
Efficient barrier synchronization for 2D meshed NoC-based many-core

processors

Lovic Gauthier†, Farhad Mehdipour�, Koji Inoue‡, Shinya Ueno‡ and Hiroshi Sasaki‡
†Sytem LSI Research Center ‡Departement of Informatics �E-JUST Center

Kyushu Univerity Kyushu University Kyushu University
Fukuoka, Japan 814-0001 Fukuoka, Japan 819-0395 Fukuoka, Japan 814-0001

{lovic,ueno,sasaki}@soc.ait.kyushu-u.ac.jp, {inoue}@ait.kyushu-u.ac.jp, farhad@ejust.kyushu-u.ac.jp

Abstract— Network-on-Chip (NoC) based many-cores are be-
coming popular due to their high scalability compared to tradi-
tional bus-based architectures. However they still lack software
tailored to their specificities. In this paper we propose several
techniques for tailoring and combining barrier synchronizations
in order to take advantage of the 2D-meshed NoCs. Experimen-
tal results show that our combined barriers achieve often twice
shorter delays than state of the art barriers.

I. INTRODUCTION

NoC-based many-core architectures are emerging as solu-
tions for matching the increasing demand in processing power.
However, legacy software does not scale well on such architec-
tures. This is especially true for the synchronization primitives
which are usually implemented assuming an identical commu-
nication delay between all the cores. In this paper, we explore
the design of barriers, some of the most often used synchro-
nization mechanisms for multi-threaded applications.

A barrier is a mechanism used for synchronizing a set of
threads. It is a point in each thread’s program (usually a call
to a barrier function) which can be passed through only when
the other threads of the set have reached this barrier. Perform-
ing a barrier requires to exchange several messages among the
threads to synchronize. With an NoC-based architecture, this
can take a long time due to the important communication delay
between distant cores. Unfortunately, the traditional barriers
are designed considering an identical delay for all the inter-
thread messages which is not the case with an NoC.

In this context, the contribution of this paper is double. First,
it is explained how three existing barrier mechanisms, namely
tree [5], butterfly [3] and dissemination [5], can be tailored for
shorter delays on a 2D meshed NoC-based architecture. Sec-
ond, new barrier mechanisms are presented which combine the
previously tailored ones for achieving even shorter delays.

The rest of the paper is organized as follows: the next sec-
tion gives the assumptions we made about the architecture, the
threads and the implementation of the barriers. Section III.
presents some related works. Section IV. presents state of the
art barrier mechanisms and studies their performances when
used with a NoC-based many-core architecture. Sections V.
and VI. present the proposed techniques for tailoring and com-
bining barrier mechanisms. Finally, section VII. gives some
experimental results and section VIII. concludes the paper.

II. ASSUMPTIONS

First, the target architecture considered in this paper is a 2D
meshed NoC-based many-core processor where each core is a
MeP [15] having its own scratch-pad memory (SPM). Inter-
core communication is assumed to be memory-mapped: each
core can access the local memory of another core, but then, the
data needs to transit through the NoC.

Second, the barriers considered in this paper are OpenMP-
based [11]. Hence it is required that the threads to synchronize
are identified when creating a barrier. It is also assumed that
these creations are performed during non-critical phases, e.g.,
at compile or initialization time. Therefore important compu-
tations can be afforded for creating a barrier. Such an assump-
tion is common in recent applications (cf. OpenCL [7]). Then,
based on the fact that data transfers are usually more critical
than synchronizations, is it assumed that the threads mapping
cannot be changed when creating a barrier.

Third, the mechanism of a barrier is described in two parts.
The first part, called the implementation in this paper, de-
scribes how the messages are sent and received by the threads.
The second part, called the protocol, describes which thread
sends/receives messages to/from which other thread. The fo-
cus of this paper is on the protocol only.

If the implementation and the protocol are functionally in-
dependent of each other, they are related regarding the perfor-
mance of the barriers since a slow implementation gives more
importance to the message processing delay with respect to
the NoC delay. For the experiments, we considered two typi-
cal implementations: a fully software one based on busy-waits
(cf. [10]), and a fast hardware-based one (cf. [16]). Since they
are not the focus of the paper, we do not detail them here.

