
Robust Register Files by Exploiting Asymmetric Soft Error Rate

Yohan Ko Kyoungwoo Lee

Dept. of Computer Science Dept. of Computer Science
Yonsei Univeristy Yonsei Univeristy

Yohan.Ko@yonsei.ac.kr klee@cs.yonsei.ac.kr

Abstract— As technology scaling, soft errors in-

duced by external radiation or cosmic rays are be-

coming a serious concern in micro-architectures. In

particular, soft errors in register files are critical in

reliability since these errors are easily propagated to

other components of processors, causing catastrophic

system failures. To protect data in register files, there

exist redundancy techniques such as Triple Modu-

lar Redundancy (TMR) and Error Correction Code

(ECC). However, these techniques incur high over-

heads in terms of area cost, performance, and power

consumption. In this paper, we increase reliability

on data in register files by simply applying inverters

since soft error rates are asymmetric, i.e., different be-

tween 0 and 1 in bit values. The main idea behind our

approach is to increase the more stable bit values in

register files by inverting bit values if it has more un-

stable bit values. Our experimental results show that

our proposal can reduce soft error rates by up to 20%

over a suite of benchmarks with minimal overheads

due to inverters.

I. Introduction

With increased chip integration levels, reduced supply
voltage, increased speed, transient faults are becoming a
big threat for todays system reliability [1], [2], [13], [15].
Such transient fault, i.e., soft error, caused by cosmic ray
or radiation particle is a temporary hardware defect in
a signal or datum [14]. In this paper, our research is to
reduce soft error rates (SER) in register files which are
significantly sensitive to system reliability since they are
frequently accessed by CPU.
When energetic particles strike the sensitive area of

the silicon device, they generate electron-hole pairs in the
wake. The source and diffusion nodes of a transistor can
collect these charges, Qcollected. When Qcollected becomes
larger than critical charge, Qcritical, the state of the logic
device may invert. For a long time, just high energy parti-
cles have caused soft errors but now low energy particles
also cause soft errors. The effect is multiplied with the
fact that there are a lot more lower-energy particles than
higher-energy ones and the fact that Qcritical is becoming

low and low as technology scaling.
Soft errors have already been attributed to cause several

fiscal damages [11], [20], e.g., Sun blamed soft errors for
the crash of their million-dollar line SUN flagship servers
in Nov. 2000 [3]. In one incident, a single soft error
crashed an interleaved system farm. In another incident,
a single soft error brought a billion-dollar automotive fac-
tory to halt every month [5]. At the current technology,
a soft error may occur in a high-end server once every
170 hours, but it is expected to increase exponentially
with advance of technology mainly because of lowering
Qcritical.
In embedded systems, soft errors in register file are the

important factor in terms of performance. Register file is
an array of processor registers in a control processing unit
(CPU). This is central to the architecture and often stores
data for long periods of time. Moreover, if soft errors
occur in register file, these soft errors quickly propagate
to errors in other parts of processors [5], [6]. For these
reasons, some commercial processor protects register file
by using typical redundancy methods such as TMR and
ECC. However, these techniques for register files incur
high overheads in terms of area cost, access time, and
power consumption [7], [8].
In order to reduce soft errors with minimal overheads,

several techniques have been investigated. For example,
Pablo Montesinos et al. [9] reduced soft error rates by
using the observation that the reliability-sensitive time is
limited during the register lifetime. For this reason, they
proposed ParSHIELD that protects register files from soft
errors with selective ECC codes. Jun Yan et al. [10]
presented a compiler-guided method by exploiting the
scheduling algorithms such as superblock and hyperblock
to delay write operations as late as possible, which can
alleviate the vulnerable time in register files. However,
these methods still exploit expensive redundancy-based
techniques for their protection. Therefore, we propose
the software-based register file protection by exploiting
unique feature of soft error rates, especially, rates for
SRAM.
ASER implies that SER is asymmetric, i.e., the proba-

bility of bit flip form 0 to 1 is not equal to that from 1 to
0. Especially, they are different by up to several orders of

