
Concurrent Verification Experience of Cache Protocol in Real
Development of Large SMP Server Product by Using Model Checking

Abstract We have verified the cache protocol by using model
checking in real development of the highly multiple-CPU server
product. A formal verification engineer abstracted the models
for model checking several times through the design process
from the protocol specifications written in natural language by
the architect team. We discovered actual nine complicated
protocol bugs acknowledged by the architects in advance of logic
simulation. Some bugs we found were too complicated to be
replicated in logic simulation. This effort surely shortened the
total design duration. We proved the effectiveness of formal
verification of cache protocols in early design phase of real
server product development.

I. Introduction

Actual design process of digital system products consist of
micro-architecture design, logic design, and logic verification.
Logic verification usually consists of logic simulation and
laboratory test using real machines manufactured. There are
two problems concerning to them.

The first problem is that micro-architecture specifications,
which are written through the micro-architecture design by
architects, are checked by no more than inspection and
walkthrough. When bugs are passed over, they are probably
not detected until logic verification phase. The more lately
bugs are detected, the more man-months and cost to change
the design are needed. In particular, bugs of
micro-architecture specifications detected in the later phase
of product development may invoke immense negative
influence.

The second problem is that because it is impossible to
verify the designed system with all the possible test cases in
logic simulation, we cannot detect all the bugs. When bugs
are discovered at the laboratory test after logic simulation,
several weeks or a few months are necessary to change and
reproduce the LSIs. Therefore it is important to discover bugs
before the laboratory test in order to decrease LSI
reproduction and the duration of product development. In
addition, the verification by using laboratory test itself is not
perfect and bugs may be found after product shipment.

The increased complexity of the present digital system
makes more difficult to detect all the bugs. For example, the
complicated bugs of high-end servers with multiple CPUs
have the sequence of tens of particular operations before
malfunctions occur. Because the combination of the input
data increases by the exponent of the number of operations in
the sequence, it is extremely difficult to discover these bugs.

Some of these bugs need so strict and so rare conditions to

occur where many very rare events occur in the particular
order and at the particular timing that it is difficult to
replicate the bugs even if the conditions are well known.

To cope with these problems, model checking, a kind of
formal verification, was proposed. Although model checking
has a problem that the size of finite state machine applicable
is small, by using abstraction technology to decrease its state
size and by dividing the target to be verified, SGI[2], IBM[3]
and Intel[4] have successfully applied the formal verification
to products development. In [2], model checking was applied
to actual server development of directory-based cache
protocol and found numerous problems that would have been
extremely difficult to find with conventional simulation
techniques. Other activities are also reported. Cache control
protocol in JUMP-1, research-level directory-based server
machine, was formally verified with model checking after
fabrication[5]. Experimentally designed SCI-cache protocol
was formally verified[6]. KBUS specifications in 128way
server product is verified inspection and formal verification,
but no bugs were found by formal verification and no further
details of formal verification was described[7]. Cache
coherency protocol for speculative multithreading was
experimentally designed and verified with model checking[8].
HAL S1 system directory-based cache coherence protocol
was verified with model checking in real product
development process, but no real bugs of the real design were
found[9]. Early protocol design errors of directory-based
cache coherent protocol of ASURA multiprocessors at Fujitsu
Inc. were detected by statically checking protocol properties
using SQL[10]. Intel s multicore cache coherent protocol
LCP (Larrabee coherence protocol) was verified with
parametric protocol verification using flows[11], and Intel s
hierarchical cache protocol with off-chip protocol QPI and
on-chip coherence protocol was tried to verify with
refinement checking[12] , but both had no explanation of real
protocol bug detection. There are very few model checking
activities applied to real cache protocol bugs of real server
products in real development process.

