE
under BMBF grant 01IS09012A.

we included dynamic voltage and frequency scaling (DVFS) tech-
niques in our execution platform, which are known to be one of
the most efficient low-power techniques on software execution
level. DVFS defines several different operating modes (power
modes) to adapt system performance dynamically to the actual
need and is usually controlled by a resource managing layer,
mostly implemented by the operating system itself.
In modern architectures embedded processors, caches, mem-

ories, and communication networks, as well as software-related
parameters (e.g. scheduling policy) have a great impact on the
temporal behavior of the applications, and the power dissipated
during their execution on the target platform respectively. In
contrast to just dealing with computational resources, regarding
a whole platform in an accurate way is generally too complicated
for pure analytical approaches. Due to the huge amount of pa-
rameters they usually suffer from state space explosion which
prevents early system validation and verification. Therefore, we
will focus on a simulation-oriented framework in the remainder
of this paper.
Section II. deals with work already done in the field of simu-

lation and analysis frameworks for embedded software and non-
functional properties like execution time and power consumption.
Section III. gives a brief overview of the methodology proposed
in this paper. In Section V. we depict our system models. In Sec-
tion VI. we describe our tool flow and the model transformations.
Section VII. shows how the embedded software is actually “exe-
cuted” on the virtual execution platform. Finally, we give some
experimental results in Section VIII. and conclude the paper.

II. Related Work

Analytical approaches are usually distinguished between white-
box and black-box approaches. In white-box approaches [2]
[6] the model is derived from functional system implementation
which includes complex interactions schemes and synchronization
primitives. Whereas in black-box [19] approaches, the underly-
ing model is explicitly derived from system specifications which
enables efficient performance analysis but prevents the incor-
poration of synchronization and interaction. These approaches
all have in common that they cannot include dynamic aspects
in hardware and software (e.g. data-dependent loops, multiple
hardware components), and, more importantly, are not applica-
ble to complex system models due to analysis state space explo-
sion.
To overcome these limitations, there exist analysis approaches

based on simulation. Obviously, simulation-based approaches
lack of provability and sufficient corner case coverage. Never-
theless, they allow an early system validation and verification
with respect to certain stimuli even for complex system mod-
els. Furthermore, systems can be simulated at different levels
of abstraction, e.g. if some parts of the system are already im-
plemented (bottom-up) whereas some parts are just specified by
certain properties (top-down).
To allow the evaluation of an entire system, including process-

ing elements as well as the system environment, some approaches
have been introduced which discuss the integration of instruction
set simulators (ISS) into a SystemC simulation framework, e.g.
[7]. Usually, the simulation performance of ISS approaches is very

SASIMI 2012 ProceedingsR2-7

- 180 -

low which prevents system evaluation of a complex system and
especially comprehensive system exploration. In [8], the authors
present the integration of an real-time operating system (RTOS)
model into SpecC. The authors in [15] integrate an RTOS model
into SystemC. These works in simulation frameworks only deal
with evaluating the performance of the simulated models, e.g.
target execution time, which means that they lack of considering
also the power consumption of the system.
For estimating the power consumption there exist several ap-

proaches which can be separated depending on the granularity
and abstraction level. Most of the previous work for power es-
timation has been done in low-level power simulations at gate-
level, register-transfer-level, or architectural-level [21]. Due to
extremely long simulation times this approach is not applicable to
complex software-intensive systems. More abstract approaches
are usually based on power models at instruction level [20] which
give an average power dissipation of each instruction executed on
a certain processor. Most of those models capture also sequences
of instructions but no data-dependent power dissipation. More
abstract power models rely on power state machines (PSM) [3]
[9]. A state in the PSM is related to an average power dissi-
pation of a processor whose operating mode corresponds to this
power state. The overall energy consumption is calculated re-
garding the power dissipation over time. A similar approach is
shown in [5], where system-level activity information exchanged
over an on-chip bus is used for triggering the PSM. Park et.al.
[14] present a methodology for power models at different levels
of granularity depending on the required accuracy.
Commercial tools for virtual prototyping, e.g. [18], usually

need a detailed view on the system which prevents early system
verification. Mostly, ISS approaches are used for the simulation
of computational tasks mapped on processing elements and early
system power analysis is not supported at all. Furthermore, they
don’t provide abstract and timing accurate operating system fun-
tionalities like scheduling tasks on multiple processing elements.

