
Compiler-Assisted Soft Error Correction by
Duplicating Instructions for VLIW Architecture

Yunrong Li1, Jongwon Lee1, Yohan Ko2, Kyoungwoo Lee2, and Yunheung Paek1

1School of Electrical Engineering and Computer Science 2Department of Computer Science

Seoul National University, Seoul 151-744, Republic of Korea Yonsei University, Seoul 120-749, Republic of Korea

{wylee, jwlee, ypaek}@sor.snu.ac.kr {yohan.ko, kyoungwoo.lee}@yonsei.ac.kr

Abstract—Exponentially increasing with technology scaling,
soft errors have become a serious design concern in the deep
sub-micron era. Error detection in VLIW or embedded systems
is not enough while error correction is expensive due to the
recovery mechanism. In this work, we present an enhanced
VLIW architecture capable of not only error detection but also
error correction by duplicating instructions efficiently, by re-
executing the error-detected instruction, and by adopting the
voting mechanism with the help of compilation techniques.
Further, we propose a scheduling algorithm to improve the
instruction scheduling and reliability over the executable un-
der the performance constraint. Our experimental results on
ADL-described VLIW datapath demonstrate that our solution
efficiently improves the reliability by 29% over the suite of
DSPStone benchmarks without performance overhead in our
compiler-scheduler-simulator framework.

I. INTRODUCTION

System reliability is becoming the paramount concern in
system design in the deep sub-micron design era [1]. With
technology scaling, i.e., shrinking feature sizes, decreasing
voltage level, lower noise margins, etc., microprocessors are
becoming increasingly prone to transient faults [8], [23]. A
transient fault results in erroneous program states and eventu-
ally incorrect outputs, but it is temporary and non-destructive,
i.e., resetting the device, restores normal behavior.

While transient faults may be caused due to several reasons,
radiation-induced faults are responsible for more failures than
all the other causes of transient faults combined [4]. Radiation-
induced faults occur when a high energy radiation particle such
as an alpha particle, a neutron and a free proton, strikes the
diffusion region of a CMOS transistor and produces charge,
which results in toggling the logic value of the transistor. This
phenomenon of change in the logic state of a transistor is
called a soft error or transient fault.

Soft errors for memory systems have been widely investi-
gated and they are protected by error detection and correction
codes (EDC and ECC) as a consequence. However, soft errors
in logics are becoming also critical and take up more than
50% in overall soft errors in embedded systems [14]. Thus,
researchers have presented several redundancy based tech-
niques at various levels of design space abstraction, based on
dual modular redundancy (DMR), triple modular redundancy
(TMR), and checkpointing. However, these redundancy based

techniques without optimization incur high overheads in terms
of power, performance, and area. For example, TMR typically
uses three functionally equivalent replicas of a logic circuit and
a majority voter, but the overheads of hardware and power for
conventional TMR exceed 200% [17].

VLIW (Very Long Instruction Word) architectures are of
lots of interest in multimedia embedded systems because
they are able to exploit high degrees of instruction paral-
lelism with a reasonable tradeoff in complexity and cost [3].
Further, VLIW can provide the full control on scheduling
of instructions at the compile time, which allows designers
to manage multiple parameters such as power, performance,
and reliability. Using replicated instructions and a software
methodology to detect hardware faults in VLIW datapaths
have been presented in the previous work [6], [10]. However,
full duplications of instructions in VLIW logic architectures
can incur high overheads in terms of performance and energy
consumption [11], [12] while power and performance are
important as well in embedded systems.

Jie Hu et al. [11], [12] has recently proposed a compiler-
directed instruction duplication for VLIW architectures. Their
approach is one of the most promising soft error detection
for VLIW datapath that achieves the error resilience with low
power and performance overheads. The main idea behind their
work is to exploit the empty slots with duplicate instructions
under the performance and energy consumption constraints.
However, their solution is limited to error detection, which
indicates the necessity of error recovery mechanism such
as checkpointing. The absence of error recovery mechanism
incurs the lack of soft error solution. Further, error recovery
mechanism such as checkpointing is inappropriate for real-
time embedded applications.