SASIMI 2012 ProceedingsR1-15

- 77 -

Fig. 1. TMR Architecture

magnitudes in low power SRAMs [11]. This is mainly be-
cause of the big difference of the critical charges between
two types of flips. In most low power SRAM based regis-
ter files, the SER of the 1 to 0 is much higher than that of
0 to 1 (about 20 times in Qcollected) [11]. In other words,
bit value of 0 is much more robust against soft errors than
that of 1, which implies that minimizing bit values of 1 in
data makes register files more resilient against soft errors.
In this paper, we propose a simple profiling-based ap-

proach to maximize the number of more stable bit values
in register files by exploiting the feature of ASER. More-
over, we consider the concept, Architectural Vulnerabil-
ity Factor (AVF) [4], to obtain more accurate decline in
SER. Over the benchmarks we used for our experiments,
our proposal can reduce SER by up to 25% for the AVF-
based profiled methods.
The paper is organized as follows. Section 2 presents

related works; Section 3 describes design and implementa-
tion idea of our approach; Section 4 shows our efficacy in
soft error robustness from simulation-based experiments;
Section 5 concludes our paper and discusses future works.

II. Related Work

To mitigate soft errors in register files, redundancy-
based techniques have been investigated. These tech-
niques include TMR and Hamming Code based ECC. The
former exploits three functionally equivalent replicas of a
component with a majority voting mechanism as shown
in Figure 1. This method detects and corrects most cases
of soft errors in one replica out of three. However, this
method incurs 204% area costs, 19% access time as com-
pared to the default one without any replica [7], [8], [19]
Another redundancy-based technique is a Hamming

code based ECC, which is a linear ECC to correct er-
rors by exploiting additional parity bits. The number of
required parity bits for 2n data bits is n+1 if it is designed
for combatting single-bit errors. For instance, we need 6
parity bits for 32 bits register , which code is called (38,
32) Hamming code which is able to correct single bit er-

rors and to detect up to double bit errors. This approach
is more resource efficient than TMR since most soft er-
rors are single bit errors. However, fully Hamming code
without any optimization still incurs more than 27% area
costs, 113% access time overhead, 110% power consump-
tion overhead as compared to the normal register files
without any protection [7].

For these reasons fully hardware-based protection is sig-
nificantly costly. Jun Yan et al. [10] presented the register
file protection by exploiting selective partial ECC. In [10],
after the modification of conventional register allocation
algorithm is done, ECC protects selectively based on Reg-
ister Vulnerability Factor (RVF) similar with Architec-
tural Vulnerability Factor (AVF). However, this method
has still hardware overhead because of exploiting ECC.

Pablo Montesinos et al. [9] proposed selective hardware
protections of the registers that contribute the most to the
overall vulnerability of the register file. In [9], this method
only protects the useful lifetime of these registers. Their
approach, Shield, stores the ECCs of these registers and
checks their integrity offline when they are read. However,
these methods didnt consider the concept, ASER that
means the bit value of 0 is more stable than that of 1.

III. Our Approach

In this paper, we exploit an interesting feature of soft
errors, ASER. ASER means that the bit value of 0 is more
stable than that of 1. So, our goal is to increase the num-
ber of the bit value 0 in register file. Suresh Srinivasan et
al [16] proposed an interesting approach in FPGA. By in-
creasing the number of zeros in the bit stream by flipping
bits in internal look-up table in case that the bit value of
0 is more than that of 1, they can reduce the failure in
time compared to the original design. For these reasons,
our profiling method is acceptable to improve reliability
in register files against soft errors.

To exploit our suggestion, we have two registers
equipped with inverters in the register files as shown in
Figure 2, which invert bit streams in the registers if our
profiling results show more 1s than 0s. (Note that just
two registers are equipped with inverters since other num-
bers of inverter-equipped registers do not show significant
difference in experimental enviroments.). During the pro-
filing, the data in register files have been read. Register
profiling is to count the number of bit values in register
files. At the end, we calculate the accumulated number
of bit values of each register. And the two registers with
maximum number of bit value 1 have been chosen and
replaced (renamed) with two inverter-equipped registers
(in case of our study, the last two registers, R30, R31).
Note that all the benchmarks can find out more than two
registers with more 1s in our profiled experiments. And
the compiler re-compiles the programs by using the real-
located register files.