III. RELATED WORK

Barrier synchronizations have been a largely studied topic.
Initial works explored the possible protocols [3, 5], while
others explored various software implementations [10, 16].
Since barrier synchronizations can be important bottlenecks,
several papers also proposed hardware implementations for
them [1, 2, 9, 12, 14, 16], and others proposed optimizations of
the application or the system software for reducing the impact
of the barriers overhead or for supporting incomplete barrier
mechanisms [4, 6, 8, 13].

Nevertheless, the protocol is crucial for the performance,
especially with NoC-based architectures where the delay of
a message depends on the relative position of the sender and
the receiver. However, to our knowledge, only [16] studied

SASIMI 2012 ProceedingsR4-18

- 510 -

the effect of NoC architectures on barriers. They considered
the master-slave, the tree, the butterfly and the all-to-all barrier
protocols but only for the cases where the number of threads
is a power of two and their study overlooked the effects of the
threads mapping on the synchronization delays.

IV. MOTIVATION

A. Basic barrier synchronization protocols

In this paper a protocol is described as a succession of steps.
For each step, some threads send and receive messages. By
convention, a send operation is non-blocking and is executed at
the beginning of its step whereas a receive operation is block-
ing and executed at the end of its step. In order to distinguish
the threads from each other, they are numbered from 0 to N−1
(N being the number of the threads). Also, the messages con-
tain the identity of their senders so that they can arrive out of
order while keeping the validity of the protocols. In the figures
of this paper, the cores are represented by small squares and
the threads by numbers on the squares. Additionally, a mes-
sage sent from one thread, t, to another, t′, is represented by
an arrow, and we say that they are connected. Then, if at the
same step thread t′ sends also a message to thread t the arrow is
doubled and we say that they the exchange a pair of messages.

Among the multiple barrier protocols, we can cite the fol-
lowing basics [3, 5, 16] which are illustrated in Fig. 2:
All-to-all: it is a one-step protocol. Each thread sends one
message to each of the other threads of the barrier and waits
for all their messages. This is the most straight forward proto-
col but it requires a lot of messages.
Master-slave: it is a two-step protocol. A thread is selected to
be the master, the others being the slaves. During the first step,
each slave sends one message to the master. When the mas-
ter has received all the slaves’ messages, the second step starts
where the master sends one message to each of the slaves.
Tree: it is a multi-step protocol with two phases. A tree is
built upon the threads for determining the steps of the proto-
col. During the first phase, each thread waits for one message
from each of its children then sends one message to its father.
During the second phase, each thread waits for one message
from its father, then send one message to each of its children.
Butterfly: it is a multi-step protocol inspired from the butterfly
algorithm of the Fourier transform. When N is a power of two,
there are log2(N) steps and concretely, during step i, thread t
exchanges a message with thread t xor 2i. However, when N
is not a power of two, the butterfly cannot be implemented
directly. A solution [3] is to build a butterfly for np2(N)
threads1. The additional threads are virtual and mirrored back-
wardly over the real threads. This is illustrated in Fig. 1 where
threads 5, 6 and 7 are virtual. During the log2

(
np2(N)

)
steps,

the exchanges of messages are performed as previously by the
real threads, but they also exchange the messages of the virtual
threads overlapping them. Incidentally, virtual threads imply
sometimes operations which can be omitted, i.e., messages ex-
change of a thread with itself or multiple exchanges between
two threads. Hence, it can be observed that the first step is ex-
empted from extra messages.
Dissemination: it is a variant of the butterfly which does not
need mirroring when N is not a power of two. As with the

1In this paper, np2 stands for next higher power of two

Fig. 1. Mirroring threads for the butterfly protocol

Fig. 2. Basic barrier synchronization protocols

butterfly, there are log2
(
np2(N)

)
steps, but the threads are not

paired. Instead, they are chained to their successor and pre-
decessor according to the butterfly diagram. Concretely, for
step i thread t sends a message to thread (t+ 2i) mod N then
receives a message from thread (t− 2i) mod N .

B. Performance of the basic barrier protocols

Fig. 3a shows the different delays in cycles for several proto-
cols with four threads mapped according to the patterns given
in Fig. 3b. It has been considered that the software imple-
mentation was used for the barriers. Not only the protocols
perform differently from what was expected from legacy re-
sults [3, 5, 16] (dissemination and butterfly should have been
the most efficient), but the order of the threads with a same
global shape also influence strongly the results as it can be
seen by comparing mappings 0 and 1 and mappings 2 and 3.
This quick analysis strongly hints that shorter delays could be
achieved if the specificities of the NoC and the mapping of the
threads could be properly taken into account.

