
AN NFA-BASED PROGRAMMABLE REGULAR EXPRESSION MATCHING ENGINE
HIGHLY SUITABLE FOR FPGA IMPLEMENTATION

Hiroki Takaguchi, Yoichi Wakaba, Shin’ichi Wakabayashi, Shinobu Nagayama, Masato Inagi

Graduate School of Information Sciences, Hiroshima City University
3-4-1, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3194, Japan

email: {wakaba,s naga,inagi}@hiroshima-cu.ac.jp

Abstract— Regular expression matching is an operation to
find a string that matches a given pattern described as a reg-
ular expression in an input text. This paper proposes a new
programmable regular expression matching engine based on
a string-transition NFA. The proposed engine can perform
matching at high speed, and any regular expression can be
set as a pattern in a very short time. The proposed hardware
engine has a two-dimensional array structure, and thus it is
highly suitable for FPGA implementation. In experiments, the
proposed engine is implemented on an FPGA. Comparing with
an existing hardware matching engine, the effectiveness of the
proposed hardware was evaluated.

I. INTRODUCTION

String matching is the problem of finding all occurrences

of a character pattern in a text. Since this problem has many

applications in computer engineering and information pro-

cessing, a number of research results have been presented

in last 50 years [1, 7]. There are many formulations of

string matching. Among them, regular expression match-
ing is a string matching problem, in which a regular expres-

sion is given as a pattern [7]. Regular expression matching

has a broad range of applications. In particular, in recent

years, its application to network intrusion detection systems

(NIDSs) of high speed networks has attracted much atten-

tion [6]. NIDSs monitor network traffic for predefined sus-

picious activities or data patterns, and notify system admin-

istrators when malicious traffic is detected so that appropri-

ate actions may be taken. Regular expressions are used to

describe hazardous contents in packet payloads.

As known well, recognizing a character string, which

matches a given pattern described as a regular expression,

can be realized by implementing either non-deterministic or

deterministic finite automata (NFAs or DFAs) [5]. In re-

cent years, there have been many investigations to imple-

ment NFAs and DFAs on hardware in order to realize ef-

ficient regular expression matching. NIDS is a typical ex-

ample of such applications [6], since software implementa-

tion of regular expression matching for NIDS would be very

impractical due to its execution time. For this application,

many results have been presented for FPGA implementation

of regular expression matching machines [6, 2, 3, 8].

In most previous results on regular expression match-

ing by using FPGAs, a pattern is given before generating

hardware configuration data of FPGA chips. This instance-

specific approach to the regular expression matching prob-

lem has several advantages such as reducing the hardware

resources, and improving the execution time. However, this

approach has one major disadvantage. If a pattern is up-

dated, then a sequence of FPGA design and implementation

processes (i.e., generating a HDL description of hardware,

logic synthesis, place and route, and generating a configura-

tion data) should be performed again [4]. For some applica-

tions of regular expression matching, this property would be

fatal. In particular, for NIDS, when a “suspicious” pattern

is newly found, it is strongly recommended that this pattern

should be installed in the NIDS as soon as possible.

In this paper, we address design and FPGA implementa-

tion of a hardware string matching engine for recognizing

regular expressions. The architecture of the proposed regu-

lar expression matching circuit was a two-dimensional array

of simple processing units. A pattern is set in the circuit be-

fore string matching, and a text to be retrieved is entered into

the circuit one character by one character. The proposed cir-

cuit was designed with Verilog-HDL, and was implemented

using a Xilinx Virtex6 chip. Experimental evaluations show

that the proposed circuit achieves a high throughput of 2.736
Gigabits per second.

This paper is organized as follows. Section II formulates

the regular expression matching problem. Section III pro-

poses a hardware string matching engine for recognizing

regular expressions. Section IV shows the result of design

and implementation of the proposed machine. Some exper-

imental results are also given. Finally, in Section V, some

concluding remarks are described.

SASIMI 2013 ProceedingsR4-5

- 231 -

II. PRELIMINARIES

A. Regular Expressions [7]

Let Σ = {a1, a2, . . . , as} be a set of symbols (i.e., char-

acters) called an alphabet. A regular expression R is a string

on the set of symbols Σ∪{ε, |, ·, ∗, (,)}, which is recursively

defined as the empty character ε, a character ai ∈ Σ, and

(R1), (R1 · R2), (R1|R2), and (R∗
1), where R1 and R2 are

regular expressions. When there is no ambiguity, we sim-

plify our expressions by writing R1R2 instead of (R1 ·R2).
It is usual to use also the precedence order “∗”, “·”, “|” to

remove more parentheses.