In this paper we describe the concurrent verification of
cache protocol by using model checker VIS(Verification
Interacting with Synthesis)[13,14] in real development of the
large SMP server of global-snooping-based cache-coherent
protocol rather than directory-based with at most 32 Intel
Itanium processors in design. The aims of this research are to
find bugs which are difficult to detect using conventional
logic simulation, and to find bugs in the micro-architecture
specifications as early as possible by performing

Toru Shonai

Hitachi, Ltd.
Kokubunji, Tokyo 185-8601

toru.shonai.hs@hitachi.com

Shoichi Hanaki

Okano Electric Co., Ltd
Higashi-kurume, Tokyo 203-0003

syoichi.hanaki@okano-denki.co.jp

 Yoshiaki Kinoshita

Hitachi, Ltd.
Shinagawa, Tokyo 140-8572

Yoshiaki.kinoshita.zw@hitachi.com

SASIMI 2013 ProceedingsR5-16

- 377 -

micro-architecture design and verification concurrently.
To these ends we assigned a formal verification engineer

of micro-architecture other than the architects team of
micro-architecture specifications. The architects wrote the
specification by Japanese language, figures, tables and
time-chart and so on. The formal verification engineer read
the specifications carefully, made verification models and
verified them using the model checker.

We designate the time when preliminary version of the
specifications was issued as a first result of
micro-architecture desig
the starting point. The 0.0 version was issued two months
later, the 1.0 version four months later, the 2.0 version seven
months later, the 3.0 version eight months later and the 3.1
version twelve months later from the starting point.
Micro-architecture design completed then and logic design
was started. Even if the revised version was not issued, the
specifications were partially revised at any time when some
error, unclearness or contradiction were discovered.
Preparation for model checking was started four months later
from the starting point. Techniques, tools, their estimation
and understanding of micro-architecture specifications were
completed until six months later from the start point. Model
checking was started from the seventh month and continued
to the twenty-first month with successive model updates
when the specifications were changed or when the models are
refined. Model checking continued from the latter phase of
micro-architecture design to the end point of logic design, i.e.,
the starting point of logic simulation.

II. Micro-architecture for cache control

A. System Organization

Figure 1 sketches the configuration of the system. It
consist of symmetric multiprocessing (SMP) nodes connected
by proprietary interconnect based on Node Controller and
Crossbar Switch chips. Each processor has L1 and L2 cache.
Each node has four processors, L3 cache and distributed
global memory. Based on this design, we manufactured and
shipped the 8way server, Hitachi Advance server
HA8000-ex/880 in 2001.

B. Cache Protocol

The system has to ensure that all processors access no old
data. In order to achieve this, we choose
global-snooping-based cache-coherent protocol, rather than
directory-based in term of memory access latency
performance. In the following we first explain basic behavior
without L3 cache, then explain the effect of L3 cache and L2
cache tag memory for reducing snooping transactions.

1) Basic Behavior

In general, processors have L1 and L2 cache. But when
considering cache coherency, we can view that processors

have only L2 cache. L2 cache has four state: M(modified),
E(exclusive), S(shared), and I(invalid) of MESI protocol[15].
Two types of memory request transactions exist: read and
read-invalidate.

A processor which has issued a read request caches its
memory line in the S state when a processor has issued a read
request. In case of a read-invalidate request, it caches its line
as E or M state. Table 1 shows the state changes of cache
lines when the processor has been snooped.

Snooping has to be performed on the processor in other
nodes, the node controller sends a read request to all nodes
via the crossbar switch. Each node makes all four processors
snooped with this request. When M line hits as the result of
the request, the line is write-backed into memory and is set to
the requesting processor. We call sending the line from the hit
processor to the requesting processor as cache-to-cache (c2c)
transfer.

2) Transaction reduction mechanism

Although cache consistency is maintained with the
mechanism explained in the above, increased transactions by
snooping all processor in all nodes every time makes system
performance lower. To cope with this, we adopt L3 cache and
L2 cache tag to the system. [16]
i) L3 Cache

Each node has L3 cache. When a processor in the node
caches the line, it is also write into L3 cache. L3 cache has
the same four states as L2 cache. When a processor request a
read and L3 cache has its line, the line is read form the L3
cache. When a processor requested a read-invalidate and L3
cache has its line in the E or M state, the line is also read
from the L3 cache. As a result, transactions sent to the
crossbar switch are reduced.

