
Soft-Error Tolerant Datapath Synthesis Based on Speculative Resource
Sharing in Triple Algorithm Redundancy

Junghoon Oh and Mineo Kaneko
School of Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, Japan 923-1292

{junghoon.oh, mkaneko}@jaist.ac.jp

Abstract— As semiconductor technologies have ad-

vanced, the reliability problem caused by soft-errors

is becoming one of the serious issues in LSIs. In this

paper, we propose a method to synthesize soft-error

tolerant application-specific datapaths via high-level

synthesis. The novel feature of our method is spec-

ulative resource sharing between the retry parts and

the secondary parts for hardware/time overhead miti-

gation. A scheduling algorithm using a special priority

function to maximize the speculative resource sharing

is also an important feature of this study. We found

that our method is more effective when a computation

algorithm possesses higher parallelism and a smaller

number of resources is available.

I. Introduction

A soft-error is a transient fault which is triggered by
cosmic rays induced neutron and alpha rays from radioac-
tive contaminants in IC packing materials. The effect of
soft-error is temporary but it can affect several spatial
points simultaneously[1][2]. As the device size decreases,
the reliability degradation caused by soft-errors has be-
come one of the greatest issues in LSIs. Approaches to
deal with soft-errors are roughly classified into the fol-
lowing three groups: (1) approaches on the device level
such as the selection of IC packing materials and the im-
provement of well structures; (2) approaches on the circuit
level such as a flip-flop (FF) with additional circuits for
error detection, error recovery and error avoidance[3][4];
(3) approaches on the system level which include con-
current error detection (CED) and triple modular redun-
dancy (TMR)[5]–[7].
Orailoglu and Karri[5] introduced a system which de-

tects and corrects transient faults using CED, checkpoint-
ing and rollback. Wu and Karri[6] proposed a high-level
synthesis of duplicated computation algorithms for fault
detection considering partitioned data dependence of the
algorithms. In [7], high-level synthesis for multi-cycle
transient fault tolerant datapaths based on TMR was pro-
posed. However, their study considered only a single fault

on a single functional unit. While single-bit upsets are
principally a reliability concern in memory devices and
systems, multi-bit upsets and multi-cell upsets have re-
cently become a serious problem, as well[1]. The work[8]
reports that TMR can be defeated by even 2-bit multi-cell
upsets caused by a single soft-error.
In this paper, we propose a method to synthesize sin-

gle soft-error tolerant application-specific datapaths via
high-level synthesis. Triple algorithm redundancy is our
starting point for designing soft-error tolerant datapaths.
Concerning the tolerability against multiple-component
errors caused by a single soft-error, in our design, the
main parts and the secondary parts are used for error
detection, and the retry parts are used for error recovery.
Two most important and novel features of our method are
(1) speculative resource sharing between the retry parts
and the secondary parts for hardware/time overhead mit-
igation in compensation for the assumption of sufficiently
low probability of soft-errors, and (2) an inherent prior-
ity function used in the scheduling algorithm to maximize
the speculative resource sharing.
This paper is organized as follows: Section II explains

preliminaries of our method. Section III shows requested
features for single soft-error tolerance and speculative re-
source sharing. In Section IV, a scheduling and resource
binding algorithm with the specific features shown in Sec-
tion III is proposed. Section V shows some extensions for
multi-cycle soft-error tolerance. Section VI shows experi-
mental results, and Section VII concludes this paper.

II. Preliminaries

A. Error Detection and Error Correction Scheme

Our method is based on triple algorithm redundancy.
Considering the tolerability against multiple-component
errors caused by a single soft-error, and mitigating re-
source/time overhead, the first copies and the second
copies are used for detecting errors, and the third copies
are used as retries in our design. For example, the first
copyA(1) and the second copy A(2) of a computation block
A are executed first, and their output data are compared

SASIMI 2015 ProceedingsR3-12

- 272 -

by the comparator ’q’. If no error is detected, output
data from A(1) is sent to the succeeding blocks. Only if
a soft-error affects A(1) or/and A(2) and, as a result, an
error is detected, the output data from A(1) and A(2) are
abandoned and the third copy A(3) is executed as a retry.
The retry data, then, is sent to succeeding computation
blocks.