Furthermore, the delay depends on the characteristics of the
target architecture (e.g., NoC delays, cores speed), making it
hard to define a good protocol in general. Hence, we intro-
duce two target independent metrics. The first one, called mes-
sage delay, is the largest number of messages processings (one
processing includes both a send and a receive) required for a
thread to reach another thread. This metric depends only on
the protocol and N , the number of threads to synchronize.
The protocol with the shortest message delay is dissemina-
tion which completes after log2

(
np2(N)

)
message process-

ings. The second metric, called hop delay, is the largest num-
ber of hops required for a thread to reach another thread. This
metric depends only on the protocol, N and the mapping of the
threads. With it, a bound can be computed: for a barrier syn-
chronization to be completed, each thread must reach, directly
or not, each of the other threads, therefore the minimal hop de-
lay is the Manhattan distance between the farthest threads. For

(a) Delays (b) Mappings

Fig. 3. Delays of basic barriers on different mappings

- 511 -

Fig. 4. Efficient butterfly with a power of two line

Fig. 5. Efficient butterfly with a power of two rectangle

instance, in Fig. 2 for dissemination, thread 0 requires first to
send a message to thread 2 for reaching thread 6 which implies
that the corresponding message delay is 2 and the hop delay
is 6. These are also the message and hop delays of the full
protocol since both are the maxima among all the threads. By
contrast, for the master-slave case, thread 0 reaches thread 6
through the master, thread 7, which needs to process the mes-
sages of all the other threads before reaching 6 so that the mes-
sage delay is 12 and the hop delay is 2.

V. TAILORING OF EXISTING PROTOCOLS

In this section, we present techniques for tailoring the most
promising protocols, i.e., butterfly, dissemination and tree for
various mappings of the threads in a 2D meshed NoC. By tai-
loring we mean modifying the numbering of the threads, mod-
ifying the mirroring (for butterfly) and modifying the arity of
the nodes (for tree). Note that the numbering is just for the bar-
rier protocols, it is not related to any other management of the
threads. Simple shapes like lines and rectangles are frequent in
practice due to the ease of describing and manipulating them
by the programmers (cf. OpenCL [7]). Therefore, they have
the priority when tailoring the protocols. It also worth noting
that the proposed tailoring are also efficient when the shapes
are sparse, for instance when one core out of two is used.

A. Tailoring butterfly

If N is a power of two:
This is a favorable case for the butterfly since the message de-
lay is only log2(N). When the threads are mapped as a line or
a rectangle, it is enough to number in topological XY order for
achieving the optimal hop delay. With this order, the threads
are sorted by comparing first their y coordinates, and then if
equal, their x coordinates. Fig. 4 and 5 illustrate the butterfly
with such a numbering. The other shapes are treated in the last
paragraph of this section.

For a line the optimality can be demonstrated by summing
the hop delay of each step: for the first step, it is 1 hop, for the
second 2, for the third 4 and so on. Since there are log2(N)

steps, the total hop delay is
∑log2(N)−1

i=0 2i = N − 1 which is
the length in hops of the line and therefore the optimal. For a
rectangle shape, N being a power of two, the width W and the
height H too are powers of two. With a topological numbering
the lines are first synchronized independently of each other be-
fore the columns are, with respective hop delays of W − 1 and
H − 1. Hence, the total hop delay is W +H − 2 which is also
the diagonal length in hops of the rectangle (in the Manhattan
sense) and the optimal.

If N is not a power of two:
When the number of the threads is not a power of two, a
mirroring technique is used and the synchronization requires

Fig. 6. Efficient butterfly on a non power of two line

Fig. 7. Efficient butterfly on rectangle whose width is a power of two

log
(
np2(N)

)
= log2(N) + 1 steps. At each step, the threads

covered by virtual threads need to send and receive two mes-
sages instead of one (unless the extra message can be omitted
as seen in section IV.A.). Consequently, the message delay is
longer than log2(N) + 1 and often reaches 2 ∗ log2(N) + 1.

When the threads are mapped as a line shape as in Fig. 6,
it can be verified that the XY topological numbering still
achieves an optimal hop delay for the butterfly (but other pro-
tocols can achieve better). This is also the case for a rectangle
shape provided the width W (or the height H with the YX
topological numbering) is a power of 2. As it can be seen in
Fig. 7, this numbering leads the protocol to synchronize the
lines independently of each other with an optimal hop delay
of W − 1. Then, the columns can also be synchronized in-
dependently of each other with a delay of np2(H) − 1 if the
mirroring technique is applied column by column instead of
globally. This way, the total hop delay is W + np2(H)− 2.