The language represented by a regular expression R, de-

noted L(R), is a set of strings over Σ, which is defined re-

cursively on the structure of R as follows:

• If R is ε, then L(R) = {ε}.

• If R is ai ∈ Σ, then L(R) = {ai}.

• If R is of the form (R1), then L(R) = L(R1).

• If R is of the form (R1 · R2), then L(R) = L(R1) ·
L(R2), where “·” in the right-hand side represents the

concatenation of string sets.

• If R is of the form (R1|R2), then L(R) = L(R1) ∪
L(R2).

• If R is (R∗
1), then L(R) = L(R)∗ =

⋃
i≥0 L(R1)

i,

where L(R1)
i = L(R1) ·L(R1)· · · · ·L(R1) (i times).

We say a character string w on alphabet Σ matches pat-

tern P if w ∈ L(P) where P is a regular expression on Σ.

The problem of regular expression matching discussed in

this paper is the problem of finding all occurrences of sub-

strings, which match a given pattern P , where P is a regular

expression on alphabet Σ.

Given a pattern P , the length of P is defined as the num-

ber of characters in Σ included in P . That is, ·, | and +
operators and parentheses in P are not counted.

B. Extended Regular Expressions

We introduce several operations into regular expressions

described in the previous section so that complicated pat-

terns can be specified in a short form. Those operations are

defined as follows. In the following, R is a (extended) regu-

lar expression, and ai is a character in Σ.

• R? ::= R|ε
• R+ ::= R|R2|R3| · · ·
• . ::= a1|a2|a3 · · · as−1|as
• [ai1 , ai2 , . . . , aik] ::= ai1 |ai2 | · · · |aik

• [ai − aj] ::= ai|ai+1|ai+2 · · · aj−1|aj

We call [ai1 , ai2 , . . . , aik] and [ai − aj] class characters.

Note that all extensions described above do not affect the

class of languages defined by regular expressions. That is,

a language represented by an extended regular expression is

the regular language.

C. Finite Automata

As known well, the regular language defined by a regular

expression can be recognized by either a deterministic or

non-deterministic finite automaton (DFA/NFA) [5]. In this

study, we pay attention to the NFA and its extension.

C.1. NFA

A non-deterministic finite automaton (NFA) M is defined as

M = (S,Σ, δ, q0, F), where S is a finite set of states, Σ is an

alphabet of input character strings, δ : S × (Σ∪ {ε}) → 2S

is a transition function, q0 is an initial state, and F ⊆ S is

a set of final states. Figure 1 (a) shows an NFA for regular

expression abc∗.

C.2. String-Transition NFA

We extend the transition function δ for an NFA to apply to

strings in Σ∗−{ε}, and define the extended transition func-

tion as δ̂ : S×(Σ∗−{ε}) → 2S . In this paper, this extended

NFA M̂ = (S,Σ, δ̂, q0, F) is called the string-transition
NFA. Note that a string-transition NFA is ε-free. It is easy

to show that the class of languages recognized by string-

transition NFAs is the regular language. Figure 1 (b) shows

an NFA for regular expression abc∗.

1

S0
cb

F
a

S1 S2 S4S3

ab S1 FcS0

(a) NFA for abc*.

(b) String-transition NFA for abc*.

Fig. 1. NFA and string-transition NFA for abc∗.

- 232 -

III. THE PROPOSED CIRCUIT

A. Overview of the Circuit

In this study, we propose a new regular expression match-

ing hardware engine, in which a pattern is described as a

regular expression. The proposed hardware engine is “pro-
grammable”, that is, any regular expression can be set as a

pattern in the matching engine without circuit reconfigura-

tion.

As explained in C.2, for a regular expression P given as a

pattern to be matched with an input text T , there is a string-

transition NFA M such that L(M) = L(P), where L(M)
and L(P) are a language recognized by M and a regular lan-

guage defined by P . For each state in M , the state transition

is defined for not only single characters but also strings in-

cluding empty strings on Σ. Let Str(P) be a set of strings,

each of which is used to define a state transition from some

state in M . Each element in Str(P) may consist of any el-

ement in alphabet Σ, and, possibly, class characters such as

[ai − aj].

Fig. 2. The overall structure of the proposed engine.