In this paper, we present an enhanced architecture of VLIW
datapaths to detect and correct soft errors with least overheads
in terms of area and performance. The main idea is to exploit
empty slots for instruction duplication, to comare outputs
of duplicated instructions, and to re-execute the instruction
if the comparison returns the difference. Our approach is
very effective and efficient since it does not triplicate the
execution every instruction while it exploits a mechanism of
TMR and it does not need use checkpoint-like mechanism
for error recovery. Also, we propose a novel scheduling

SASIMI 2012 ProceedingsR1-11

- 54 -

algorithm to intelligently utilize the empty slots for increasing
reliability with minimal degradation of performance and to
distribute duplicate instructions considering their priority over
the scheduled executable.

The contributions and results of our work are:

• We propose a VLIW architecture with least area cost
to correct soft errors by duplicating instructions and re-
executing the erroneous instruction.

• Our compiler has full control of instruction scheduling
for the proposed VLIW architecture and schedules in-
structions under performance constraint.

• Our scheduler is able to consider the priority among
instructions to duplicate instructions with higher priority
if they compete with others.

• Our proposal can efficiently increase the reliability in
terms of duplications of instructions by 29% without
performance overhead in terms of the code size and the
execution time at minimal area cost.

II. RELATED WORK

The primary source of transient faults in digital CMOS
circuits are cosmic radiation. The phenomenon of radiation in-
ducing faults has been under investigation for several decades.
Due to incessant technology scaling (lower supply voltage and
smaller feature size), the soft error rate (SER) has exponen-
tially increased [8], [23], and now it has reached a point, where
it has become a real threat to system reliability. Solutions to
reduce the failures due to soft errors have been proposed at
all levels of design hierarchy.

Logic elements were considered more resilient against soft
errors than memory elements but several researchers predict
that the logic SER will become one of main contributions
to the system reliability [4], [17], [19]. The simplest and
most effective way to reduce failures due to soft errors in
combinational logic is TMR [18], which uses three func-
tionally equivalent replicas of a logic circuit and a majority
2-out-of-3 voter. But the overheads of hardware and power
for conventional TMR exceed 200% [17]. Duplex modular
redundancy [15], [17] is also possible but still it requires
more than 100% area and power overheads without any
optimization techniques. In order to reduce the high overheads
in conventional redundancy techniques, Mohanram et al. in
[15] presented the partial error masking by duplicating the
most sensitive and critical nodes in a logic circuit based on the
asymmetric susceptibility of the nodes to soft errors. Recently,
Nieuwland et al. [17] proposed a structural approach analyzing
the SER sensitivity of combinational logic to identify the SER
critical components at circuits.

Temporal redundancy is another main approach that has
been used to combat soft errors in circuits. In order to detect
soft errors, [16] applied fine time-grain redundancy within the
clock cycle greater than the duration of transient faults by
using the temporal nature of soft errors. Krishnamohan et al. in
[13] proposed the time redundancy methodology by using the
timing slack available in the propagation path from the input to
the output in CMOS circuits. A Razor flip-flop was presented

in [7] to detect transient faults by sampling pipeline stage
values with a fast clock and with a time-borrowing delayed
clock.

Since compiler is able to control all the schedules of
instructions in VLIW architecture, several approaches have
been proposed to duplicate instructions robust against soft
errors at compile-time. The idea of replicated instructions in
a VLIW processor has been investigated [10]. Bolchini [5]
provides introduction of additional instructions to detect hard
and soft errors for a VLIW datapath and compiler controls
the replicated instructions so that it can carry out redun-
dancy only for mission critical applications. However, full
duplications of instructions in VLIW logic architectures can
incur high overheads in terms of performance and energy
consumption [11], [12]. Jie Hu et al. [11], [12] has recently
proposed a selective duplication of instructions and its schedul-
ing algorithm for VLIW architectures. Their approach is one of
the most promising soft error detection in embedded systems
because it can also consider and bound power and performance
overheads. However, these previous works only detect soft
errors while our work focuses on not only error detection but
also error correction by modifying the previously proposed
VLIW architecture. Further, we present a novel scheduling
algorithm to consider priority of instructions for selective
protection. Thus, the main contribution of this paper is in
developing techniques to utilize unused empty slots in a 4-way
VLIW datapath by assigning duplicate instructions into unused
empty slots to improve the reliability without performance
overhead because researchers have observed that the empty
slots can take up more than 50% [21].