When, for a rectangle, neither W nor H are powers of two
the topological numbering does not guarantee an optimal hop
delay. For instance, if the width is odd, the first step will make
the last thread of a line exchange a message with the first thread
of the next line which requires a large number of hops whereas
if the numbering is performed in zigzag as illustrated in Fig. 8,
only one hop is necessary. From this observation, we propose a
general heuristic which numbers each line in topological order
as previously, but whose direction, left or right depends on the
previous line. Specifically, if the last thread of a line exchanges
more messages with its successors than its predecessors, the
next line is numbered in the opposite direction, otherwise it is
numbered in the same direction.

Other shapes:
For mapping shapes which are neither lines nor rectangles the
previous heuristic, i.e., numbering the lines from the left to
the right or the right to the left depending on the messages
exchanged by their last threads, is still applicable.

B. Tailoring the dissemination protocol

The dissemination protocol is the most efficient in term of
message delay since it requires only log2(np2(N)) messages
processing for any value of N . However, it performs poorly
in term of hop delay. This is due to the ring topology of this
protocol which often implies messages between the most dis-
tant threads. This is why the heuristics proposed here numbers

Fig. 8. Efficient butterfly on a rectangle whose sides are not a power of two

- 512 -

(a) Plain ring (b) 2 lines rectangle

Fig. 9. Efficient dissemination on rings

(a) One even side (b) No even side

Fig. 10. Efficient dissemination on rectangles

the threads so that each of them is as close as possible to its
predecessors and successors in the ring of the dissemination.

For an actual ring shape or a two-line rectangle shape as
shown in Fig. 9a and 9b, the ring numbering is immediate and
it can be verified that the total hop delay is N − 1 . This is
better than for a topological numbering which would require
this delay for the two first steps already.

For a rectangle shape where the width or the height is even,
a ring can again be built as it can be seen in Fig. 10a. This
numbering is close to the zigzag of butterfly, but the left col-
umn (apart from thread 0) is numbered last and from the bot-
tom to the top in order to close the ring. For a rectangle shape
with only odd sides, the zigzag falls on the wrong side for the
last line, therefore we propose to stop the vertical zigzag two
lines before and to perform a horizontal zigzag from here as in
Fig. 10b (only the first step is given).

For a line shape, it is impossible to build a ring of direct
neighboring threads. However, it is possible to reduce the con-
nection between the last and the first thread by numbering from
the left to the right one thread out of two and then numbering
from the right to the left for the remaining threads as shown in
Fig. 11. It can be verified that the total hop delay is 2 ∗N − 2,
which is better in practice than with a topological numbering.

When the threads are not mapped as a rectangle nor a line,
the zigzag approach for dissemination can still be used but the
left column is not straight any longer and the variable size of
the lines might incur more delays.

C. Tailoring (deeply) the tree protocol

For tuning the tree protocol, let us first consider the master-
slave one. With this protocol, it is enough to select the thread
which is in the center of the mapping for being the master in
order to achieve an optimal number of hops. Indeed, assum-
ing this center corresponds to a single thread, it is located at
half the Manhattan distance from the farthest threads. Since
the protocol includes two steps, the total hop delay is equal to
the Manhattan distance between the farthest threads. However,
the NoC usage is very high since all the slaves send and re-
ceive messages with the same master so that the links are used
several times as it can be seen in Fig. 12a.

This is why we propose to convert this master-slave protocol
to a tree protocol as follows: each connection from a thread to
the center (i.e., the master) is segmented over each NoC link

Fig. 11. Efficient dissemination on an odd line

(a) Master-slave (b) Rectangle tree

Fig. 12. Master slave tuning and conversion to tree

(a) odd-odd (b) odd-even (c) even-even

Fig. 13. Center depending on the parity of the height and the width

encountered along the path. Then, the segments sharing a same
link are merged so that the resulting protocol is executed as
seen in Fig. 12. This new protocol is called rectangle tree and
is indeed a tree protocol where the root is the center and the
leaves are at the periphery of the shape. With it, each link is
used at most once, while the hop delay is preserved.