Figure 2 shows the overall structure of the proposed cir-

cuit. The proposed circuit has a two-dimensional array

structure, consisting of two subcircuits, called the match-
ing plane and the feedback plane. The former performs the

matching between the input text and each string in Str(P),
where P is a regular expression given as a pattern, and the

latter performs the state transition of a string-transition NFA,

which accepts L(P). Details of those two subcircuits will be

given in the following subsection.

B. The Matching Plane

The matching plane consists of several rows of one-

dimensional arrays of small processing units. Each one-

dimensional array is called the string matching unit, shown

in Figure 3, which performs matching between the input text

and a string in Str(P). For each string w in Str(P), one

string matching unit is assigned to perform matching be-

tween the input text and w. Each w in Str(P) is stored

in some string matching unit in advance before matching.

Fig. 3. The string matching unit.

Each small processing unit in the string matching unit is

called the comparison cell, which is dedicated to compare a

character in the text and a character (possibly, a class char-

acter) in the pattern. There are two types of string match-

ing units, the basic string matching unit and the class string

matching unit. The former consists of basic comparison

cells and the latter consists of class comparison cells. Those

two types of string matching arrays are explained below.

B.1. The Basic String Matching Unit

As described, for each w in Str(P), there is a string match-

ing unit, which performs matching between the input text

and w. For the basic string matching unit, w consists of ele-

ments in Σ only, and no class characters are included.

The basic string matching unit consists of basic compar-

ison cells, which performs matching between a character in

the text and a character in w. Figure 4 shows the structure of

the basic comparison cell. It consists of a register LP, a com-

parator CMP, a selector SEL, and a flipflop FF. LP stores a

character in the pattern. LPs in basic string matching units

can be also functioned as shift registers by connecting in-

put and output terminals, Pin and Pout, of comparison cells.

Each character in the pattern P is set from the outside of the

circuit in advance by shifting them in LPs.

CMP is used to compare the character stored in LP and

the character in the text fed from the input terminals of the

matching plane. Each character in the text is broadcasted to

the all comparison cells in the circuit. The result of com-

parison is ANDed with the internal enable signal E, and the

result is stored in FF. Ein and Eout are enable input and

output signals, respectively, of the comparison cell. Fin is a

feedback transition signal from the feedback plane. The en-

able signal E is either provided from the outside of the basic

string matching array, Fin, or Eout of the left comparison

cell in the array. This selection is realized by SEL.

B.2. The Class String Matching Unit

The class string matching unit consists of class comparison

cells, which performs matching between a character in the

- 233 -

Fig. 4. The basic comparison cell.

text and a class character in the pattern. Figure 5 shows the

circuit structure of the class comparison cell. It consists of

a matching table MT, a selector SEL, and a flipflop FF. The

MT is a random access memory (RAM), whose word width

is 1 bit. The memory address of a MT is given by the input

text character. Let MT [x] be the value of a memory word

whose address is x. We assume that a text character is rep-

resented by a 7 bit ASCII code. Let c[i1, i2, . . . , ik] be a

class character representing ai1 , ai2 , . . . , aik in the alphabet

Σ. Then MT [x] = 1 if ax matches with c[i1, i2, . . . , ik],
otherwise MT [x] = 0. The output of the MT is ANDed

with internal signal E and the result is stored in FF. Using

the MT, matching with any class character can be realized.

Note that the class string matching unit can be also used

as the basic string matching unit. Comparison cells in one

class string matching unit shares the RAM to implement the

MTs. In FPGA implementation, MTs are implemented us-

ing Block RAMs (BRAMs).

Fig. 5. The class comparison cell.

C. The Feedback Plane

The feedback plane realizes the state transition from the

current state of the NFA to the next state. The feedback

plane consists of n vertical signal lines, each of which is

connected to Eout of the rightmost comparison cell in a

string matching unit, and n horizontal signal lines, which is

connected to Fin of each comparison cell in a string match-

ing unit, where n is the number of string matching units in

the matching plane. There is another vertical signal line,

denoted Start, which is connected to the input terminal of

the circuit. There is also another horizontal signal line, de-

noted Match, which is connected to the output terminal of

the circuit. At each point where a vertical and a horizon-

tal signal lines are crossed, there is a programmable switch

which connects two lines. The signal line Start is used to

start matching. When Start = 1, the initial state is enabled

to start matching. The signal line Match shows the success

of matching when Match = 1. Figure 6 shows the detailed

structure of the feedback plane. For each switch, there is a

FF, and depending on the value of FF, the switch is turned

on or off.