III. Methodology

A. Motivating Example for Simulation-based Approach

To compare pure analytical to simulation-based approaches we
will give a short motivating example. The simulated multi-core
platform model (2 ARM7TDMI cores, 50 MHz, shared 1kB 2-
way set associative instruction cache with 16 bytes line size) is
executing a controlflow-dominated circle detection algorithm in
parallel to another applications. A cache miss inflicted a penalty
of 5 clock cycles compared to a cache hit.

TABLE I
Circle Detection Algorithm on SystemC Execution Platform

Exec. Cycles Hit/Miss Ratio
Worst-case Exec. Time 12,124,151,203 –
Simulation 7,317,925,058 –
Simulation incl. I-Cache 2,368,802,550 16.57

Table I shows a 39% reduction of target execution time calcu-
lated by aWCET analysis tool [1] (without regarding any caching
policy) compared to the target execution time gained by taking
the timing paths in a simulation of the algorithm on an abstract
platform model, stimulated by a testbench. Including an abstract
cache model further reduces the execution time significantly to
almost 2.4 billion cycles due to cache hits. Simulation time was
111.5 seconds on a 2.66 GHz machine. This motivating exam-
ple shows that including complex dynamic behavior is essential
for accurate performance and power estimations (especially for
normal use cases), but this is mostly disregarded in analytical
approaches.

B. SystemC Language

In recent years, SystemC [13] [10] has emerged to a de-facto
standard in EDA industry and research for modeling and simu-

lation of embedded systems, especially at high abstraction lev-
els. In general, SystemC is a static library for discrete, event-
driven simulation of a real-time environment and bridges the
gap between hardware and software providing the means for
component-based modeling and simulation by separating compu-
tation and communication concerns. The SystemC IEEE stan-
dard [11] defines both the language concepts as a C++ library
and the simulation kernel for concurrent hardware simulation.
In SystemC, a design is partitioned and encapsulated into mod-
ules. Each module can contain other modules (and act as a
hierarchical element), processes (threads) that describe the func-
tionality, and ports through which a module communicates with
other modules. A process can be suspended by calling a wait
statement with a certain wait condition and is simulated con-
currently to other processes by the SystemC simulation kernel.
Interfaces contain a set of operations which are accessed by a port
and implemented within a channel. These communication oper-
ations could be primitive, e.g. signals, or realize a more complex
specific communication protocol.

C. Abstraction Level for Simulation

Dealing with simulations always means dealing with the
trade-off between accuracy and simulation speed. In Sys-
temC, there exist several abstractions levels, ranging from cycle-
accurate hardware modeling (CA) at register-transfer level to
programmers-view level (PV), where modules are interacting
through point-to-point connections, allowing timing annotations
(PVT). In general, simulation speed is defined by synchronization
calls to the simulation kernel (wait()-call either on a specified
time or on an event), which causes a context switch inside the
kernel. For our simulation framework we choose a loosely-timed
modeling style, which means that different processes might have
their own timing (temporally decoupled simulation) but are syn-
chronized if necessary, e.g. access to shared resources, thread
switch in scheduling policy, reaching a synchronization point due
to interaction with another process. This allows a fast simula-
tion due to calling wait() only if necessary, but also keeps the
temporal behavior sufficiently accurate.

IV. Layered Approach for Integration

In this section we will present our layered approach to encap-
sulate software components for an integration into the simulation
framework.

A. Embedded Software Development

In classical embedded software development there should be
no need to care about the deployment of that software, meaning
in which context the software is actually executed on the target
platform. Therefore, software in object-oriented programming is
implemented based either on a direct access between caller and
callee of a software function, or indirectly through well-defined
interfaces. This is illustrated in Figure 1 using standard UML
syntax.

Fig. 1. Structure in Classical Software Architectures

Class B provides a function foo() through an interface IF1 B
(we will refer to this as a “software interface“ in the follow-
ing). Class A calls this method by instantiating an object of
class B. This interaction requires at least some visibility of B.
However, the SystemC simulation kernel as a component-based
framework requires software components to communicate solely

- 181 -

through ports. As a result, additional layers for software inte-
gration need to be generated.