L3 cache is also snooped by other nodes and the state of its
lines change as L2 cache. When L3 cache is snooped and it
has the latest M line, the line is write-backed from L3 cache.
ii) L2 Cache Tag

nodes, if it is known that all processors in the node do not
have the requested line in all cache. To achieve this, each
node have L2 cache tag.

However, because L2 caches may change their states
without notifying its change to the bus, all their state changes
cannot be reflected in L2 cache tags. For this reason, L2
cache tags have three states: EM, S and I. I designates that all

transaction
L2 state
before
snoop

L2 state
after

snoop
response

read

I I OK

S S HIT

E S HIT

M I HITM(writeback)

read-
invalidate

I I OK

S I OK

E I OK

M I HITM(writeback)

Table 1 L2 state transition when processor snooped

- 378 -

processors in the node have no cache line, S designates that
some processors may have S-state lines, and EM designates
that some processors may have E-state or M-state lines.

 When L2 cache tag state is I, it is unnecessary for other
nodes to snoop the corresponding bus. Also when L2 cache
tag state is S for read request, snoop in unnecessary.
Therefore, bus transactions are reduced.

C. Cache Line Replacement

When cache have no room for caching a new line, an old
data line is get out from the cache to make room. This is
called cache line replacement. S-state or E-state lines in L2
cache can be replaced without notifying it to the bus. When
M-state lines are replaced, data lines are write-backed. Into
where write-back is performed is L3 cache, write-back is
performed into L3 cache and L3 cache becomes also M-state.

 In case of replacement of L3 cache, L2 caches have to be
invalidated, by snooping the processor bus. If M-state line of
L2 cache hits at this time, write-back is done from L2 to the
memory. Otherwise, write-back is done from L3 to the
memory when L3 has the M-state.

III. Formal Verification Method

A. Model Checking System VIS

Although model checking is so powerful tool that can
check all the states of the verification model, the size is
limited and complicated specification cannot be verified
directly. To reduce the size of states dramatically, the
verification model must be made by simplifying and
abstraction. The problem is that making the verification
model which has the checkable size of state and which can
detect subtle bugs.

Two model checking systems could be used at that time.
SMV(Symbolic Model Verifier)[1] developed at CMU and
VIS[13,14] at UCB, we chose VIS for its various features. In
VIS, the verification models are described in extended
Verilog and verification specifications are written in CTL.

Figure two show the formal verification flow of the
micro-architecture specifications. Firstly, the verification
models are written by modeling the specifications.
Furthermore, the verification specifications are written in
CTL. These two are input to VIS. After VIS runs, OK or NG

of the verification specifications are output, and in case of NG,
sequences from initial states to illegal states are listed as
counterexample.

B. Verification Models

The verification models consist of one to three nodes and one
to four processors each node.

Verification
Models

(Ext. Verilog)

Verification
Specifications

(CTL)

Model
Checker

VIS

Yes/No
(counterexample)

Micro-
Architecture

Specifications Modeling
abstraction)

Figure 2 The Formal Verification Flow

A data is only one bit, and cacheable and writable. Every
cache can hold only one line with one bit. Because data is
one bit, only one node has a memory, and the others have no
memory. The initial value of data is 0 and the value can be
rewritten from 0 to 1 only. Therefore, consistency checks can
check the data with the value 1 is always newer than one with
the value 0.

VIS permits non-deterministic descriptions which can
express plural behaviors verification with one description.
Non-determinism is used for several purposes. In general,
type of the transaction which a processor issues depends on
the memory access which a processor instruction issues and

make no sense. In such a situation, the type of transaction the
processor issues should be described as non-deterministically
determined.

Furthermore, by using abstraction with non-deterministic
description, the verification under the more general
conditions can be performed. For example, when an

under this arbitration never be verified. By abstracting away
the detailed arbitration logic and describing that any resource
can have priority non-deterministically, the verification
independent from the arbitration logic can be performed.

In addition, by using non-deterministic description, the
events made unhappened by abstraction can be happened
For example, although cache line never be replaced by other
line in the model with one cache line only, replacement
occurring at the arbitrary timing can be written to verify the
cases relating replacement behaviors. Delay or wait of the
arbitrary time interval are also described
non-deterministically. VIS system verifies all combination of
non-deterministic behaviors.

