
Graphillion: ZDD-based Software Library for Very Large Sets of Graphs

Takeru Inoue1 Hiroaki Iwashita1,3 Jun Kawahara2 Shin-ichi Minato3,1

1 JST ERATO Minato Discrete Structure Manipulation System Project, Sapporo 060-0814, Japan
2 Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
3 Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan

Abstract— Graphillion is a library for manipulating very large
sets of graphs, based on zero-suppressed binary decision dia-
grams (ZDDs) with advanced graph enumeration algorithms.
Graphillion is implemented as a Python extension in C++, to en-
courage easy development of its applications without introduc-
ing significant performance overhead. Experimental results show
that Graphillion allows us to manage an astronomical number of
graphs with very low development effort.

I. INTRODUCTION

A graph is a representation of a set of edges, each of which

connects a pair of vertices. It is often used as a mathematical

model for a variety of problems. Researchers have developed

many sophisticated graph libraries, but the design was focused

on handling a small number of graphs. Thus they cannot work

with very large sets of graphs, even though the set can grow ex-

ponentially with graph size since a graph with N edges induces

2N subgraphs. A graph library that could efficiently manage

very large and complex sets of graphs within a small amount

of memory would provide a novel way for powerful graph op-

erations; e.g., an optimizer that efficiently finds the best graph

from a non-convex graph set, and a graph database that can

select all matched graphs from a very large set.

In this paper, we introduce Graphillion, a software library

optimized for very large sets of graphs. Traditional graph li-

braries maintain each graph individually, which causes poor

scalability, while Graphillion handles a set of graphs collec-

tively without considering individual graph. Graphillion con-

centrates on edge-induced subgraphs of a given graph G =
(V,E), and a set of graphs is reduced into a set of edge col-

lections1, or a family of sets of edges more formally; i.e., a set

of graphs, {G1 = (V,E1),G2 = (V,E2)}, is regarded as a set

of edge collections, {G1 = E1,G2 = E2}. This reduction loses

the properties of each vertex, but allows programmers to ap-

ply a powerful theory on the family [1]. A set of collections

can be represented in a compressed form by sharing common

parts of similar collections, so a huge number of graphs can be

stored in a small amount of memory. We also employ efficient

algebra called family algebra [2], in order to perform optimiza-

tion, selection, and modification on very large graph sets; the

1In order to describe a set of sets without confusion, the word collection is

used to indicate an “inner” set like an edge set, while set is used for an “outer”

set like a graph set.

efficiency is due to the fact that they can be executed without

decompressing the data.

This family theory, of course, is unconcerned about graph

structure like a tree or a path, since it considers a graph to be

just an edge collection with no structure. We rectify this omis-

sion by employing the graph enumeration algorithm called

frontier-based search [3, 4, 5]. The algorithm lists all graphs

that have a specified structure, and then the listed graphs (edge

collections) are handled by family algebra. The number of

graphs listed, of course, can be very enormous, but a recent

development in enumeration algorithms allows us to output the

graphs in compressed form without enumerating them one by

one. This compressed form is easily converted into the com-

pressed form of the family theory [6], and so there is no diffi-

culty to adopt family algebra.

There are several graph libraries like NetworkX [7] and

Boost Graph Library [8]. These libraries are widely used for

graph analysis. They are, however, designed for a small num-

ber of graphs or a simple power set of edges; i.e., they can

find a shortest path just from a power set of edges without

constraints. We often use general optimizers like CPLEX [9]

for graph optimization. However, they require us to describe

the constraints in simple formulae, but many practical prob-

lems are too complicated to permit this. In addition, general

optimizers are not designed to search for multiple solutions.

Graph databases [10] store multiple graphs and provide selec-

tion methods on graph structure. However, they do not employ

efficient graph set representation. VSOP [11] employs family

algebra as does Graphillion, but it provides an abstraction for

combinatorial item sets, not graph sets. Frontier search is, of

course, not implemented in VSOP, and so it does not create

graph sets of a given structure efficiently.

The rest of this paper is organized as follows. Sections II

and III discuss the theoretical aspects of Graphillion. Section

IV describes implementation, Section V reports experimental

results, and Section VI concludes the paper.

II. REPRESENTATIONS OF A GRAPH AND THE SET

This section formulates a graph set as a set of edge collec-

tions. Fig. 1 shows an example of the representation used in

this section.