B. Triple Algorithm Redundancy

We assume that a computation algorithm to be imple-
mented is given by a pair (G,DP), where G is a depen-
dence graph and DP is the set of primary outputs. Let
O be the set of all operations in the original computation
algorithm, let D be the set of all variables in the orig-
inal algorithm and let E be the set of all dependencies
between operations and variables. Then a given depen-
dence graph G can be described as G = (O ∪D,E). To
synthesize a soft-error tolerant datapath, the given graph
G is triplicated (three copies are denoted as G(1), G(2)

and G(3)), and then comparison-operations and depen-
dencies related to the comparison-operations are inserted
to form a resultant algorithm (G̃, D̃P) which is mapped
on hardware and time domains by high-level synthesis in
the end.

C. Cone Partitioning/Comparison-Operation Insertion

We define “check variables” as variables to be compared
for soft-error detection, and we will choose them selec-
tively, not to all operation results. Dependence subgraphs
separated by those check variables are named “cones”.
Now we let DQ (⊆ D) be a set of the check variables and
let Q be a set of comparison-operations corresponding to
the variables in DQ.

Definition 1 A “cone” cd (⊆ G) denotes a subgraph
which is induced by tracing back from a check variable
d ∈ DQ to primary inputs or other check variables.

Similarly, triplicate copies c
(1)
d (called “main-cone”), c

(2)
d

(called “second-cone”) and c
(3)
d (called “retry-cone”) of cd

are induced from the triplicate check variables d(1) ∈ G(1),
d(2) ∈ G(2) and d(3) ∈ G(3), respectively.

Definition 2 The set of main-cone c
(1)
d ⊆ G(1), second-

cone c
(2)
d ⊆ G(2) and retry-cone c

(3)
d ⊆ G(3) which are

induced from a check variable d is called “stage”.

Definition 3 The triplicate copies o(1)(∈ c
(1)
d), o(2)(∈

c
(2)
d) and o(3)(∈ c

(3)
d) of an operation o (∈ cd) are elements

of the same stage, and they are called “series operations”.

III. Conditions for Single Soft-Error

Tolerant Datapaths

A. Fault/Error Model and Fault Tolerant Condition

In this study, we assume that a single soft-error can
affect several spatial points simultaneously, and hence it

qa

qb

qc

sbsa

sc

cb
(2)

cb
(3)

cb
(1)

ca
(2)

ca
(1)

ca
(3)

cc
(1)

cc
(2)

cc
(3)

Check variables

Primary inputs

Opera�ons

Ordinary variables

Cones

Main-cones

Comparison
opera�ons

(a) (b)

Fig. 1. A stage sa consists of c
(1)
a , c

(2)
a and c

(3)
a ; (a) An example of

an original computation algorithm (b) An example of a cone-parti
-tioned triplicate algorithm

causes multiple component errors, including errors on reg-
isters, functional units and other components at the same
time. The proposed soft-error tolerant design is based on
cone-level error masking, and relies on error detection by

comparing the results of main-cone c
(1)
d and second-cone

c
(2)
d , and error correction by executing the retry-cone c

(3)
d

for each d ∈ DQ.
Retry-cones are executed to recover from erroneous re-

sults of the corresponding main-cones or second-cones
caused by soft-errors. If the execution of a retry-cone
overlaps the executions of the main-cone, the second-cone
or the comparison-operation in the same stage, multiple
component errors due to a single soft-error may affect two
cones or more (retry-cone and either main- or second-
cone) in the same stage simultaneously. For this reason,
the execution order of operations in each stage should be
constrained as follows.

Condition 1 [Execution order in each stage] After a
main-cone and the corresponding second-cone are exe-
cuted, then error detection with a comparison operation
is performed to check the results of two cones. After that,
the corresponding retry-cone is executed only if the results
differ.

In the CED-retry mechanism, only if an error is de-
tected, then corresponding retry-cone is executed and its
result is used immediately for the succeeding operations
without error detection of the retry result. The validity
of this treatment relies on the following assumption.

Assumption 1 The probability of the recurrence of soft-
errors in a short period is sufficiently low.

On the other hand, triplicate data in three standard
registers which have outputs of three cones are not re-
liable anymore under the assumption of multiple com-
ponent errors caused by a single soft-error. Therefore,

- 273 -

in order to guarantee the correctness of the inputs to a
retry-cone even if its main- and second-cone are affected
by a single soft-error, we have decided to use specialized
registers, such as BCDMR-ACFF[3], for input variables
to each cone (they are primary inputs or check variables)
and outputs of comparators.