There are still issues when the center of the mapping does
not fall on a single thread. This happens first when the width or
the height of the shape are even. We solve this by considering
as root the threads adjacent to the center while synchronizing
them with butterfly which ensures an optimal hop delay for
the three possible cases. The first case is when the width and
the height are both odd so that the root is a single thread as
shown in Fig. 13a. In the second case, only one of the width
or the height is odd. Hence the root is made of two threads as
illustrated in Fig. 13b, and synchronizing them with butterfly
requires 1 hop delay. In the last case, both the width and the
height are even so that the root is made of four threads as in
Fig. 13c. When butterfly is applied on them the hop delay
is only 2. Finally, if the center falls on cores unused by the
threads to synchronized, the closest thread is chosen instead,
which allows a short hop delay but not the optimal. Apart from
this last issue, rectangle tree achieves the optimal hop delay
independently of the mapping of the threads and notably when
they are distant from each other.

VI. COMBINING THE PROTOCOLS

Tailoring the protocols can improve their performances, but
they are not efficient on all the shapes. In this section we pro-
pose two new techniques which combines those protocols in
order to achieve good results with all sort of mappings. The
first one, called divide and conquer, partitions the threads into
several groups for efficient intra and inter-group synchroniza-
tions. While often efficient, this approach fails on certain cases
as seen further, this is why a second technique is proposed
which embeds divide and conquer within rectangle tree.

A. Divide and conquer

Base algorithm:
Let us assume that the number of threads is N = F0 ∗ F1.
They are first partitioned into F1 groups of F0 threads. The F1

groups can then be synchronized independently of each other,
before synchronizing them with each other. Since the groups
have the same number of threads, this second phase is per-
formed by synchronizing each thread of each group with one

- 513 -

(a) Intra barrier (b) Inter barrier

Fig. 14. Divide and conquer-based barrier synchronization protocol

Fig. 15. Selecting groups

thread of each of the other groups. Both phases are illustrated
in Fig. 14. For the inter-group phase, the distance between
connected threads is reduced by synchronizing the first threads
of each group together, the second together, and so on as it can
be seen in Fig. 14b. The intra and inter-synchronizations can
then be performed by applying recursively the same divide and
conquer approach provided F0 or F1 can be decomposed into
integer factors (i.e., they are not prime).

The recursion is stopped when prime numbers of threads
are reached. From there, any of the previously described pro-
tocols can be used. In our implementation, both butterfly and
dissemination are selected depending on an estimation of their
delay computed by summing for each thread to thread path, the
weighted message and hop delays. For instance, Fig. 14 shows
a dissemination barrier for the intra-group part and a butterfly
one for the inter-group part.

The goal for selecting the partition is to obtain groups which
are as close to compact rectangles or lines as possible since
they are easier to synchronize than other shapes, the compact-
ness ensuring shorter hop delays. For this purpose, we propose
the following recursive procedure (Fig. 15 illustrates it for two
partitioning passes):

1. Pick Fi one prime factor of N . Since there are usually
only a small number of different prime factors (e.g., at
most 3 with N varying from 1 to 128), it is possible to try
each one for dividing a set before recursing.

2. Partition the set of threads in Fi groups of N/Fi threads
according to the topological order of the threads (cf. sim-
ple split in Fig. 15).

3. Make the groups closer to rectangle shapes by iteratively
swapping pairs of corner threads between groups. For
now, we use a mountain climbing approach which ends
the iteration when no better shape is achieved. The shape
is estimated by the rate between the number of its threads
and the number of cores in the smallest rectangle includ-
ing it. (cf. improved split in Fig. 15).

4. Retry from 1 for another prime until the best shapes are
achieved according to 3.

5. Recurse to 1 on each group if N/Fi is not prime.

Limitations and benefits of the technique:
While promising, divide and conquer cannot be applied when
the number of threads is prime. Moreover it is likely to
achieve poorly for the cases where the number of synchroniz-
ing steps is higher than with a basic protocol. For instance,
considering butterfly and dissemination, such happens when
np2(F0) ∗ np2(F1) > np2(N) (it is still assumed that the N
threads are partitioned into F1 groups of F0 elements). Indeed,
np2(N) is the number of steps required by the two previous

protocols for synchronizing the N threads whereas divide and
conquer requires np2(F0) ∗ np2(F1) steps if we assume that
the intra and inter-synchronizations use butterfly or dissemi-
nation. Both limitations could be dealt with by adding virtual
threads or by using free cores but the benefits are unsure. In-
stead, we propose a more general technique in the next section
which prove to perform well on these cases too.