SASIMI 2013 ProceedingsR4-6

- 237 -

U = (Vu, Eu) =
v1 v2

v3 v4

Vu = {v1, v2, v3, v4}

Eu = {(v1, v2), (v1, v3), (v2, v4), (v3, v4)}

2Eu = {

⊆ 2Eu

G ∈

,

G = {(v1, v2), (v1, v3)} =

= {

, , , ... , },

, , }

(A) the universe

(B) the power set of Eu

(C) a graph set (a set of collections of Eu)

(D) a graph (a collection of Eu)

e.g.,

e.g.,

G
G

G

,

G = E ⊆ Eu
,

Fig. 1. Examples of our graph representation.

A. Representation of a Graph

We first introduce a special graph that defines our universe

(Fig. 1 (A)),

U = (Vu,Eu).

A graph G used in Graphillion must be an edge-induced sub-

graph of the universe (Fig. 1 (D)),

G = E ⊆ Eu,

where only edge collection E defines the graph, while vertices

V are ignored. This simplification puts a limitation on ver-

tices; vertices without edges cannot be recognized. However,

graphs are mainly characterized by edge structures in many ap-

plications, making this limitation not a serious concern in most

cases.

B. Representation of a Set of Graphs

A set of graphs, G , is represented by a set of collections of

Eu (Fig. 1 (B, C)),

G ⊆ 2Eu ,

where 2Eu is the power set of Eu. A graph used in Graphillion

is defined by G ∈ 2Eu .

The maximum size of a graph set, 2|Eu|, increases exponen-

tially with universe size. In order to represent a graph set

efficiently, we utilize a compressed form of a set of collec-

tions, which is named the zero-suppressed binary decision di-

agram, or ZDD [1]. ZDD greatly compresses a very large set

of collections by sharing the common parts of similar collec-

tions. We show an example of the great compression capability

yielded by ZDD in Table I, which presents the number of trees

TABLE I

NUMBER OF TREES VERSUS MEMORY NEEDED BY ZDD

Grid Number of trees Bytes

2×2 10 990

3×3 750 9870

4×4 737354 61830

5×5 8965981766 335190

6×6 1334122533591284 2364750

7×7 2417510626051127173092 18168510

8×8 53140315312826650300530620174 56321790

9×9 14130434522304066557892213731297009012 207115950

TABLE II

CREATION METHODS FOR GRAPH SETS

Structure Parameters

tree a root vertex, spanning or not

forest root vertices, spanning or not

path terminal vertices, hamilton or not

cycle hamilton or not

clique size

connected component vertices to be connected

rooted at a corner on a grid graph versus the amount of mem-

ory needed to store them in ZDD (theoretical value ignoring

implementation overhead). The amount of memory increases

much more slowly than the number of trees.

III. CREATION AND MANIPULATION OF A SET OF

GRAPHS

This section describes the creation of a graph set using fron-

tier search and the use of family algebra to manipulate set con-

tents.

A. Creation of a Set of Graphs

We build a ZDD representing a set of graphs by using

a graph enumeration algorithm called frontier-based search

[3, 12], which integrates several advanced techniques. Frontier

search finds all graphs that have a specified structure based on

dynamic programming. It outputs the enumerated graphs in a

compressed form that is easily converted into a ZDD [6]. The

time complexity is ruled by the size of the compressed form

(slightly larger than that of ZDD), not the number of graphs

being output.

Frontier search was originally limited to trivial structures

like trees, but it has been generalized to support various

structures [4]. Table II shows the structures supported by

Graphillion.

The search space can be limited within a given graph set;

graphs not included in the given set are not enumerated by

frontier search [5].

Simple graph sets can be created by ZDD’s primitives with-

out frontier search; an empty set and a power set are given by

- 238 -

(A) membership query: e.g., is found in

{ } ∩ { }, = { } ≠φ

(B) search: e.g., structure is found in

{ }, { } = { }

{ },

(C) graft: e.g., edges are added to

{ }, = { },

{ },

Fig. 2. Examples of graph set manipulation via family algebra.

the ZDD’s primitives, and small graph sets can be created by

explicitly specifying the graphs (edge collections).