In short, it is important to describe both to reduce the
number of the state by abstract and to simulate the behaviors
similar to the actual behavior.

C. Verification Specifications

Node
Controller

Itanium
Processor
(L1 & L2)

Processor Bus

Node
Max. 8

L3 Cache

Memory

Crossbar Switch

Figure 1 System configuration

- 379 -

1) Cache Consistency Check
It is verified that processors never read old data. The
verification specifications are that a processor never read data
0 after it reads data 1.

2) Deadlock Check

It is verified that a transaction which a processor issues
will be certainly complete. The verification specifications are
that a processor can transit from arbitrary any state to the
state where a read or a write can be issued.

3) Invariant Check

Invariant is the condition that satisfied at all states.
Because invariant check is faster than other CTL checks as
(1) or (2), we verified a lot of invariant check. For example,
we verified that when a processor has E/M line, other
processors have no line, that the data of L2 cache in S/E state
is equal to the data of L3 cache and that the data of L3 cache
in S/E state is equal to the data in memory.

IV. Verification Results and Considerations

A. Verification Results

Table 2 shows model checking execution results of three
verification models with different functions and abstraction
levels. Each model has two nodes with one to three
processors. The numbers of Verilog source code lines and
latches represent the approximate size of models. CPU times
and memory usage of three checks are presented in the table.
The machine we used had 400MHz Xeon and 1G byte main
memory. We quit the execution at the limit of CPU time
10,000sec. Deadlock and consistency checks consume so
much time that they could not complete the run. Invariant
checks are so faster that they could complete when deadlock
and consistency checks could not complete.

Table 3 shows the protocol bugs variation found by the
formal verification. Nine protocol bugs have been found in
the verification period. Some have been found in inspection

relating formal verification. Architects have acknowledged
that all bugs were protocol bugs and the specifications
documents were correctly revised by them. Eight bugs were
found by consistency check and no bugs were found by the
deadlock check. As to finding situation, two bugs were found
only by model checking, four were by model checking and
relating inspection and three were by inspections. Model
checking and relating inspection means that counterexamples
VIS showed were not bugs but genuine bugs were found
through examination of counterexamples. They were because
the models had some faults. If the model would be corrected,
these bugs could be found by the model checking.

All consistency errors could be found by some invariant
check. Therefore they could be verified. On the contrary,
deadlock check errors could not be found by any invariant
check. The following is a complicated protocol bug example
found.

B. Bug Example

Figure 4 shows the cache consistency error example. It
shows the behavior of a node. L3Q is the queue to hold
transactions relating L3 cache, NPQ is the queue to hold
snoop requests from other nodes and snoop requests relating
L3 replacements until both request are issued to the bus, and
OOQ in the figure is the queue to hold read transactions to
other nodes until their responses arrive. There exists two
processors P0 and P1

(0) Initially P0 has M line with data=0, L2 tag is EM state
and L3 is E state. (1) P1 issues read-invalidate request and P0

is snooped. (2) Because P0 has M line as a
result of snooping, P0 performs a
write-back. P0 gets a line as M state. (3)
As a result of a write-back by P0, a write
transaction to L3 enters into L3Q. The
L3 state of the node becomes M. (4) P1
replaces data 0 with 1, and the state of its
cache becomes M. (5) A read transaction
arrived from another node. (6) The
processor bus is snooped because L3 tag is
EM. (7) Because P1 holds M line, P1
perform write-back into memory and c2c
transfer. The states of L2, L2 tag and L3 all
become I. (8) P0 issues read and P1 is
snooped. (9) Because the node has no line,

Models

The number
of Verilog

codes
(The number

of latches)

The
Number

of
Proc-

essors

Reachable
state

Invariant
Check

Deadlock
Check

Consistency
Check

depth

The
Number

Of
State

CPU
(sec)

Mem.
(MB)

CPU
(sec)

Mem.
(MB)

CPU
(sec)

Mem.
(MB)

Model
1

994
(120)

1 44 8.14E04 88.6 12.5 147.6 14.1 175.2 17.1

2 53 4.39E06 342.9 19.6 1045.6 32.4 1421.3 41.9

3 64 4.60E07 592.1 26.4 >10000 8850.6 155.1

Model
2

1133
(126)