Fig. 6. The feedback plane.

D. Setting a Pattern

Now, we explain how to “program” the proposed match-

ing engine when a regular expression is given as a pattern to

be searched in the input text. Let P be the regular expres-

sion as a pattern, and M be the string-transition NFA for P .

Let Str(P) be a set of strings, each of which is used to de-

fine the transition function of M . For each w in Str(P), w
is set to any row of string matching units in the matching

plane. For the basic string matching unit, this is done by the

shift register function of LPs in the basic comparison cells.

For the class string matching unit, this is done by writing

memory data to BRAMs. For the memory access from the

outside of the circuit, the dedicated circuit is included. Char-

acters in string w are set in the string matching unit so that

they are flush on the right. Depending on the position of the

first character in w, selector SEL in each comparison cell is

set appropriately so that the state transition signal Fin from

the previous state is provided to the comparison cell having

the first character in w.

- 234 -

For the feedback plane, depending on the transition func-

tion, switches in the plane are appropriately set. Note that

for each string matching unit in the matching plane, in which

string w is set, there is a state p in M such that δ̂(p, w) = q.

For each string matching unit corresponding state p, there

are a vertical signal line, denoted Eout[p], in the feedback

plane, which is connected to Eout of the rightmost com-

parison cell, and a horizontal signal line, denoted Fin[p],
which is connected to Fin in each comparison cell. Assume

that δ̂(p, w) = q, then Eout[p] and Fin[q] is connected by

turning the switch on, which is placed at the cross point of

Eout[p] and Fin[q]. Note that turning the switch on is setting

1 to its associated FF. Figure 7 shows the pattern setting for

“a(bc|de)”.

Fig. 7. Setting “a(bc|de)” as a pattern.

E. Suitability for FPGA Implementation

As noted, the proposed engine has a two-dimensional ar-

ray structure, in which comparison cells in the matching

plane and switch circuits in the feedback plane are regu-

larly placed. Since state-of-the-art FPGAs have also a two-

dimensional array structure consisting of logic blocks, it is

very easy to implement the proposed engine on the FPGA

chip. Furthermore, we show that block RAMs (BRAMs) can

be effectively utilized to implement the class comparison

cells in the class string matching units. Since state-of-the-

art FPGA chips usually have several hundreds of BRAMs

in the chip, area-efficient circuit implementation of the pro-

posed engine can be achieved.

IV. EXPERIMENTAL EVALUATION

We have designed the proposed matching engine pre-

sented in this paper with Verilog-HDL, and implemented

it on an FPGA board, which contains an Xilinx Virtex6

XC6VLX75-1FF784 FPGA chip (the number of logic ele-

ments = 74,496, the number of slices = 11,640). The de-

sign tool used in experiments was Xilinx ISE Design Suite

Version 14.2. In the current implementation, a character in

pattern and text consists of 8 bits.

Table I. Design results

Circuit size Clock [MHz] #slice (#usage [%])

#state × #length Basic Class Basic Class

5× 5 341 356 79 (0) 38 (0)

10× 10 359 313 283 (2) 109 (1)

15× 15 340 301 694 (5) 264 (2)

20× 20 288 276 951 (8) 370 (3)

25× 25 209 262 2001 (17) 449 (3)

30× 30 222 251 2179 (18) 744 (6)

The design result was summarized in Table I. In this ta-

ble, #state and #length represents the maximum number of

states and the maximum length of strings in any transition in

the string-transition NFA, respectively. In the design, in the

matching plane, either basic or class string matching units

was used. “Basic” and “Class” represents the design re-

sults of the proposed matching engines, in which basic string

matching units and the class string matching units are used

as the string matching units, respectively. For each case

of the design, we have generated the Verilog-HDL source

of the circuit, performed the logic synthesis, and then per-

formed the place and route to get the configuration data of

the circuit. “Clock” shows the clock frequency of the cir-

cuit. #slice and #usage shows the number of slices and the

percentage of slice usage for each design.

From the table, we see that the implementation with class

string matching units was much smaller in size than the

implementation with basic string matching units. This is

due to the fact that class string matching unit does not

need comparators. Comparison with text characters was

implemented with BRAMs, hence no slices (i.e., logic el-

ements) were needed. Since state-of-the-art FPGAs usu-

ally equipped many BRAMs, our implementation is very

suited to those FPGAs. Note that the function of class string

matching units is higher than that of basic string matching

units. From the performance point of view, the implemen-

tation with class string matching units was faster than the

implementation with basic string matching unit. This may

be explained by the fact that the circuit size of the former is

smaller than the latter.