III. OUR ARCHITECTURE FOR ERROR CORRECTION

Fig. 1. VLIW Architecture for Error Detection and Correction

In this work, our VLIW datapath is composed of two integer
ALUs, one integer multiplier, one load/store unit, and one
branch unit as shown in Figure 1. The instruction duplication
is the method to increase the reliability in our study. The
main idea behind our approach for error correction is triple

- 55 -

modular redundancy with the voting mechanism. However,
this approach has been adopted to incur the third redundant
instruction only when the first dual redundant instructions
result in two different outputs, i.e., the original instruction and
its duplicate instruction generate different outputs. By doing
so, we can reduce the third redundant execution which would
have been wasted if we would follow the conventional TMR
approach.

To detect a soft error during the datapath, the output of
an original instruction is compared to that of its duplicate
instruction and if they are different, an error is detected. To
correct a soft error during the datapath, the outputs of an
original instruction and its corresponding duplicate instruction
will be compared at the first step, then the duplicate instruction
will be re-executed and its output will be compared to the
original output. At this step, if they are identical, then this
output and original output will be considered the correct
one according to the 2 out of 3 voting mechanism as in
TMR [18]. Note that address values are stored in the queue
in case of load and store instructions. Figure 2 shows how
pipeline works in our proposed VLIW architecture to correct
an error if it is detected. This scenario shows that a soft
error occurs during EX stage at cycle 4 (by duplicating an
instruction and by comparing their outputs) and at the next
cycle (cycle 5) this instruction is re-executed while other stages
are stalled as shown in Figure 2. Note that soft error rate
increases significantly with technology scaling but it does not
occur every a few cycles. Therefore, it would be extremely
expensive to execute each operation triple times to meet the
TMR requirement.

Fig. 2. Our pipeline configuration re-executes the detected erroneous stage
and stalls other stages.

On the other hand, if both outputs from an original instruc-
tion and from its duplicate one are identical at the first step,
they will be considered the correct one, i.e., there was no error
in both units in the VLIW datapath. In order to support this
error correction mechanism, the queue entries and comparators
are introduced as shown in Figure 1.

Our redundancy technique to increase the reliability is to

duplicate instructions. Thus, the more duplicate instructions
cause the higher reliability in our VLIW datapath. To indicate
whether this instruction is the original one or the duplicate one,
one bit (B1) is introduced in VLIW architecture. If B1 is set to
1, it indicates the original instruction. Otherwise (B1 = 0), it
indicates the duplicate instruction. In our VLIW architecture
described in Figure 1, two integer ALUs are included while
one integer multiplier and one load/store unit are considered.
Thus, two integer ALU operations can be scheduled at the
same time. Then, the results of two integer ALU operations
such as addition can be compared immediately without the
result of original one being stored in the queue. On the
other hand, if the original instruction is scheduled before the
duplicated one, the output of the original instruction should be
stored in the queue and be compared to that of its duplicated
one. The contents of the registers and/or the memory are not
updated by the output of the original instruction. They are
updated after that of the corresponding instruction is compared
and confirmed if there was no error in both instructions. Note
that the inconsistency between contents of register files and
queues are avoided by our scheduling algorithm that con-
siders dependencies among scheduled instructions. Therefore,
another bit (B2) is introduced to indicate whether this output of
instruction needs to be stored in the queue and to be compared
to the entry in the queue. B2 is reset to 0, if both an original
and its duplicate instructions are scheduled at the same time.
B2 is set to 1, if they are scheduled at different times, i.e.,
the original instruction needs to write its output to the queue
while the duplicate instruction needs to compare its output to
the corresponding output from its original instruction stored
in the queue.