B. Manipulation of a Set of Graphs

Family algebra defines several operations on sets of col-

lections, and the operations can be efficiently performed over

ZDDs [2]. Surprisingly, these operations can be executed on

the compressed data without decompression, so they are highly

efficient. In this subsection, we describe the operations for op-

timization, selection, and modification, in the context of graph

sets.

Several selection operations are defined for a set of collec-

tions, and their semantics make sense for graph sets without

change. They include ordinary set operations, namely, union
(∪), intersection (∩), difference (\), and symmetric difference
(⊕). The intersection operation can be used for a membership

query; to test if graph G is in set G by checking {G}∩G �= /0

(Fig. 2 (A)).

Other selection operations are based on graph structures,

which include subgraphs (�), supergraphs (), maximal
graphs (↑), and minimal graphs (↓). They do what their names

suggest (they are originally called subsets or maximal sets in

family algebra). The supergraphs operation can be used for

search; to explore G for graphs that include given structure G
by G 	 {G} (Fig. 2 (B)).

All graphs in a set can be modified at once by slightly mod-

ifying family algebra. To graft edge(s) E to all graphs in set

G , we utilize join (�) operation defined in the family alge-

bra (Fig. 2 (C)). Similarly, edge(s) E can be removed by per-

forming meet (
) operation against the complement edge set

Ec = Eu \E (i.e., Ec are edges not to be removed in this con-

text). The flip (�) operation flips edge status in all graphs.

Optimization is provided by a search algorithm of family

algebra that finds a maximum or minimum weighted edge col-

lection (graph) in the set. Since this search algorithm returns

just a single best graph, we employ the difference operation

to obtain multiple graphs in descending (or ascending) order

of weight; the search algorithm is applied repeatedly while re-

moving the previous best graph from the set by the difference

operation as follows.

for i = 1 → k do // find top-k graphs from G
G = find max(G) // get best G from G
// do something with G
G = G \{G} // remove G for the next iteration

end for
Graphillion defines other operations like hitting sets [13],

random sampling, and counting graphs in a set, but we do not

describe them due to space limits.

IV. IMPLEMENTATION

Frontier search and family algebra are implemented in C++,

while the programming interface is written in Python. This

interface is based on Python’s set; e.g., the size query (len

function in Python), membership query (in operation), it-

erators (for operation), and general set operations (union,

etc.). We add graph-specific operations to this interface like

supergraphs, graft, and the graph-weight optimizers. Our

implementation requires 14,965 lines of code in C++ and 2,251

lines in Python.

A graph set object in Python maintains a reference to the cor-

responding ZDD object of C++. The graph set object is very

lightweight, since it has no attribute other than the reference.

The selection methods return a new graph set object that refers

to the associated ZDD object. The modification methods just

replace their reference with a new reference to the new ZDD

object. The optimizers are implemented as a Python iterator,

which runs a loop step by step and yields the best graphs one

by one instead of extracting all of them at once.

In order to enhance productivity further, any type of graph

object (e.g., NetworkX graph) can be used in Graphillion. A

graph object is transparently converted into the Graphillion’s

internal representation (an edge collection) by user-defined

converters. Programmers can use Graphillion as an enhance-

ment tool for their favorite graph modules simply by register-

ing the converters.

V. EXPERIMENTS

In this section, we first show the performance of

Graphillion’s operations. We then discuss two case studies,

a puzzle solver and a power network optimizer, to examine

the tradeoff between performance and productivity. All exper-

iments were conducted with Python 2.7 and GCC 4.7 on Linux

2.6 using a single core in Intel Xeon E31290 (3.60 GHz) with

32 GB of RAM.

A. Basic Performance

We evaluate the performance using a set of trees rooted at a

corner on a grid graph. The set size is shown in Table I. The

performance of creation is measured by building a set of the

trees. The selection performance is evaluated by calculating

the union of two sets of trees; trees in one set are rooted at a

corner while those in the other set are rooted at the diagonally

opposite corner. The modification performance is evaluated by

- 239 -

0.000001

0.0001

0.01

1

100

1

10

100

1000

10000

100000

0 5 10 0 5 10 0 5 10

w/o Graphillion
(Python)
w/ Graphillion
(Python)
C++

0 5 10

Creation Selection Modification Optimization

C
PU

 ti
m

e
[s

ec
.]