- 78 -

Fig. 2. Inverter-equipped Register Files for our Approach

A. Per-registers and Per-instruction profiling

In this step, we decrease the number of bit values of 1
due to the reverse of the bit values of 1 in two selected
registers if they have more 1s than 0s. Hence, the reli-
ability of the program is improved in terms of soft error
rates. Moreover, the overhead from the recompiling the
instructions is negligible. And the hardware overhead for
inverters in two registers is much lower than that of ECCs
or TMR. Note that our technique implements two invert-
ers at input and output for specific registers as shown in
Figure 2. Figure 2 shows the outline of our register files
where R30 and R31 are equipped with inverters and they
are substituted (renamed) for two most 1s registers.
Another proposal is to profile and rename registers per

each instruction. Former method is carried out statically
after profiling. In contrast, this approach looks into each
instruction, counts the number of bit value 1 at each regis-
ter file, and dynamically renames registers with two regis-
ters with the largest and the second largest number of bit
value 1. Note that our solution is applicable only if there
is more 1s than 0s in registers. This per-instruction ap-
proach has more profiling and compiling overheads than
those of former per-register approach while it can result
in higher.

B. AVF-Based Profiling

However, this simple method to mitigate SER in regis-
ter file is not accurate. Thus we consider about Architec-
tural Vulnerability Factor (AVF) [4]. AVF expresses the
probability that a user-visible error will occur given a bit
flip in a storage cell. In register file, we can divide the
accesses to register files into four different patterns (or in-
tervals), namely, the write-read (W-R), read-read (R-R),
read-write (R-W) and write-write (W-W) patterns (note
that the read/write mentioned in this paper refers to the
corresponding operations on register values, including but
not limited to the load/store instructions, which operate
on the data from the memory hierarchy). Among these

TABLE I
Architecural Vulnerability Factor

Case tm tn Vulnerability

0 R R Vulnerable

1 R W Non-vulnerable

2 W R Vulnerable

3 W W Non-vulnerable

Fig. 3. Example of AVF

four patterns, the register file is only susceptible to soft
errors during the W-R and R-R intervals. In contrast,
the soft errors occurred during the R-W and W-W inter-
vals can be overlapped by the latter write operations, and
hence will not impact other system components as shown
in Table 1.

Figure 3 is the example of AVF of register file. In t0
time, LW(load word) instruction is executed, and then
loads the value in memory(R15+200) to R7. In other
words, R7 is write status, and R15 is read status. In t1
time, SUB(subtract) instruction is executed, and then the
(R15-R16) is stored in R8. In other words, R8 is write
status, and R15 and R16 are read status. In t2 time,
ADD(add) instruction executed, and then the (R13+R14)
is stored in R15. In other words, R15 is write status, and
R13 and R14 are read status. In t4 time, R15 is write,
and R17 and R18 are read. In t5 time, R1 is write, and
R15 and R20 are read.

Then, we explain the AVF concept to exploit R15 reg-
ister in t0-t4 times. In t0-t1, R15 is read-read and vul-
nerable. In t1-t2, R15 is read-write and non-vulnerable.
In t2-t3, R15 is write-write and non-vulnerable. In t3-t4,
R15 is write-read and vulnerable. Therefore, R15 is vul-
nerable in t0-t1 and t3-t4, and total AVF time is (t1-t0)
+ (t4-t3).

In our approach, time unit is defined by instruction
numbers. Figure 4 is our algorithm to define AVF in regis-
ter file. Line 2-4 means that default AVF in register file is
non-vulnerable. Line 5-13 is the process that determines
which register is vulnerable. This process means that the
former operation doesnt affect vulnerability. However, if
the present operation is read, the time that former oper-
ation to the present method is vulnerable time.