IV. OUR SCHEDULING ALGORITHM: COMPILER ASSIST

Our scheduling algorithm, DIScheduler, takes two inputs:
i. a sequence of instructions scheduled using a list scheduler
(region) and ii. allowable increase in schedule length (f), and
searches for a scheduled set of instructions including original
and duplicate instructions with the schedule length less than
or equal to (1 + f) × C where C is the schedule length
with original instructions only. DIScheduler is composed of
two rounds. The first round duplicates instructions unless they
incur performance overhead and marks instructions with the
calculated priority which need extra cycles. The priority can be
determined by a feature of applications, preferred operations
like addition, or soft error susceptibility. In the second round,
DIScheduler duplicates instructions with higher priority while
not incurring more overheads than the predefined constraint
on code size.

Figure 3 shows the outline of our double-round schedul-
ing algorithm. Lines 1 to 13 presents the first round
pseudo code and lines 14 to 42 presents the second
round pseudo code. First off, our algorithm generates a list
of duplicate instructions list of dupl inst w priority from
make dupl inst w priority() considering the priority (line 1).
The order of instructions in list of dupl inst w priority de-
pends on heuristics that we have developed. In our im-

- 56 -

DIScheduler (region, f)
/* first round */

01: list of dupl inst w priority = make dupl inst w priority()
02: for (each dupl op from list of dupl inst w priority)
03: orig op = get orig op from dupl op(dupl op)
04: etime = get earliest sched time(orig op)
05: ltime = get latest sched time(orig op)
06: stime = get sched time(orig op)
07: if (sched success(dupl op, stime))
08: list of dupl inst not inc cycle.add(dupl op)
09: else
10: list of dupl inst inc cycle.add(dupl op)
11: endIf
12: endFor
13: list of dupl inst = list of dupl inst not inc cycle

+list of dupl inst inc cycle

/* second round */
14: inc cycle = f × C

15: max sched cycle = C − 1
16: for (each dupl op from list of dupl inst)
17: orig op = get orig op from dupl op(dupl op)
18: etime = get earliest sched time(orig op)
19: ltime = get latest sched time(orig op)
20: stime = get sched time(orig op)
21: while (!sched success(dupl op, stime))
22: stime + +
23: if (stime > ltime)
24: if (inc cyle > 0)&&(shift for dupl not violate dep())
25: shift point = comp shift point(orig op, stime)
26: if (shift point! = −1)
27: shift down sched table(shift point,max sched cycle)
28: inc cycle − −

29: max sched cycle + +
30: if (shift point < stime)
31: stime = shift point

32: elsif (shift point > stime)
33: stime − −

34: endIf
35: endIf
36: else
37: delete dupl op

38: break

39: endIf
40: endIf
41: endWhile
42: endFor

Fig. 3. DIScheduler – Duplicate Instruction Scheduling Algorithm

plementation, the instructions of list of dupl inst w priority
is sorted by the height of each instruction in data depen-
dence graph. Note that make dupl inst w priority() ignores
branch and move operations since they are not considered
for instruction duplication in our work due to their fea-
sibility in our architecture. For each duplicate instruction
in list of dupl inst w priority (lines 2-12), it gets original
instruction from get orig op from dupl op (dupl op) and
calculates the earliest schedule time (etime), the latest schedule
time (ltime), and the initial schedule time (stime) (lines 3-6).
If dupl op can be scheduled without performance overhead,
it is included in the list of dupl inst not inc cycle (lines 7-
8). Otherwise, it is in the list of dupl inst inc cycle (lines
9-10). For the further scheduling in the second round, both
lists are combined into list of dupl inst (line 13). inc cycle
and max sched cycle are initialized (lines 14-15) in the be-
ginning of the second round. For each duplicate instruction in
list of dupl inst (lines 16-42), it gets original instruction and
calculates the earliest schedule time (etime), the latest schedule
time (ltime), and the initial schedule time (stime) (lines 17-
20). During the while loop in lines 21-41, when dupl op is