Apart from the previous cases, it can be shown that for line
and rectangle shapes, the divide and conquer approach actu-
ally reduces the message and the hop delay for the butter-
fly protocol and reduces the hop delay for the dissemination.
There is no room in this paper for demonstrating this result,
but it can be understood intuitively: considering a case where
np2(N) = np2(F0) ∗ np2(F1), the message delay of dissem-
ination is identical to divide and conquer (using dissemination
for the inter and intra-group synchronizations), and improved
for the case of butterfly since the first step is free of mirroring
overhead (cf. section IV.A.) so that applying this last proto-
col several times on a partition is more efficient than globally
once. The hop delay is improved too because, by construction,
the most distant threads never exchange messages directly.

B. Embedding divide and conquer
The divide and conquer approach does not deal well with

some specific numbers of threads. Moreover, it does not fa-
vor the strength of rectangle tree for optimizing the hop delay
with distant threads. This is why we propose a final technique
which embeds divide and conquer into the rectangle tree pro-
tocol presented in section V.C. Specifically, the technique em-
beds numerous threads in the root of the tree and synchronizes
them with divide and conquer while the external threads are
synchronized with rectangle tree. For that purpose, the follow-
ing procedure is used:

1. Apply the first phase of rectangle tree.
2. Connect each thread reached at the last step of 1 to the

closest thread located inside the root rectangle.
3. Synchronize the root using divide and conquer.
4. Generate the reverse connections of 2.
5. Apply the second phase of rectangle tree.

In order to adjust the number of threads for divide and con-
quer while benefiting from the advantage of rectangle tree for
distant threads, the central root rectangle is defined iteratively:
at first it is small as possible for applying the full rectangle tree,
then it is grown progressively while applying divide and con-
quer inside it. This is repeated until the estimated delay (using
weighted message and hop delays as explained previously) is
not reduced any longer. It can be noticed that rectangle tree
needs to be built and estimated only for the first iteration.

VII. EXPERIMENTS

The experiments have been held on a NoC multi-core sim-
ulator designed internally. This simulator is cycle accurate for
the NoC, but executes natively the programs of the cores for
sake of speed. The execution time of the threads is taken into
account through off-line annotation of their programs. Both
the software and the hardware implementations of the barriers
have been included into the threads management runtimes ex-
ecuted on the cores. They have also been annotated so that the
delay for a single message processing is 12 cycles for the soft-
ware barrier and 2 cycles for the hardware. Those delays has

- 514 -

Fig. 16. Delays of barrier protocols with software implementation

Fig. 17. Delays of barrier protocols with hardware implementation

been evaluated off line for the case of a MeP [15] processor,
using the SPM for the messages buffers. For the hardware im-
plementation, each barrier operation was reduced to a read or
to a write to specific memory mapped registers. In order to ex-
periment the barriers without interference, the application was
made of identical threads, each of them generating one output
identification message before barrier synchronizing with the
other threads.

Results of the experiments are shown in Fig. 16 for the soft-
ware implementation and Fig. 17 for the hardware one. In the
figure the delays in cycles with various numbers of threads and
mappings are given for the basic protocols, i.e, tree (Tree), but-
terfly (Butter) and dissemination (Dissem), our tuned version
for them (respectively Otree, Obutter, Odissem), and our com-
bined approaches, i.e., divide and conquer (Odivconq) and the
final protocol which embeds divide and conquer into the rect-
angle tree protocol (Ototal). In order to obtain fair results, the
threads have been numbered in XY topological order for the
basic barrier protocols. On the horizontal axis, line, rect, srec,
and rand respectively stand for line, rectangle, sparse rectangle
and random shapes, and the figures represent the numbers of
threads. In addition, Fig. 18 gives the corresponding message
and hop delays for some of the shapes used in the experiments.

As it can be seen from the figures, our final protocol, Ototal,
always achieved the shortest delays. For Rect 7x7, Srect 3x3
and Srect 3x3, these delays are about half the delay of the basic
protocols for the software implementation and less than two-
thirds for the hardware implementation. The second most effi-
cient protocols are Otree and Odivconq which are complemen-
tary since they performed well on different cases. This is not
surprising since Otree optimizes more the hop delay whereas
Odivconq optimizes more the message delay. Yet, for the Rect
5x3 with the software implementation case, Odivconq actually
performed a little worse than Obutter and Odissem. This was
expected because np2(5 ∗ 3) < np2(5) ∗ np2(3) as explained
in section VI.A. Obutter always achieves better or equal than
Butter but the results for Odissem are more contrasted since
for three cases it achieved worse than dissem, which illustrates
the difficulty to optimize dissemination for all the cases.