B. Modular Software Components in SystemC

The procedure for generating the simulation framework inte-
gration layers is subdivided into the direction of the software
component interaction. Basically, there are two cases: functions
which are provided to the outside, and functions which require
to call another function. Principally, Figure 2 shows the same in-
teraction pattern as Figure 1, but now each class is encapsulated
in a SystemC module (module A and module B), delegating their
interface semantics through corresponding ports: sc port for re-
quired interfaces and sc export for provided interfaces.

Fig. 2. Layered Approach for Software Component Integration

To define the type of these module ports, SystemC inter-
faces (SC IF1 B, SC IF2 B is not shown due to space limita-
tions) are generated inheriting from the usual software inter-
faces. For each provided interface function, a thread (foo thread)
is generated which calls the appropriate function inside the en-
capsulated class (B). Events are used for activating the Sys-
temC thread (foo event) and notifying the interface function
(foo thread finished) after encapsulated function execution has
finished. Function parameters have to be saved in local mod-
ule variables before thread activation. For required interface
functions, the call can just be delegated to the appropriate port
(foo()) because the containing module is implementing the soft-
ware interfaces.
The generated modules are connected by means of the standard

SystemC port binding (module top in Figure 2).

V. System Models

To allow a fast evaluation of the functional and temporal be-
havior of software components on the actual target architecture,
the application source code can be annotated with low-level prop-
erties obtained from the target binary code. By compiling the
application source code for the target architecture this software
model is enriched with target architecture properties (e.g. target
instruction set, pipeline stages, branch prediction) while still ex-
ecuting on the simulation host which enables a simulation speed
close to native software execution.

A. Timing Model and Back-Annotation into Source Code

First work for the used timing model was presented in [16] and
extensively improved in [17] to include complex code optimiza-
tions of modern compilers like loop unrolling, function inlining,
and loop invariant code motion. For each basic block of the cross-
compiled binary program a timing analysis which models pipeline
effects and static branch prediction penalties of the target pro-
cessor is performed. This results in a timing-annotated control
flow graph (CFG) of the binary executable with labeled edges
representing the execution time (or cycles) required for instruc-
tion execution (see Figure 4). Based on the binary-level CFG,
the program control flow on the target architecture is analyzed
to create path simulation code which models the target-specific
behavior of the program. Compiling the instrumented source
code and the path simulation code for the simulation host yields
a model of the program which determines its execution time on
the target processor. Using the markers that were added to the
original source code during instrumentation, the path simula-
tion code can approximate the path taken through the binary
executable. This reconstruction of binary-level control flow is
executed in parallel to the functionality of the original source
code during simulation on the simulation host and allows the
dynamic selection of timing annotations. This makes the tim-
ing estimation very accurate, but several factors faster compared
to an instruction set simulator (ISS). Experimental results are
shown in Section VIII.. Note that this timing model is used for
single program/task execution.
To change the timing model, e.g. using another target process-

ing resource, only the annotated basic block execution time has
to be adapted whereas the binary control flow remains the same.
Models for caches, pipelines, and branch prediction are (virtu-
ally) accessed and evaluated during simulation which makes them
easily configurable (cf. Section VI. C.).

B. Power Model

There exist a lot of power models based on instructions exe-
cuted on the target architecture (see Section II.). However, these
low-level models are not suitable for fast simulation and disre-
gard low-power techniques implemented in the target platform
hardware, e.g. operand isolation. Also, analyzing power con-
sumption on instruction level is a tedious and error-prone task
because platform manufacturers usually provide average power
values for each operation mode. Thus, we decided to use a state-
based power model for fast evaluation of power dissipation during
embedded software execution. The states of the corresponding
power state machine (PSM) contain the power dissipation of the
modeled entity (e.g. microprocessor) running in this state. Also,
an appropriate execution speed (frequency) is mapped to each
power state denoted in cycles. State transitions switch between
power states including a hardware-dependent switching overhead
in time and power dissipation. Comparable to the timing model,
this power configuration can be easily changed before the simula-
tion since it is generated according to the platform specification.