not schedulable within stime, stime is increased (line 22). If
stime is less than or equal to ltime, it does nothing during
this while loop. If stime is larger than ltime and if inc cycle
is larger than zero and shifting duplicate instruction does not
violate dependence, shift point is computed with the inputs
of orig op and stime (lines 24-25). Otherwise, dupl op is
deleted and it breaks (lines 36-39). if the calculated shift point
(line 25) is not equal to -1, it shifts down the instruction in
the schedule table, decreases inc cycle by 1, and increases
max sched cycle by 1 (lines 26-29). Further, if shift point is
less than stime, it sets shift down to stime (lines 30-31). If
shift point is larger than stime, it decreases stime by 1 (lines
32-33).

TABLE I
CODE SEGMENTS

A: Add r2, r1, r3
B: Load r4, r2
C: Mul r6, r5, 2
D: Add r2, r1, 4
E: Store r2, r6

To describe the processes for instruction duplication, we
have chosen a set of code segments including integer ALU op-
eration (Add), integer multiplication (Mul), and Load (Load)
and Store (Store) operations with some dependencies among
operations as shown in Table I. rN indicates a N numbered
register in register files. And the first operand is the destination
and the second and third operands the sources. For example,
operation A: Add r2, r1, r3 executes addition of contents in
r1 and r3, and stores the result in r2. Note that Table I shows
the code segments in assembly before applying our VLIW
scheduling algorithm for them.

Fig. 4. Original Instructions Schedule and Duplicate Instructions Schedule

Our original compiler schedules the code segment from
Table I and generates the scheduled instruction sequences
for our VLIW architecture as shown in Figure 4. The top
scheduling in Figure 4 presents several empty slots in 4-
way VLIW datapath that are unused each cycle, i.e., NOPs.

- 57 -

Our objective is to insert duplicate instructions as many as
possible to increase the reliability without incurring perfor-
mance overhead. Our double-round scheduling algorithm finds
out an efficient schedule including original and duplicate
instructions under performance constraint by also being able
to consider the priority of instructions and to balance the
duplicate instructions among the executable. Finally, we can
generate the schedule code including the duplicate instructions
(shaded ones in Figure 4) and original instructions without
breaking the dependency among instructions. Note that our
scheduling algorithm takes dependency and VLIW configu-
ration into account without breaking the consistency among
register contents between register files and temporary data
queue entries. Figure 4 also shows the B1B2 indication in
shaded duplicate instructions as described in Section III.

V. EXPERIMENTS

A. Experimental Setup

Fig. 5. Experimental Setup – Compiler-Scheduler-Simulator Framework

Our experiments have been performed in compiler-
scheduler-simulator framework that we have developed as
shown in Figure 5. We propose soft error correctable 32
bit embedded 4-way VLIW processor, and its datapath is
composed of two integer ALUs, one integer multiplier, and
one load/store unit with 16 entries of queues and compara-
tors for soft error correction. Our proposed architecture has
been written and implemented in LISA 2.0 language [20] to
generate the target assembler, linker, and simulator.

Our compiler uses GNU gcc 4.1 c-compiler as front end
and SoarGen compiler, a retargetable compiler platform [2],
as back end. We describe the ISA of our proposed VLIW
architecture using an architecture description language (ADL),
SoarDL [2] to generate the target assembler. At this step,
our framework returns the duplicated instruction code size
as the first output and they are used to estimate the perfor-
mance overhead in the code size and the reliability in the
amount of the duplicate instructions as shown in Figure 5.
All benchmarks from the DSPstone [22] have been simulated

on the Synopsys Processor Designer [20]. At last, Synopsys
simulator runs the executables of benchmarks and returns
the run-time performance in the estimated execution time
as shown in Figure 5. Also, Synopsys design compiler with
CACTI [9] estimates and returns the area of our proposed
VLIW architecture.