M
em

or
y

us
ag

e
[M

 B
yt

e]

Grid size

Fig. 3. CPU time and memory usage for the basic operations with and without Graphillion. The operations are executed over trees rooted at a corner on a grid

graph. The grid size on the horizontal axis indicates N of the N ×N grid.

grafting an edge to all trees. The optimization performance is

measured by finding the top-3 weighted trees with the maxi-

mizing operation.

We measured the CPU time and the memory usage of these

operations with and without Graphillion. In the implementa-

tion without Graphillion, graphs are created as NetworkX ob-

jects, and are stored in Python’s built-in set object (the union

operation is provided by the built-in set, but the other oper-

ations were added by us). In order to evaluate Python’s over-

head, we developed pure C++ implementation of the opera-

tions just for the experiments.

The results are shown in Fig. 3. The implementation with-

out Graphillion could not finish any operation for a 5×5

grid within an hour due to the very large number of trees.

Graphillion performs a little poorly on the small grids due to

the overhead of object mapping and conversion, but the over-

head is negligible in the larger grids. It finished all operations

in less than 10 seconds with 500 MB of memory even for the

9×9 grid, which has 1037 trees. Creation and optimization are

slower than the other operations, because they involve com-

plicated search algorithms. Selection requires twice as much

memory than the others since it uses two sets of trees2, but it is

the fastest due to its simple operation.

B. Puzzle Solver

The first case study is the Slitherlink puzzle3, which is a

logic puzzle to find a cycle that satisfies given hints (Fig. 4).

The Slitherlink solver in [14] was the fastest one that could

2Selection requires 500 MB of memory, which is slightly larger than dou-

ble the theoretical value (207 MB), shown in Table I, because of the unused

slots in the hash table used to maintain ZDDs. The flat regions seen in the

memory usage for smaller grids are also due to the pre-allocated slots of the

hash table.
3http://www.nikoli.com/en/puzzles/slitherlink/

��
��

��

��

��

��

����

��
��

��

��

��

��

��

��

Fig. 4. An example of the Slitherlink problem (left) and its solution (right) on

6×8 grid; adjacent dots are connected with vertical or horizontal lines, and a

cycle is formed satisfying given hints, which indicate the number of lines

surrounding it while empty cells may be surrounded by any number of lines.

list all solution cycles. The solver employs frontier search re-

designed for Slitherlink; it has special algorithms to process

hints. It is written in 2,116 lines of C++ code.

We developed another solver with Graphillion, without fron-

tier search dedicated for Slitherlink. This new solver, first, enu-

merates subgraphs that satisfy the hints, and then runs frontier

search over the hint-satisfying subgraphs to select solution cy-

cles. Thanks to the generality of Graphillion, the new solver is

written just in 153 lines of Python. This is a 93 % reduction in

code line number, and it is, in addition, written in easy Python,

not in complicated C++.

We measure the CPU time and memory usage on three prob-

lems found in a Slitherlink book [15], all of which have just a

single solution. We also conduct an experiment against a mod-

ified problem in which ten hints are randomly removed to per-

mit multiple solutions. Fig. 5 shows the results. Both solvers

scaled similarly with problem size, and their memory usages

were roughly comparable. The Graphillion solver is slightly

outperformed in CPU time due to the special algorithms in

the dedicated solver, but the tradeoff between performance and

productivity is acceptable.

- 240 -

0.01

0.1

1

10

100

11x11 19x11 37x21 37x21
(mod.)

1

10

100

1000

10000

100000

11x11 19x11 37x21 37x21
(mod.)

dedicated solver

Graphillion solver

C
PU

 ti
m

e
[s

ec
.]

M
em

or
y

us
ag

e
[M

 B
yt

e]

Grid size Grid size

Fig. 5. CPU time and memory usage of the dedicated solver and the

Graphillion solver on Slitherlink problems.

We can obtain top-k longest or shortest cycles with

Graphillion’s iterators, when the problem has multiple solu-

tion cycles. It took just another 0.24 seconds to find the three

longest cycles from among the 117059496 solutions in the

modified problem.