VI. Model-based Transformations

A. Model Flow

The approach fits into an extensive chain of model transfor-
mations (depicted in Figure 3). There are two ways to come to a
SystemC model that may serve as an input for the execution on
the virtual platform. First, existing SystemC source code may be
parsed and transformed into an AST representation. Afterwards,
a relational transformation serves to extract the necessary infor-
mation which is then condensed in the SystemC model. All steps
may be reversed, establishing a way from any SystemC model to
source code.
Second, a top-down approach based entirely on the UML can

be taken, too. An initial software design and hardware platform
(modeled in SysML) is the starting point for the transformation.
As detailed in Section IV., the different artifacts are combined

- 182 -

resulting in a SystemC model. The two different ways may com-
plement each other: for an initial draft of the system architecture,
the top-down flow may be taken. Based on detailed knowledge
about the implementation an additional timing model (as out-
lined in Section V. A.) can be included. The wrapped functional
implementation containing the respective delays is carried over
to the SystemC model leading to a more accurate simulation.
Obviously, the resulting SystemC virtual prototype can easily
be modified by changing the UML model of both hardware and
software.

UML Model

SystemC
Model

SystemC-AST
«QVT»

Legacy
SystemC

Code

parsing
«CDT»

emitting
«xpand»

Component
Model

Deployment
Model

UML2SystemC
QVT relational mapping

Top-down flow

Bottom-up flow

Scheduler
Library

Timing
Model

Power Model
(PSM)

Platform
Model

«SysML»

CDT AST
Model

Fig. 3. From UML models to SystemC and back

Even without a timing model extracted from an existing im-
plementation, a designer may attach coarse-grained timing an-
notations. This is particularly suitable for early design phases
when the implementation is not yet available. These rough val-
ues are carried over to the simulation leading to an estimation of
the actual execution times.
Note that the central advantage of the overall model-based

approach is that no artifact created in the design phases gets
outdated: bi-directionality of the involved transformations (due
to [12]) guarantees consistency despite changes to either of the
inter-related models.

B. Abstraction of Legacy Code

Intrusive approaches for legacy code abstraction (see Sec-
tion II.) depend on a completely implemented systems which can
be elaborated by the SystemC simulation kernel. As we devised
a different approach to tackle the problem: pattern-based ex-
traction based on static analysis. From the Eclipse CDT tooling
we get the abstract syntax tree (AST) of the preprocessed and
hence fully expanded source code. A model-to-model transfor-
mation is responsible for translating AST fragments to elements
of the SystemC model. If a complete and functional SystemC
implementation is at hand, techniques such as the one presented
in [4] could as well build the abstract SystemC model. Such an
adapter has not been implemented, however.

C. Virtual Platform Generation

The hardware platform is specified and configured in SysML
and equipped with additional information from a set of library
schedulers and links to a power model (see Section V. B., and
also Figure 4). The combined information serves as the input to
a model-to-model transformation (UML2SystemC in Figure 3).
We have shown a template-based generation process of struc-
tural simulation code in a previous publication [22] (see emitting
process in Figure 3). Changing the hardware platform has a di-
rect impact on the models for timing and power estimation (cf.
Section V.).
For a dynamic consideration of the hardware platform we

are using a model-based approach to generate models for soft-
ware scheduling and state-based dynamic power management.

�������	
��

� �� ���
��

���	��
��������	������	
�

�����	
��

�������
����

�����
����

!
��
��"�

�������
��"�

�����
����

��	��##����$�� �����

���
�����%��&�����'�	�()*+�*�",&
.	��)���/�%��&�/�0%�(&�/��,�1

��%�����/&
����'�	�()*+�23,&

4
�����#�%��&�����'�	�()*+�5��,&
����

��������	�

�������

56#

*6#
*�6#

5�6#

*6# *6#

	��������������
����������������
	����������������

����
������	
��

���
7

'�	�(�

�������89����	�����.	�6�)�8�,
:�;���7

������6����	���	
�

�	�
�����##)���.��#�

�+������#�

�,1
���������<=����##).��#�

�+���#�

�,&
4

�	�
��	�#�6�)����7���#,�1
����#���
����<=
���7)�7���#,&
4

�������'�	�(�)������������#+�>,�1
>
���.����	��/�6���;��
#�6����'�	�(?��#'�	�(@�

)#��	�
:�#'�	�(,&
>�4

�	�
�#�6����'�	�(E5���)������
���##	�,�1
�����.�)���
���##	��%%�23��F��9255��F�,�1
������������##�)�92*
G+��92*�G,&
���������	�#�6��)3,&
����4�>�4
���

��������	����

����#���

H����
#

�	�.������	�
<�����
�������	���7
<������������7
<��	I���#��#
<����

*�"

*�"

5��

23
H�6���
����7#�#

"��7���#

5��7���#
3��7���#

Fig. 4. Architecture of Virtual Execution Platform (VEP)

Based on the selected model scheduling events are triggered, e.g.
priority-based or time-division scheduling. Software components
deployed on different processing units are synchronized when
they access shared resources or when a thread switch occurs.
Power mode switches are triggered as event calls to the corre-
sponding PSM model, which realizes the switching delay. For
simulation speed-up, delay portions that need not be synchro-
nized can be condensed to prevent avoidable context switches
inside the simulation kernel. Also, a cache model is generated
giving accurate cache hit or miss numbers.