Fig. 18. Message (left) and hop (right) delays with hardware implementation

VIII. CONCLUSION

In this paper we explored the design of several barrier syn-
chronization protocols for a NoC architecture. We showed that
using a proper numbering of the threads and taking into ac-
count the shape of the mapping of the threads can significantly
improve the performance of the synchronization. Then we
showed how basic protocols could be tailored to be efficient
on a NoC-based architecture and finally, we proposed a new
divide and conquer based protocol and a new global combin-
ing protocol. For the experiments, this latter always performed
better than the other protocols, and it was able to achieve half
the delay of the (non-tailored) basic protocols for several cases.

As future work, we plan first to tailor more finely the proto-
cols. Second, it could be interesting to use free cores in order to
achieve better thread numbers or shapes. Third, it has been as-
sumed that the mapping of the threads was already fixed before
the barrier are created since the data communication overhead
is usually more expensive than the synchronization one. Still,
it could be valuable to consider a joint data communication
and synchronization aware mapping of the threads. Last, the
energy consumption of the various protocols is a major issue
and is a base of our future work.

ACKNOWLEDGEMENTS

This research was supported in part by New Energy and In-
dustrial Technology Development Organization.

REFERENCES

[1] J. L. Abellán, J. Fernández, and M. E. Acacio. Efficient and scalable
barrier synchronization for many-core cmps. CF ’10, pages 73–74, New
York, NY, USA, 2010. ACM.

[2] C. J. Beckmann and C. D. Polychronopoulos. Fast barrier synchroniza-
tion hardware. Supercomputing ’90, pages 180–189, Los Alamitos, CA,
USA, 1990. IEEE Computer Society Press.

[3] E. D. Brooks. The butterfly barrier. International Journal of Parallel
Programming, 15:295–307, 1986. 10.1007/BF01407877.

[4] A. Darte and R. Schreiber. A linear-time algorithm for optimal barrier
placement. PPoPP ’05, pages 26–35, New York, NY, USA, 2005. ACM.

[5] D. Hensgen, R. Finkel, and U. Manber. Two algorithms for barrier syn-
chronization. Int. J. Parallel Program., 17:1–17, February 1988.

[6] M. Kandemir and S. W. Son. Reducing power through compiler-directed
barrier synchronization elimination. ISLPED ’06, pages 354–357, New
York, NY, USA, 2006. ACM.

[7] Khronos group. OpenCL. http://www.khronos.org/opencl.
[8] L. Kontothanassis and R. W. Wisniewski. Using scheduler information

to achieve optimal barrier synchronization performance. SIGPLAN Not.,
28:64–72, July 1993.

[9] A. Marongiu, L. Benini, and M. Kandemir. Lightweight barrier-based
parallelization support for non-cache-coherent mpsoc platforms. CASES
’07, pages 145–149, New York, NY, USA, 2007. ACM.

[10] R. Nanjegowda, O. Hernandez, B. Chapman, and H. H. Jin. Scalability
evaluation of barrier algorithms for openmp. IWOMP ’09, pages 42–52,
Berlin, Heidelberg, 2009. Springer-Verlag.

[11] OpenMP.org. OpenMP. http://www.openmp.org.
[12] V. Ramakrishnan, I. D. Scherson, and R. Subramanian. Efficient tech-

niques for fast nested barrier synchronization. SPAA ’95, pages 157–
164, New York, NY, USA, 1995. ACM.

[13] M. C. Rinard. Using early phase termination to eliminate load imbal-
ances at barrier synchronization points. SIGPLAN Not., 42:369–386,
October 2007.

[14] J. Sampson, R. González, J.-F. Collard, N. P. Jouppi, and M. Schlansker.
Fast synchronization for chip multiprocessors. SIGARCH Comput. Ar-
chit. News, 33:64–69, November 2005.

[15] Toshiba. MeP processor. http://www.semicon.toshiba.co.
jp/eng/product/micro/mep/index.html.

[16] O. Villa, G. Palermo, and C. Silvano. Efficiency and scalability of bar-
rier synchronization on noc based many-core architectures. CASES ’08,
pages 81–90, New York, NY, USA, 2008. ACM.

- 515 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