C. Power Network Optimizer

The second case study is power loss minimization in a dis-

tribution network; this is a discrete non-convex optimization

problem involving hundreds of variables [16]. A power distri-

bution network can be represented by a graph in which a ver-

tex corresponds to a town block or a power substation while an

edge is a power line with a switch (Fig. 6). The power flow is

configured by changing the open/closed status of switches. It

must be cycle-free to avoid short circuits, and must cover all

blocks to avoid blackouts; the power flow, as a consequence,

forms a spanning forest, in which each tree is rooted at a power

substation. The flow also must satisfy complicated electrical

constraints on line capacity and voltage drop; roughly speak-

ing, very large or tall trees are forbidden. The network is op-

erated to minimize resistive line losses while satisfying these

constraints.

In [17], a power loss optimizer is developed using frontier

search and family algebra in an ad-hoc manner without the

unified concept discussed in this paper. The loss optimizer

first enumerates all spanning forests rooted at substations by

frontier search (1st line of Fig. 7). It then enumerates all

electrically-infeasible trees for each substation by conducting

complicated power calculations (2nd line of Fig. 7). Family al-

gebra selects forests that do not include the infeasible trees (3rd

line of Fig. 7). Finally, the minimum-loss forest is found from

the selected feasible forests; since the search space consists of

only the feasible forests, the search algorithm does not need

to consider the complicated constraints. To handle the nonlin-

ear nature of the power loss, a dedicated search algorithm had

been developed (that of family algebra was not used). Our past

work implemented a part of frontier search and of family alge-

bra in 6,856 lines of C++ code, while the complicated power

calculations, including nonlinear optimization, was written in

1

10

100

0 200 400 600
10

100

1000

10000

0 200 400 600

w/o Graphillion

w/ Graphillion

C
PU

 ti
m

e
[s

ec
.]

M
em

or
y

us
ag

e
[M

 B
yt

e]

switches # switches

Fig. 8. CPU time and memory usage of power network optimizers with and

without Graphillion.

1,221 lines of Python code. Intermediate data are serialized

into a file, which is exchanged between the C++ program and

the Python program.

We developed another power loss optimizer that imple-

ments the same algorithms but employs Graphillion for fron-

tier search and family algebra; we are allowed to focus on the

power calculation and the nonlinear optimization. Since this

optimizer is implemented as a single program, it does not need

to exchange intermediate data. It is written in 1,164 lines of

Python code without C++. This Python code is shorter than

the original, because it does not require serialization and ob-

ject mapping. In total, we achieved a 86 % reduction in code

line number, and it is, in addition, written in easy Python, not

complicated C++.

The two optimizers are compared for power distribution net-

works used in [17]; the largest network has 432 blocks (ver-

tices) and 468 power lines (edges). The results are shown in

Fig. 8. Both implementations demonstrate comparable perfor-

mance in the CPU time and memory usage (the memory usage

includes both C++ and Python programs for the implemen-

tation without Graphillion). The Graphillion optimizer was

slightly faster due to its omission of data exchange, while it

required a bit more memory because of the full Python imple-

mentation. This memory overhead is negligible compared to

the productivity improvement, which allows programmers to

focus on their own problems without considering complicated

graph operations. Surprisingly, more than 1058 feasible forests

were handled with only 1.5 GB memory in the largest network.

Graphillion needed just one thousand code lines to find an op-

timal solution from a non-convex set of 1058 graphs in just one

minute.

Graphillion also can be used as a graph database of feasible

forests. We issued queries specifying an open/closed switch

to select all the forests matched to the queries, like Fig. 2 (B).

Graphillion processed the queries within just 1.5 seconds for a

closed switch and within 0.5 seconds for an open switch in the

largest network.

- 241 -

Power substation
Town block
Power line w/ switch

Fig. 6. An example of power

distribution network, which is

represented by a graph; the power flow

can be configured by the switches.

{ }, , , , ,

({ } ∪ { })
spanning forests

not including infeasible trees

={ }, ,

Fig. 7. An example of optimization algorithms for power networks in Fig. 6; feasible solutions are obtained as

the spanning forests with no infeasible trees, and then the optimal one is searched for (not shown in the figure).

VI. CONCLUSIONS

In this paper, we have introduced Graphillion, which is a

software library designed for very large sets of graphs. Our

representation of a graph set allows us to utilize the theory of

the “family of sets”, which can compress graph sets and manip-

ulate them efficiently. Graphillion is implemented in Python

and provides a sophisticated but easy to use interface. Experi-

ments showed the excellent performance of Graphillion. Two

case studies revealed that programmers can handle very large

graph sets with just a small number of lines of code.