Table 2 shows that portion of the bit value of 1in the
each register in vulnerable time. In these benchmarks,

- 79 -

Fig. 4. Algorithm of defining AVF

TABLE II
Portion of the bit value of 1 in vulnerable time

susan (%) sha (%)

1st 85.60 81.25

2nd 74.99 80.77

3rd 72.92 64.47

4th 68.17 62.79

5th 59.13 61.50

6th 53.20 58.57

there are at least 6 registers that have more the number
of the bit value of 1 than that of 0. This means our
inverter-equipped profiling method is efficient to mitigate
soft error rates.

IV. Experiments

A. Experimental Setup

For experimental setup, we exploit the SimpleScalar
simulator [17] with a suite of benchmarks from MiBench
[18]. SimpleScalar is a set of tools that model a virtual
computer system with XScale-based processor, cache and
memory hierarchy. Using the SimpleScalar tools, we can
build modeling applications that simulate benchmarks
running on a range of modern processors and systems to
quickly evaluate our solutions [12]. For soft error rate
evaluations, we conservatively assume that bit value 0 is
20 times lower soft error rate than that of bit value 1 [11].

Fig. 5. AVF-base Profiling SER

Fig. 6. AVF-base Profiling SER

B. Experimental Results

Figure 5 shows the efficacy of AVF-based profiling
method by up to 25% (18% on average). AVF of the
register file is 38 40% on average. And Figure 6 shows
the reduced soft error rates with the number of inverted
register between 1 and 4. The method by exploiting 8
inverters is most dependable, but this method has huge
overhead because of adding inverters. Moreover, some
benchmarks, such as sha and stringserach, show the sim-
ilar dependability more than 2 inverted registers. These
results show that 2 inverted register based register file is
effective since that has only simple 4 inverters, which is
negligible in hardware overheads. And, more than 5 in-
verted registers have similar reduced soft error rates in
this experiment.

V. Conclusion

As technology scaling, soft errors are becoming a chal-
lenging concern in embedded system designs. We pro-
pose profile-based register files equipped with simple in-
verters by exploiting asymmetric soft error rates. Our

- 80 -

solutions are very effective to protect register files against
soft errors by exploiting minimal hardware inverters and
software-based method. Moreover, AVF-based considera-
tion is more stable than normal approach.
Our future work includes that consideration of dy-

namic register renaming techniques and approaches for
other micro-architectures by exploiting the characteristic
of asymmetric soft error rates. In other words, our AVF-
based method is not realistic, because the real processor
exploits register renaming technique to mitigate W-R, R-
R dependency in out-of-order processing. And, ASER is
available to apply to other parts of computer science to
increase reliability against soft error rates.

References

[1] Semiconductor, T., “Soft errors in electronic memory-
a white paper,” URL: http://www. tezzaron.
com/about/papers/Papers. htm, 2004.

[2] Weaver, C. and Emer, J. and Mukherjee, S.S. and Reinhardt,
S.K., “ Techniques to reduce the soft error rate of a high-
performance microprocessor ,” ACM SIGARCH Computer Ar-
chitecture News, Vol. 32, Num. 2, pp. 264, ACM, 2004.

[3] D.Lyons, “ Sun screen ,” Forbes Magazine, 2000.

[4] Mukherjee, S., “ Architecture design for soft errors ,” Morgan
Kaufmann, Vol. 2008.

[5] Tremblay, M. and Tamir, Y., “ Support for fault tolerance in
VLSI processors ,” Circuits and Systems, 1989., IEEE Inter-
national Symposium on, pp. 388–392, IEEE, 1989.

[6] Rebaudengo, M. and Sonza Reorda, M. and Violante, M., “
An accurate analysis of the effects of soft errors in the instruc-
tion and data caches of a pipelined microprocessor,” Proceedings
of the conference on Design, Automation and Test in Europe-
Volume 1, pp. 10602, IEEE Computer Society, 2003.