VII. Virtual Execution Platform

In this section we will describe how the embedded software is
executed on the virtual execution platform (VEP). The solution
for creating source code with timing annotations representing
the execution time of a single program was already described in
Section V. A.. As we target a SystemC-based simulation the
equivalent concept to indicate consumed execution time is a call
to the SystemC wait() function.

A. Platform Scheduling

We developed a generic approach to schedule the access to
shared resources, e.g. computational time on microprocessor
cores or transfer time on buses, in a SystemC-based virtual exe-
cution platform library (see Figure 4). The behavior of the sched-
uler model is also illustrated in Figure 5, scheduling threads to
a computational unit serves as an example.
In general, there exists a scheduler component in each simula-

tion model which manages one or multiple dispatcher depending
on the number of shared resources. In a multicore platform with
2 microprocessor cores there would exist 2 dispatchers, one for
each core. Each thread has to register with the scheduler which
stores a thread information for internal thread management and
resource conflict decomposition.
Each thread executes its annotated source code, and also the

path simulation, and enqueues the corresponding delay of each
basic block in its scheduler queue. If a synchronization point
is reached, e.g. thread blocks due to a communication point or
the scheduler initiates a thread switch, the scheduler checks if
the thread, which was supposed to be active, can really con-
sume all the delays until the thread switch happens. Note that

- 183 -

Fig. 5. Thread Scheduling due to Scheduling Policy

the SystemC simulation time has not advanced up to this point
which means that the thread is temporal decoupled since there
is no need to synchronize (maximum quantum going ahead can
be specified).
If threads have to be synchronized the scheduler must call a

SystemC wait(). This wait()-call is realized by a disjunction of
all events which might happen during the synchronization period,
e.g. activation event of another thread by an interrupt. SystemC
semantics ensure that synchronization is done at the first syn-
chronization point in SystemC simulation time, for example the
aforementioned interrupt. So, if this interrupt happens before
(in simulation time) the thread switch, the scheduler dequeues
the delays of the active thread up to that point, the rest stays in
the queue and the thread is notified that it was interrupted be-
fore it has actually finished the time slice it has expected to have
(see Figure 6). The remaining delays can be consumed when the
thread is activated again by the scheduler. In a metaphorical
sense, the thread local time is corrected by the scheduler having
a global view on all events that might happen in the simulation.

Fig. 6. Interrupted Thread Scheduling

For simulation speed-up, this delay queue is implemented in
a data structure allowing to perform a stepwise search for the
accumulated time which has to be consumed. First, a coarse-
grain search for the appropriate queue is performed based on
fixpoint evaluation and binary search is used inside the queue,
reducing the search effort to O(log n) being n the queue length.

B. External Events

In general, the scheduler model handles blocking periods due to
blocking calls, e.g. blocking read, comparable to thread switches
by executing a synchronous delay. Before yielding the scheduler,
the thread additionally calls the sleep() function to indicate
that it is waiting for an external event (which might be the re-
quested data or an interrupt) and calls a SystemC wait() on
this event (see Figure 7). This leads to a status switch to blocked
inside the scheduler model which prevents the thread from be-
ing scheduled again until it is unblocked. In the case that this

external event occurs, SystemC simulation continues after the
wait()-call. Therefore, the scheduler model uses the notification
capabilities in SystemC by setting the thread status to ready if
the thread hits the next delay()-call in its path simulation code
(cf. Figure 4).

Fig. 7. Thread Blocking and Notification by External Event

C. Platform Power Management

For triggering the stated-based power model the function
triggerPowerModeSwitch() is called which expects the desired
power state as a parameter. This call can be both made man-
ually and initiated from a power manager e.g. triggered by the
scheduler in idle phases. Within this call, switching overheads
apply due to the PSM model, and the execution on the appropri-
ate power-managed entity is stalled during mode switching. As
target execution time is calculated by the number of cycles and
the maximum frequency is defined by the actual power state, the
target execution time (not simulation time!) is also adapted to
that power state.