Future work includes a plug-in mechanism for operation

customization, generalized design for directed graphs and hy-

per graphs, and analysis of compression ratio on graph set

characteristics. Since we would like to find out more appli-

cations for which Graphillion works well, we make it publicly

available online.

REFERENCES

[1] S. Minato, “Zero-suppressed BDDs for set manipulation

in combinatorial problems,” in Proceedings of Confer-
ence on Design Automation, 1993, pp. 272–277.

[2] D. E. Knuth, The Art of Computer Programming: Com-
binatorial Algorithms Part 1. Addison-Wesley, USA,

2011, vol. 4A, sec. 7.1.4 Binary Decision Diagrams, pp.

202–280.

[3] K. Sekine, H. Imai, and S. Tani, “Computing the Tutte

polynomial of a graph of moderate size,” in Algorithms
and Computations, ser. Lecture Notes in Computer Sci-

ence. Springer, 1995, vol. 1004, pp. 224–233.

[4] J. Kawahara et al., “Frontier search for enumerating

all constrained subgraphs with compressed representa-

tion,” Hokkaido University, Division of Computer Sci-

ence, TCS Technical Reports, Tech. Rep., to appear.

[5] H. Iwashita, J. Kawahara, T. Saitoh, R. Yoshinaka, and

S. Minato, “Top-down ZDD construction techniques for

efficient graph enumeration and indexing,” Hokkaido

University, Division of Computer Science, TCS Techni-

cal Reports, Tech. Rep., to appear.

[6] D. Sieling and I. Wegener, “Reduction of OBDDs in lin-

ear time,” Information Processing Letters, vol. 48, no. 3,

pp. 139–144, 1993.

[7] A. Hagberg, P. Swart, and D. S Chult, “Exploring

network structure, dynamics, and function using Net-

workX,” in Proceedings of the 7th Python in Science
Conference (SciPy 2008), 2008, pp. 11–16.

[8] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost
Graph Library: User Guide and Reference Manual.
Addison-Wesley Professional, 2001.

[9] CPLEX optimizer. [Online]. Available: http://www.ibm.

com/software/commerce/optimization/cplex-optimizer/

[10] R. Angles and C. Gutierrez, “Survey of graph database

models,” ACM Comput. Surv., vol. 40, no. 1, pp. 1:1–

1:39, Feb. 2008.

[11] S. Minato, “VSOP (valued-sum-of-products) calcula-

tor for knowledge processing based on zero-suppressed

BDDs,” in Federation over the Web, ser. Lecture Notes in

Computer Science. Springer Berlin Heidelberg, 2006,

vol. 3847, pp. 40–58.

[12] S. Minato, “Techniques of BDD/ZDD: Brief history and

recent activity,” IEICE Trans. Inf. & Syst., vol. E96-D,

no. 7, 2013.

[13] T. Toda, “Hypergraph transversal computation with

binary decision diagrams,” in Experimental Algorithms,

ser. Lecture Notes in Computer Science. Springer,

2013, vol. 7933, pp. 91–102. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-38527-8 10

[14] R. Yoshinaka, T. Saitoh, J. Kawahara, K. Tsuruma,

H. Iwashita, and S. Minato, “Finding all solutions and

instances of numberlink and slitherlink by ZDDs,” Algo-
rithms, vol. 5, no. 2, pp. 176–213, 2012.

[15] Nikoli, Slitherlink 1, 1992.

[16] J. Lavaei, A. Rantzer, and S. Low, “Power flow optimiza-

tion using positive quadratic programming,” in Proceed-
ings of the 18th IFAC World Congress, 2011.

[17] T. Inoue, K. Takano, T. Watanabe, J. Kawahara,

R. Yoshinaka, A. Kishimoto, K. Tsuda, S. Minato, and

Y. Hayashi, “Distribution network reconfiguration for

tightly bounded minimum loss by ZDDs,” Hokkaido Uni-

versity, Division of Computer Science, TCS Technical

Reports, TCS-TR-A-12-58, Tech. Rep., 2012.

- 242 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