1 42 1.48E05 28.1 13.2 72.4 14.4 185.4 17.2

2 40 4.48E06 45.3 14.1 229.8 23.7 710.1 38.2

3 40 4.50E07 64.5 15.0 836.6 48.8 >10000

Model
3

2130
(383)

1 91 5.68E06 1170.5 32.8 >10000 >10000

2 93 2.52E08 1704.1 40.3 >10000 >10000

3 93 2.25E09 1997.3 44.4 >10000 >10000

Table 2 Execution Results

Type Situation
when bugs are found

The
number of

Consistency
Error

Model check 2

Inspection after model check 4

Inspection 2

Deadlock - 0

Others Inspection 1

The Total - 9

Table 3 Bugs Found

- 380 -

a read transaction enters into the OOQ. (10) A read
transaction is transferred via the crossbar switch. (11) After
snooping is done in another node, data arrived from the node.
Data=1 because the data is replaced at (4).

(12) Data is transfered to P0. At the same time, this data
line is registered into the L3 cache because the state of L3 is I.
Data=1. (13) Data 0 is written into the L3 cache from the
L3Q.

At this time, an error occurs because the old data is written
into L3 cache. The root cause of the bug is because L3 write
at (3) and L3 write at (12) are reversed. This reverse does not
happen in general, but it happens when the snoop from the
other node is done at (5) with L3 write in the L3Q and when
the states of L2 and L3 become both I. The architect
corrected the bug by denying to receive the snoop from the
other node at (5) and by retrying the snoop.

C. Considerations

It is really impossible to find the previous bug with logic
simulation because the frequency of the bug is extremely few
and because the sequence of operations until the erroneous
situation is extremely long. The bug is an extremely rare case
because the particular events sequence on the same line has
to happen exactly and at the particular timing sequence.
Furthermore, the operations including those in the other
nodes until the bug appears are 20 to 30 steps, and the input
data to invoke the bug is extremely large.

Another reason why it is really impossible to find these
bugs with logic simulation is because the operation sequence
have to happen at the strict timing conditions while it
happens at any arbitrary timing conditions by
non-determinism in the model checking. For example, the
replacement of L3 cache happens only when a write happens
to L3 cache, when no room in L3 cache invokes replacement
and when the line under the attention of the model checking
is selected to be replace. The bug example happens only
when write transaction to L3 cache is stalled in the L3Q from
(3) to (12). This situation can be happened by logic
simulation only when particular conditions all have hold.
Therefore, it is actually impossible for these particular
conditions to happen in the particular timings in the logic
simulation.

 As a result, if the bug described above would not been
found in the model checking, it is probable that the bug could
not be found until the latter part of the logic simulation
period, or it is possible that they could not found through all
the logic simulation period.

By doing model checking of the micro-architecture of the
cache control concurrently with the design of the
micro-architecture design, the complicated micro-architecture
bugs can be found before the logic simulation period and we
can achieve the initial aims.

 Furthermore, by analyzing the characteristics of the bugs
we found by model checking, we suggested the architect
team the transaction patterns they tended to make bugs, and
this information is also given to the test program developing
team to make many test cases for these patterns.

However, the modeling processes depend on the human
expertise, so that the completeness of the test coverage is
unknown. The micro-architecture specifications are more
than 100 pages with figures, tables, time-charts and Japanese

to which parts are to be modelled with simplification and
abstraction and what style in order to run the models in
allowable times. Completeness is the future problem.
However, we insist that model checking is very valuable
method compensating logic simulation in real develop
processes of real server products those days and now.

V. Conclusions

We have verified the cache protocol in real development of
the highly multiple-CPU server product. We have verified
formally the design model that we abstracted from the
protocol specifications concurrently with their design in time.
We abstract the verification models with one bit and one
cache line from the micro-architecture specifications, and
verified cache consistency checks, deadlock checks and
invariant checks. We discovered actual nine complicated
protocol bugs in advance of logic simulation. The bugs we
found have too complicated conditions to be occurred in
logic simulation. This effort surely shortened the total
development duration. We proved the effectiveness of formal
verification of cache protocols in early design phase of real
server product development.