We have evaluated our proposed architecture and the
scheduling algorithm in terms of reliability and performance.
We assume that soft errors can occur in a normal distributed
manner in time and place wise. Also we assume that the
more duplicate instructions indicate the higher reliability of the
VLIW datapath. The reliability is estimated in the ratio of the
number of duplicate instructions to that of original instructions.
The performance is estimated in two folds: (i) the ratio of
the code size after duplication to that before duplication as
the compile-time performance metric and (ii) the ratio of the
execution time after duplication to that before duplication as
the run-time performance metric. Note that one cycle overhead
incurs if a soft error occurs in our proposed VLIW architecture
and it is detected as presented in Section III.

B. Experimental Results

Minimal Area Cost Our estimation shows that area over-
head for error correction in VLIW architecture is extremely
small. The area overhead is estimated at just 1.69% for our
proposed error correctable 4-way VLIW architecture with 8
MB of instruction and 8 MB of data memories. The area
overhead is calculated by overhead = (our architecture −
base architecture)/(base architecture+memory) where
architecture size is estimated by using Synopsys design
compiler with 130 nm technology and memory size by
scaling the result from CACTI with 90 nm to 130 nm
technology. The estimated areas are 13606315 µm2, 751540
µm2, and 513616 µm2 for memory, base architecture, and
our architecture, respectively. These area overhead results
show the effectiveness of our proposed architecture on the
area cost.

Effectiveness on Reliability and Performance Our first set
of experiments is to estimate the increased reliability without
performance overhead. Figure 6 shows the effectiveness of
our proposed techniques in terms of reliability. Our proposed
soft error correctable VLIW architecture is able to increase
duplicate instructions by 29% on average over the benchmarks
without increase of code size as shown in Figure 6. Especially,
it can duplicate about 50% instructions for a benchmark,
iir biquad one section. It is very effective because our solu-
tion exploits the empty slots, which would have been wasted,
to increase the reliability without performance overhead.

Our second set of experiments is to maximize the reliability,
i.e., fully duplicate all possible instructions, to see the perfor-
mance overheads. Figure 7 shows the performance overheads
in terms of increase of scheduled code size (compile-time
performance metric) and increase of execution time (run-
time performance metric) over benchmarks. Full duplication of
instructions increase the code size by 46% and the execution
time by 41% on average as shown in Figure 7. These results

- 58 -

Fig. 6. Duplicated Instructions without Performance Degradation

are still effective because a conventional TMR approach can
incur overheads in terms of power, performance, and area
by up to 200% [17] and they would execute all instructions
triple times while our solution executes some of interesting
operations twice and re-executes it once again if an error is
detected, which reduces in practice unnecessary executions
and further expands the tradeoff space between performance
and reliability significantly.

Fig. 7. Scheduled Code Length and Runtime for Full Duplicate Instructions

VI. SUMMARY

Owing to the incessant technology scaling, soft errors,
especially in datapaths are becoming a critical design concern
for embedded system reliability. Detecting errors needs a
recovery mechanism that is in general expensive. Thus, we
focus on not only error detection but also error correction with
minimal overheads and propose a compiler-assisted soft error
correction architecture for VLIW where instructions can be
duplicated, a soft error is detected by comparing two outputs
from both duplicate instructions, and further the detected soft
error can be corrected by re-executing the duplicate instruction
once again and by re-comparing the stored output for the
voting mechanism to correct the output. To support instruction
duplication in an efficient manner, we also propose a schedul-
ing algorithm which is composed of two steps to distribute
duplications and to prioritize the candidates of instructions.

We have implemented compiler-scheduler-simulator frame-
work and our experimental results demonstrate the efficacy
of our proposal for high reliability with minimal performance
and area overheads. Further, our work expands the interesting
design space to explore the tradeoffs between performance
and reliability. Our future work includes enhanced scheduling
algorithm to apply the importance of instructions for duplicate
instruction selections and algorithm developments for design
space exploration.