VIII. Experimental Results

Figure 8 exemplifies the priority-based scheduling result of
two software components sharing a single computation resource.
Resource requests are indicated by rectangle, wherein blocking
times are solid black. Assuming component B has a higher pri-
ority, component A is scheduled only if B is blocked due to a
blocking call or has eventually finished. If the scheduler discov-
ers idle phases of the computational resource, it triggers a switch
to a low-power mode. During switching times, which are indi-
cated with black flanks in the upper area of Figure 8, software
execution is stalled.

testbench.ComponentA

testbench.ComponentB

Nominal Mode

Low Power Mode

Fig. 8. Priority-based Scheduling including different Power Modes
(white: inactive, grey: active, black: blocked)

We can also determine the energy consumption calculating the
execution time in both power states over time and adding the
switching overhead between consecutive power states for compo-
nents A and B. On a ARM-based Cortex A8 virtual platform
this results in about 27mJ energy consumption for this example.
For more complex experiments we implemented a circle detec-

tion algorithm (cda) as part of an automotive traffic sign recogni-
tion. A camera image is processes by a Sobel filter algorithm for
edge detection whose center point is transformed into the Hough
space, where reaching a certain threshold decides about being a
circle or not. Detected circles are classified by a support vector
machine.

- 184 -

TABLE II
Comparison of Simulation Speed between ISS and VEP

Sim. Cycles Sim. Time (s) Speed-
ISS VEP up

edn (50000x) 2,699,160,944 2,700 43 63x
matmul (50000x) 5,939,931,199 500 56 9x
cda (4x) 40,006,112,152 1,800 151 12x

Table II shows the simulation time of annotated source code
of a WCET benchmark suite and the cicrle detection algorithm
(cda) on our Virtual Execution Platform (VEP) compared to the
execution on an instruction set simulator (ISS). To get a robust
number we executed edn and matmul 50000 times, the detection
algorithm 4 times with different data input. The latter needs
151 seconds to simulate over 40 billion cycles on the target archi-
tecture. During the simulation, the virtual execution platform
processes more than 715 million basic blocks.
Analysis of the accuracy of timing results show an average er-

ror less than 5% compared to the execution on an ISS. However,
simulation speed is faster multiple times. The actual simulation
speedup depends on the control flow characteristics on the algo-
rithm – more basic blocks mean less speedup.

TABLE III
Scheduling Performance on Virtual Execution Platform

Sim. Time VEP # switches average error
600ms slot 134s 698 596.48ns
30ms slot 152s 13,781 670.45ns

In Table III, we show two TDMA scheduler configurations.
Note that simulation time is just increasing by 13,4%, although
the number of thread switches has increased by a factor of al-
most 20. This shows that avoiding unnecessary context switches
in the SystemC kernel (by calling wait() function) works very
well inside the scheduler model. External events are not han-
dled at instruction level, but at basic block level. So the inter-
rupt will become effective at the end of the last simulated basic
block. Therefore, thread preemption (caused by e.g. interrupts,
external events) might happen slightly too early. The resulting
average error in ns is shown in column four. However, the ac-
cumulated error is only about 0.005% compared to the overall
execution time on the target platform.
In an additional experiment we focused on determining the

power consumption on a single-core ARM-based Cortex A8 vir-
tual platform with several operation/power modes by dynamic
supply voltage and frequency scaling (DVFS) and guiding an op-
timization process (hard requirement: classification of 6 cycles
at 720MHz). The execution platform was stimulated by multiple
camera images, so different timing paths depend on the number
of detected circles in the camera image. Available data sheets
of the SoC map supply voltages (0.975-1.35V) onto appropriate
maximum frequencies (125-720MHz) in each mode. The result
showed that for example a frequency of 250MHz is enough to
classify 2 circles, which results in 55% reduction in power dissi-
pation by using lower power modes.

IX. Conclusion

In this paper we have shown our model-based virtual platform
generation methodology to enable fast and accurate system vali-
dation and verification by simulation in SystemC. Therefore, we
devised a model-based generation technique of a virtual execu-
tion platform taking into account the execution time on the tar-
get platform obtained from timing analysis on binary level, dif-
ferent scheduling policies for shared resources, and several power
modes for platform components. To integrate existing C/C++
software components, we developed a layered approach wrapping
interactions between software components into SystemC-based
communication patterns. Giving experimental results we showed

the general applicability in terms of simulation speed and degree
of automation, and sufficient accuracy for early system verifica-
tion.