B. Speculative Resource Sharing

In order to mitigate hardware resource/time overhead,
we propose “speculative resource sharing” as follows. In
our treatment, operations in a retry-cone are not executed
as long as no error is detected. It means that resources
bound to operations in a retry-cone are in idle state if
two results of corresponding main-cone and second-cone
are identical. If the probability of the recurrence of soft-
errors in a short period is sufficiently low (Assumption 1),
we can rebind the resources in idle state to other opera-
tions which have no dependency with the operations in
the retry-cone. More specifically, operations in a retry-
cone can share resources speculatively with operations of
second-cones in different stages.
From Assumption 1, while a retry-cone is running (an

error caused by a soft-error in the main-cone or/and the
second-cone of the running retry-cone is detected), the
correctness of other main cones which are executed af-
ter the erroneous main- and second-cones of the running
retry-cone is guaranteed. Based on this observation, re-
sources can be managed more efficiently by speculative
resource sharing between error detection parts and error
correction parts.

In Fig. 2, if operations in c
(3)
m and c

(2)
n share resources

by speculative resource sharing (m �= n and there is no

dependency between cm and cn), c
(1)
n is unable to detect

error when a soft-error affects some of c
(1)
m , c

(2)
m and qm,

and c
(3)
m is executed, since the execution of c

(2)
n is aban-

doned by c
(3)
m . Hence, we need to carefully manage the

execution of c
(1)
n so that the soft-error which affects c

(1)
m ,

c
(2)
m and/or qm may not affect c

(1)
n . Considering such be-

havior, we introduce the second condition.

Condition 2 [Speculative resource sharing] Only if the

execution of a main-cone c
(1)
n is scheduled later than the

execution of a comparison operation qm, speculative re-

source sharing between operations in c
(3)
m and operations

in a second-cone c
(2)
n corresponding to c

(1)
n is possible.

(m �= n)

IV. Synthesis for Soft-Error Tolerant

Datapath

In this section, we propose a scheduling and resource
binding algorithm for single soft-error tolerant datapaths.
The way how to select check variables for comparison
and cone partitioning is an important factor for datap-
ath optimization. However, in this paper, the set of check

oi
(2)

qm

qn

oi
(3)

oj
(2)

Resource shareable
opera�on pair

Opera�ons w/o pair

Check variables

Cones

Comparison opera�ons

cn
(2)

p
ets l

ort
n

o
C

cn
(1)

cm
(1)

cm
(2)

oi
(1)

oj
(1)

ql

cl
(3)

ok
(3)

cl
(1)

cl
(2)

cm
(3)

Fig. 2. Scheduled DFG; An example of speculative resource

sharing between operations in second-cones and retry-cones. o
(3)
i

and o
(2)
j can share a resource speculatively. However, o

(3)
k and o

(2)
i

cannot.

variables is assumed to be given as a part of an input
description for high-level synthesis. Optimization of the
selection of check variables is left as one of the important
future works.
Our algorithm is based on the list scheduling but has an

inherent priority function and an inherent resource count-
ing considering speculative resource sharing.
In the following, we let σ : O(1)∪O(2)∪O(3)∪Q → N be

an operation schedule (a control step assignment), where
O(�), � = 1, 2, 3, is the set of operations in G(�).

A. Schedule Constraints

1. Resource constraints for every resource type have to
be satisfied at each control step cs. Let Acs,r be a
set of operations which are scheduled at a control
step cs with a resource type r. The actual number of
resources of type r in use at step cs is described as
follows: The speculative resource sharing conditions
are described in the next section B.

Number of resources of type r in use at step cs

= |Acs,r| − “Number of operations which share

resources speculatively in Acs,r” / 2

≤ Number of allocated resources of type r (1)

2. c
(3)
m , the retry-cone in a stage m, has to be executed
after the comparison operation qm that compares the

results of c
(1)
m and c

(2)
m under Condition 1.

max(
2⋃

�=1

σ(c(�)m)) < σ(qm) < min(σ(c(3)m)), (2)

where σ(c(�)m)={x|σ(o(�)i)=x, o
(�)
i ∈c(�)m }

3. If oi is a predecessor of oj ,

– For operations o
(�)
i , o

(�)
j ∈ c

(�)
m , the successor o

(�)
j

has to be scheduled after the execution of o
(�)
i .

(� = 1, 2, 3)
σ(o

(�)
i) < σ(o

(�)
j) (3)

- 274 -

– For operations o
(�)
i ∈ c

(�)
m , o

(�)
j ∈ c

(�)
n (m �= n and

� = 1, 2, 3), the successor o
(�)
j has to be scheduled

after the execution of o
(3)
i whose output is the re-

sult of c
(3)
m

(
σ(o

(3)
i) = max(σ(c

(3)
m))

)
.