REFERENCES

[1] International technology roadmap for semiconductors 2005.
[2] M. Ahn and Y. Paek. Transactions on high-performance embedded

architectures and compilers ii. chapter Fast Code Generation for
Embedded Processors with Aliased Heterogeneous Registers, pages
149–172. 2009.

[3] G. Ascia, V. Catania, M. Palesi, and D. Patti. A system-level framework
for evaluating area/performance/power trade-offs of vliw-based embed-
ded systems. In ASPDAC, pages 940–943, 2005.

[4] R. Baumann. Soft errors in advanced computer systems. IEEE Design
and Test of Computers, pages 258–266, 2005.

[5] C. Bolchini. A software methodology for detecting hardware faults in
vliw data paths. IEEE Trans. on Reliability, 52:458–468, 2003.

[6] C. Bolchini and F. Salice. A software methodology for detecting
hardware faults in vliw data paths. In DFT, pages 170–175, 2001.

[7] D. Ernst, N. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge. Razor: A low-power
pipeline based on circuit-level timing speculation. In MICRO, 2003.

[8] P. Hazucha and C. Svensson. Impact of cmos technology scaling on the
atmospheric neutron soft error rate. IEEE Trans. on Nuclear Science,
47(6):2586–2594, 2000.

[9] Hewlett Packard, http://www.hpl.hp.com/research/cacti/. CACTI - An
ingegrated cache and memory access time, cycle time, are, leakage, and
dynamic power model.

[10] J. G. Holm and P. Banerjee. Low cost concurrent error detection in a
vliw architecture using replicated instructions. In ICPP, 1992.

[11] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Compiler-assisted soft error detection under performance and en-
ergy constraints in embedded systems. ACM Transactions on Embedded
Computing Systems, 8:27:1–27:30, July 2009.

[12] J. S. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Compiler-directed instruction duplication for soft error detection.
In DATE, pages 1056–1057, 2005.

[13] S. Krishnamohan and N. R. Mahapatra. An efficient error-masking
technique for improving the soft-error robustness of static cmos circuits.
In SOCC, Sep 2004.

[14] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim. Robust system
design with built-in soft-error resilience. IEEE Computer, 38(2):43–52,
Feb 2005.

[15] K. Mohanram and N. A. Touba. Partial error masking to reduce soft
error failure rate in logic circuits. In DFT03, pages 433–440, 2003.

[16] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue
nanometer technologies. In VTS’99, 1999.

[17] A. K. Nieuwland, S. Jasarevic, and G. Jerin. Combinational logic soft
error analysis and protection. In IOLTS06, 2006.

[18] D. K. Pradhan. Fault-Tolerant Computer System Design. Prentice Hall,
1996. ISBN 0-1305-7887-8.

[19] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Mod-
eling the effect of technology trends on soft error rate of combinational
logic. In DSN02, 2002.

[20] Synopsys Inc., Mountain View, CA, USA. Design Compiler Reference
Manual, 2001.

[21] D. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In ISCA, pages 392–403, 1995.

[22] V. z̆ivojnović, J. M. Velarde, C. Schläger, and H. Meyr. DSPSTONE:
A DSP-oriented benchmarking methodology. In ICSPAT, 1994.

[23] F. Wrobel, J. M. Palau, M. C. Calvet, O. Bersillon, and H. Duarte.
Simulation of nucleon-induced nuclear reactions in a simplified sram
structure: Scaling effects on seu and mbu cross sections. IEEE Trans.
on Nuclear Science, 48(6):1946–1952, 2001.

- 59 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF00540068006500730065002000730065007400740069006e00670073002000610072006500200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e003000200061006e00640020006d0061007400630068002000740068006500200022005200650071007500690072006500640022002000730065007400740069006e0067002000660069006c0065007300200066006f00720020005000440046002000730070006500630069006600690063006100740069006f006e002000760065007200730069006f006e00200034002e0030002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