Acknowledgements

We thank to H. Akashi, Y. Tsushima, K. Uehara and other
architects. We also thank to Prof. Fujita, Prof. and Prof. Sakai
for valuable advice on the paper. Thanks to the anonymous
reviewers for their comments for improving the quality of the
paper.

References

[1] K. L. McMillan,

Academic Publishers, 1993.
[2]

DAC95, 1995.
[3] - Oriented

, DAC96, 1996.
[4]

DAC98, 1998.
[5] Fukushima Hamagkuchi, Tomata, Yajima Formal

Verification of a Cache Protocol Design : A Case Study
in the Massively Parallel Computer JUMP-1 IPSJ SIG
Technical Report, ARC-117-1, 1996.

- 381 -

[6] Morihiro Yoneda Formal Verification System Based
on Simulation IEICE Transaction on Information and
System D-I J84-D-1 No. 4 pp.367-377, 2001.

[7] Shimizu, Watabe, Kobayashi, Ishihata Kaiser:
128-CPU SMP Server Design and Evaluation IPSJ
Journal Vol. 24 No. 4 2001.

[8] Monma, Hun, Tashiro, Sakai, Verification of Cache
Coherency Protocol for Speculative Multithreading
IPSJ SIG Technical Report, 2005-ARC-164, pp. 103-108,
205.

[9] A. Hu, M. Fujita and C. Wilson, Formal Verification of
the HAL S1 System Cache Coherence Protocol,

-444, 1997.
[10]

Verification, 1996.
[11] M. Subramanian, Early Error Detection in Industrial

Strength Cache Coherence Protocols Using SQL , in
IPDPS 2003.

[12] J. O Leary, M. Talupur, and M. Tuttle, Protocol
verification using flows: An industrial , in

FMCAD 2009.
[13] J. Bingham, J. Erickson, G.

Singh, and F. Andersen,
Industrial Strength

Refinement Checking, in
FMCAD 2009.

[14]

http://embedded.eecs.berk
eley.edu/research/vis

[15] J. Archibald and
Jean-Loup Baer, Cache
Coherence Protocols:
Evaluation Using a
Multiprocessor
Simulation Model, ACM
Trans. On Computer
Systems, Vol. 4, No.4 Nov.
1986, pp.273-298.

[16] USP-6438653, H. Akashi,
Okochi, Shonai,
Kashiyama Cache
memory control circuit,
2002.8.20.

[17] D. E. Culler, J. P. Singh
and A. Gupta, Parallel
Computer Architecture: A
Hardware/Software
Approach. Morgan
Kaufman Publishers, Inc.,
1999.

data=0
L3 CacheNPQ L3Q

P0
L2=M
data=0

P1
L2=I L2tag = EM

L3 = M

data=0L3write
L3 CacheNPQ L3Q

P0
L2=I

P1
L2=E
data=0

L2tag = EM
L3 = M

data=0L3write
L3 CacheNPQ L3Q

P0
L2=I

P1
L2=M
data=1

L2tag = EM
L3 = M

data=0L3write
L3 CacheNPQ L3Q

P0
L2=I

P1
L2=I L2tag = I

L3 = I

data=0read(P0) L3write
L3 CacheNPQ L3Q

P0
L2=I

P1
L2=I L2tag = I

L3 = I

data=1read(P0) L3write
L3 CacheNPQ L3Q

P0
L2=S
data=1

P1
L2=I L2tag = S

L3 = S

data=0L3write
L3 CacheNPQ L3Q

P0
L2=S
data=1

P1
L2=I L2tag = S

L3 = S
An old data is written

Into the L3 cache.
L2 and L3 are inconsistent.

read-invalidate writeback

read from another node

read(snoop)

writeback(c2c-transfer)

read

read data arrival

data transfer

data write

L3write

(a) step0 step1 (b) step2 step3

(c) step4 step6 (d) step7

(e) step8 step11 (f) step12

(g) step13
Figure 3 Consistency Bug Example

- 382 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