σ(o
(3)
i) < σ(o

(�)
j) (4)

B. Speculative Resource Sharing Conditions between
Operations in Second-Cones and in Retry-Cones

When there is no dependency between oi and oj (i �= j),

o
(3)
i and o

(2)
j can be bound to the same resource under the

following conditions (Fig. 2).

1. o
(3)
i and o

(2)
j belong to different stages.

o
(3)
i ∈ c(3)m , o

(2)
j ∈ c(2)n (m �= n) (5)

2. o
(3)
i and o

(2)
j are scheduled at the same control step.

σ(o
(3)
i) = σ(o

(2)
j) (6)

3. According to Condition 2,

σ(qm) < min(σ(c(1)n)) (7)

When the above conditions (5)∼(7) are satisfied, o
(3)
i and

o
(2)
j can share a same resource speculatively.

C. Proposed Scheduling Algorithm

Algorithm 1 shows the proposed algorithm which is to
perform a list scheduling under given resource constraints.
The following notations are employed to explain the pro-
posed scheduling algorithm.

• Lcs,r : a list of ready operations of resource type r
at control step cs

• Ucs,r : a list of executing operations of resource type
r at control step cs

• vr,k : the k-th operation of resource type r
• res inuse : the number of functional units in use

Scheduling proceeds from control step 1 toward the
last control step as the original list scheduling does.
In each control step cs, first, operations of type r
which are scheduled already and are executing at con-
trol step cs, are registered to Ucs,r. Ready operations
which are not yet scheduled are registered to Lcs,r. Af-
ter that, the function count occupied FU is called,
which counts the number of presently occupied func-
tional units (res inuse) from Ucs,r, and then the function
sched with speculative share is called, which binds
operations to control step cs considering the speculative
resource sharing conditions (Section IV–B).

D. Scheduling Priority

First of all, we introduce priority and latency of a stage.
Priority of a stage is defined as the smallest control step of
ALAP schedule over all operations in the stage. Latency

Algorithm 1 Modified list scheduling algorithm

Require: Nmax ← # of resource types
1: cs ← 0;
2: while (until all operations are scheduled) do
3: cs ← cs+ 1;
4: for (r ← 1; r ≤ Nmax; r++) do
5: res inuse ← 0;
6: for (k ← 1; k ≤ # of operations (type r); k++) do
7: if (vr,k is already scheduled) then
8: if (execution of vr,k is not finish yet) then
9: Register vr,k in Ucs,r;
10: end if
11: else if (executions of all immediate predecessors of vr,k

are already finished) then
12: Register vr,k in Lcs,r;
13: end if
14: end for
15: res inuse ← count occupied FU(Ucs,r);
16: sched with speculative share(cs, r, res inuse, Lcs,r);
17: end for
18: end while

of a stage is defined as execution time from the start to
the end of the stage based on ALAP schedule.

Priority of sm = min(
2⋃

�=1

σALAP (c
(�)
m)) (8)

Latency of sm

= max(σALAP (c
(3)
m))−min(

2⋃

�=1

σALAP (c
(�)
m)) + 1 (9)

The priority of an operation is determined by applying
the following factors in this order (a tie in the first factor
is broken by the second factor, a tie in the second factor
is broken by the third factor, and so on).

(1) Operations which are in a stage having higher prior-
ity have higher priority. As a result, a stage which
started earlier can finish earlier. If a stage which
started earlier remains without being chosen and only
operations in other stages are scheduled, operations
in the remained stage can be a bottleneck on the en-
tire schedule.

(2) Operations which are in a stage having smaller la-
tency have higher priority, since a stage which is ex-
pected to finish earlier can include speculatively re-
source sharable operation pairs easier.

(3) Operations which have smaller ALAP schedules are
given higher priority.

(4) Operations which are placed on a critical path are
given higher priority.

(5) Among series operations, operations in second-cones
are given higher priority for speculative sharing.

Using these factors, priority is given to every operation.

E. Selecting Operations

Even if the priority of ready operations is fixed, select-
ing operations to be scheduled at the current control step
is not straightforward, since we need to manage a compli-
cated resource sharing between second-cones and retry-
cones. In order to choose speculatively resource sharable

- 275 -

pairs aggressively, we will use a bipartite graph H with
XT and YT as its partite sets.
We define “vertex weight” w(z) ∈ Z+ as priority of an

operation z and “edge weight” w(e = {x, y}) ∈ Z+ as
the sum of weights of two end vertices x and y, that is,
w(e = {x, y}) = w(x) + w(y).