[7] Naseer, R. and Bhatti, R.Z. and Draper, J., “Analysis of Soft
Error Mitigation Techniques for Register Files in IBM Cu-08
90nm Technology,” Circuits and Systems, 2006. MWSCAS’06.
49th IEEE International Midwest Symposium on, Vol. 1, pp.
515–519, IEEE, 2006.

[8] Fazeli, M. and Ahmadian, SN and Miremadi, SG, “A Low En-
ergy Soft Error-Tolerant Register File Architecture for Embed-
ded Processors,” High Assurance Systems Engineering Sympo-
sium, 2008. HASE 2008. 11th IEEE, pp. 109–116, IEEE, 2008.

[9] Montesinos, P. and Liu, W. and Torrellas, J., “Using register
lifetime predictions to protect register files against soft errors,”
Dependable Systems and Networks, 2007. DSN’07. 37th Annual
IEEE/IFIP International Conference on, pp. 286–296, IEEE,
2007.

[10] Yan, J. and Zhang, W., “Compiler-guided register reliability
improvement against soft errors,” Proceedings of the 5th ACM
international conference on Embedded software, pp. 203–209,
ACM, 2005.

[11] Degalahal, V. and Vijaykrishnan, N. and Irwin, MJ, “Ana-
lyzing soft errors in leakage optimized SRAM design,” VLSI
Design, 2003. Proceedings. 16th International Conference on,
pp. 227–233, IEEE, 2003.

[12] Ray, J. and Hoe, J.C. and Falsafi, B., “Dual use of superscalar
datapath for transient-fault detection and recovery,” Microar-
chitecture, 2001. MICRO-34. Proceedings. 34th ACM/IEEE
International Symposium on, pp. 214–224, IEEE, 2001.

[13] Kim, S. and Somani, A.K., “Area efficient architectures for in-
formation integrity in cache memories,” ACM SIGARCH Com-
puter Architecture News, Vol. 27, Num. 2, pp. 246–255, ACM,
1999.

[14] Shivakumar, P. and Kistler, M. and Keckler, S.W. and Burger,
D. and Alvisi, L., “Modeling the effect of technology trends
on the soft error rate of combinational logic,” Dependable Sys-
tems and Networks, 2002. DSN 2002. Proceedings. Interna-
tional Conference on, pp. 389–398, IEEE, 2002.

[15] Hazucha, P. and Svensson, C., “Impact of CMOS technology
scaling on the atmospheric neutron soft error rate,” Nuclear
Science, IEEE Transactions on, Vol. 47, Num. 6, pp. 2586–
2594, IEEE, 2000.

[16] Srinivasan, S. and Gayasen, A. and Vijaykrishnan, N. and Kan-
demir, M. and Xie, Y. and Irwin, M.J., “Improving soft-error
tolerance of FPGA configuration bits,” Computer Aided De-
sign, 2004. ICCAD-2004. IEEE/ACM International Confer-
ence on, pp. 107–110, IEEE, 2004.

[17] Austin, T. and Larson, E. and Ernst, D., “SimpleScalar: An
infrastructure for computer system modeling,” Computer, Vol.
35, Num. 2, pp. 59–67, IEEE, 2002.

[18] Guthaus, M.R. and Ringenberg, J.S. and Ernst, D. and Austin,
T.M. and Mudge, T. and Brown, R.B., “MiBench: A free, com-
mercially representative embedded benchmark suite,” Work-
load Characterization, 2001. WWC-4. 2001 IEEE Interna-
tional Workshop on, pp. 3–14, IEEE, 2001.

[19] Balkan, D. and Sharkey, J. and Ponomarev, D. and Ghose, K.,
“Selective writeback: reducing register file pressure and energy
consumption,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, Vol. 16, Num. 6, pp. 650–661, IEEE,
2008.

[20] Wang, N.J. and Quek, J. and Rafacz, T.M. and Patel,
S.J., “Characterizing the effects of transient faults on a high-
performance processor pipeline,” Dependable Systems and Net-
works, 2004 International Conference on, pp. 61–70, IEEE,
2004.

- 81 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