References

[1] AbsInt. aiT WCET Analyzer.

[2] K. Albers, F. Bodmann, and F. Slomka. Hierarchical event streams
and event dependency graphs: A new computational model for em-
bedded real-time systems. In ECRTS ’06: Proceedings of the 18th
Euromicro Conference on Real-Time Systems. IEEE, 2006.

[3] R. A. Bergamaschi and Y. W. Jiang. State-based power analysis for
systems-on-chip. In DAC ’03: Proceedings of the 40th annual Design
Automation Conference, pages 638–641. ACM, 2003.

[4] H. Broeders and R. van Leuken. Extracting behavior and dynamically-
generated hierarchy from systemc models. In DAC ’11: Proceedings
of the 48th Annual Design Automation Conference. ACM, 2011.

[5] Y. Cho, Y. Kim, S. Park, and N. Chang. System-level power estima-
tion using an on-chip bus performance monitoring unit. In ICCAD
’08: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. ACM, 2008.

[6] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhattacharyya. A
generalized static data flow clustering algorithm for mpsoc scheduling
of multimedia applications. In EMSOFT ’08: Proceedings of the 8th
ACM international conference on Embedded software. ACM, 2008.

[7] F. Fummi, S. Martini, G. Perbellini, and M. Poncino. Native iss-
systemc integration for the co-simulation of multi-processor soc. In
DATE ’04: Proceedings of the Conference on Design, Automation
and Test in Europe, volume 1, pages 564 – 569. ACM, 2004.

[8] A. Gerstlauer, H. Yu, and D. Gajski. Rtos modeling for system level
design. In DATE ’03: Proceedings of the Conference on Design,
Automation and Test in Europe, pages 130 – 135. ACM, 2003.

[9] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao. Energy-optimal software partitioning in heterogeneous mul-
tiprocessor embedded systems. In DAC ’08: Proceedings of the 45th
annual Design Automation Conference. ACM, 2008.

[10] T. Groetker, S. Liao, G. Martin, and S. Swan. System Design with
SystemC. Springer, 2002.

[11] IEEE Computer Society. IEEE Standard SystemC Language Refer-
ence Manual, 2006.

[12] OMG. MOF2 QVT Specification. Object Management Group, 2011.

[13] Open SystemC Initiative (OSCI). SystemC. http://www.systemc.org.

[14] Y.-H. Park, S. Pasricha, F. J. Kurdahi, and N. Dutt. Methodology for
multi-granularity embedded processor power model generation for an
esl design flow. In Proceedings of the 6th International Conference
on Hardware/Software Codesign and System Synthesis. ACM, 2008.

[15] H. Posadas, J. Adamez, E. Villar, F. Blasco, and F. Escuder. Rtos
modeling in systemc for real-time embedded sw simulation: A posix
model. Design Automation for Embedded Systems, 10:209–227, 2005.

[16] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-
performance timing simulation of embedded software. In Proceedings
of 45th annual Design Automation Conference. ACM, 2009.

[17] S. Stattelmann, O. Bringmann, and W. Rosenstiel. Fast and accurate
source-level estimation of software timing considering complex code
optimizations. In DAC ’11: Proceedings of the 48th annual Design
Automation Conference. ACM, 2011.

[18] Synopsys. Virtualizer. http://www.synopsys.com/systems/
virtualprototyping/pages/virtualizer.aspx.

[19] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for
scheduling hard real-time systems. In Proceedings of the IEEE In-
ternational Symposium on Circuits and Systems, volume 4, 2000.

[20] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded soft-
ware: A first step towards software power minimization. 2(4), 1994.

[21] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design
and use of simplepower: A cycle-accurate energy estimation tool. In
Proceedings of the 37th Design Automation Conference. ACM, 2000.

[22] J. Zimmermann, M. Pressler, A. Viehl, O. Bringmann, and W. Rosen-
stiel. Model-based virtual prototyping for early automotive software
systems evaluation. In Proceedings of the 1st Workshop on Model
Based Engineering for Embedded Systems Design at DATE, 2010.

- 185 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