We also compared the design result of the proposed

matching engine with the FPGA implementation of the sys-

tolic string matching algorithm with string-transition NFA,

which we have previously proposed in [9] (in the following,

we call it the previous algorithm). In the previous algorithm,

- 235 -

string matching was performed in the one-dimensional sys-

tolic array, and the state transition in the string-transition

NFA was done in the NFA circuit. Note that the circuit

structure of the programmable NFA circuit in the previous

machine was totally different from the proposed machine in

this paper. Due to the limit of space, we omit the details.

Table II. Comparison with the previous algorithm [9].

Previous Proposed

Clock [MHz] 191 251

#slice (#usage[%]) 8237 (69) 744 (6)

We have designed and implemented the previous algo-

rithm using the same design environment and FPGAs as

used for the proposed algorithm. The design results were

summarized in Table II. In the design, the maximum num-

ber of states (#state) and the maximum length of strings

(#length) in one transition in the string-transition NFA were

set to 30 and 30, respectively. In the design, for string

matching units in the matching plane, class string matching

units was used. #slice and #usage show the number of slices

and the percentage of slice usage for each design, respec-

tively. From the table, we see that the proposed engine was

much smaller than the previous hardware algorithm. This

is due to the fact that the number of registers used in the

design of the previous algorithm was much larger than the

proposed algorithm, since every comparison cells in the sys-

tolic string matching array has registers to store the text data.

In addition, in the implementation of the previous algorithm,

no BRAMs were used to realize comparison functions.

V. CONCLUSION

In this paper, we have proposed a new programmable reg-

ular expression matching hardware engine, in which any

regular expression, possibly including class characters, can

be set as a pattern without circuit reconfiguration. Since the

proposed engine has a two-dimensional circuit structure, it

was very suitable for FPGA implementation. We have also

presented an area-efficient implementation of the proposed

engine by effectively utilizing BRAMs in the FPGA chip.

Experimental results showed that the proposed matching en-

gine outperformed the previous hardware engine in both the

size and the speed of the circuit. Future research includes the

extension of regular expression such as quantitative speci-

fiers (e.g., a{2,5}, which means the repetition of “a” in at

least 2 and at most 5 times), and development of the soft-

ware program for automatic generation of configuration data

of the proposed matching engine from a regular expression

given as a pattern.

ACKNOWLEDGMENTS

This research was supported in part by a Grant-in-Aid for

Scientific Research of the Japan Society for the Promotion

of Science (JSPS) under Grant (C) 23500066.

VI. REFERENCES

[1] J. Aoe (eds.), Computer Algorithms: String Pattern Matching
Strategies, IEEE Computer Society Press, 1994.

[2] C.R. Clark, D.E. Schimmel, “Efficient reconfigurable logic cir-

cuits for matching complex network intrusion detection pat-

terns,” Proc. 2003 IEEE ICFPL, pp.956–959, 2003.

[3] T. Ganegedara, Y.E. Yang, V.K. Prasanna, “Automation frame-

work for large-scale regular expression matching on FPGA,”

Proc. 2010 IEEE ICFPL, pp.50–55, 2010.

[4] M. B. Gokhale, P. S. Graham, Reconfigurable Computing,

Springer, 2005.

[5] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation (3rd Edition),
Pearson Education, 2006.

[6] B. L. Hutchings, R. Franklin, D. Cover, “Assisting network

intrusion detection with reconfigurable hardware,” Proc. 10th

Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, pp.111–120, 2002.

[7] G. Navarro, M. Raffinot, Flexible Pattern Matching in Strings,

Cambridge University Press, 2002.

[8] T. Trung Hieu, T. Ngoc Thinh, T. Huy Vu, S. Tomiyama, “Op-

timization of Regular Expression Processing Circuits for NIDS

on FPGA,” Proc. 2011 IEEE ICNC, pp.105–112, 2011.

[9] Y. Wakaba, M. Inagi, S. Wakabayashi, S. Nagayama, “An ef-

ficient hardware matching engine for regular expression with

nested Kleene operators,” Proc. 2011 IEEE ICFPL, pp.157–

161, 2011.

- 236 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