• A bipartite graph H = (XT ∪ YT ,W) describes the
following:

– A partite set XT is defined as XT = X∪YC , where
X = {x | x ∈ Lcs,r ∧ x ∈ G(1) ∪G(2)} and YC is a
set of auxiliary vertices with |YC | = |Y |.

– The other partite set YT is defined as YT = Y ∪XC ,
where Y = {y | x ∈ Lcs,r ∧ y ∈ G(3)} and XC is a
set of auxiliary vertices with |XC | = |X|.

– The edge set W of H is defined as follows.
W = {{x, PX(x)} | x ∈ X}∪{{PX(y), y} | y ∈ Y }
∪{{x, y} | x ∈ X ∩ G(2) and y ∈ Y can share a
resource speculatively}, where PX : X → XC and
PY : Y → YC are arbitrary one-to-one mapping
from X to XC and from Y to YC , respectively.

• We consider that weights of all auxiliary vertices are
0, that is, ∀z, w(z) = 0, where z ∈ XC ∨ z ∈ YC .

Once H is constructed, selecting an edge e = {x, y}
from H means that two operations which are represented
by the end vertices x and y of e share a resource spec-
ulatively. If an end vertex of e is an auxiliary vertex (a
vertex in either XC or YC), it means that the operation
which is represented by the other end vertex occupies a
resource without speculative sharing. As a result, an op-
eration selection considering speculative resource sharing
can be considered as a problem to find a size-constrained
maximum weight matching from H.
Algorithm 2 shows a detailed description of function

schedule with speculative share. After a graph H
is constructed, speculatively resource sharable operation
pairs are chosen by a greedy selection procedure. More
specifically, edges are selected in descending order of the
edge weights within the number of available resources.
Fig. 3 illustrates an example of operations selecting re-
sult by Algorithm 2.

V. Multi-Cycle Soft-Error Tolerant

Datapath

We can expand our schedule constraints and specula-
tive resource sharing conditions so that they can manage
multi-cycle soft-errors[7].

A. Schedule Constraints

When we consider k-cycle soft-error tolerant datapath
synthesis, the difference in schedule constraints is Equa-
tion (2) in Section IV–A.

• c
(3)
m , the retry-cone in a stage m, has to be executed k
steps or more after the completion of the comparison

10

15

20

0

0

9

1328

19

0

0

0

20

8

0

XT YT

X Y

YC

XC Unscheduled
opera�ons

Scheduled
opera�ons

Selected edges

Unselected edges

Fig. 3. An example of operations selecting result produced by
greedy selection procedure; Operations which have edge weight 10
and 15 are elements of G(2). Other operations in X are elements
of G(1). The number of available resources is 3.

Algorithm 2
Algorithm of function schedule with speculative share()

Require: cs ← Current control step
Require: r ← Currently considered resource type
Require: nr ← Available number of resources of type r
Require: Lcs,r ← List of ready operations of type r at step cs
1: Construct a bipartite graph H based on Lcs,r;
2: for (i ← 0; i < Total number of W ; i++) do
3: if (nr > 0) then
4: Select an edge e from W which has the largest edge weight;
5: Schedule two end vertices of e at the current step cs;
6: Remove the edge e and its end vertices from H
7: nr ← nr − 1;
8: else
9: break;
10: end if
11: end for

operation qm which compares the results of c
(1)
m and

c
(2)
m .

max(
2⋃

�=1

σ(c(�)m)) + k − 1 < σ(qm) (10)

σ(qm) + k − 1 < min(σ(c(3)m)) (11)

B. Speculative Resource Sharing Conditions between
Operations in Second-Cones and in Retry-Cones

These conditions, excluding Equation (7), are the same
as the conditions in Section IV–B,

σ(qm) + k − 1 < min(σ(c(1)n)) (12)

VI. Experimental Results

We have implemented the proposed scheduling algo-
rithm as a computer program, and applied it to 16-point
fast Fourier transform (16FFT), 8-point inverse discrete
cosine transform (8IDCT), 16-point FIR filter (16FIR),
autoregressive filter (ARF), fifth-order elliptic wave digi-
tal filter (5EWDF), and inverse discrete cosine transform

- 276 -

0
20
40
60
80

100
120
140
160
180

1 1 2 2 2 3 3 4

1 2 2 2 3 3 4 4

1 1 1 2 2 2 2 2

la
te

n
cy

 [
co

n
tr

o
l

st
e

p
s]

16FFT
w/o specula�ve sharing

with specula�ve sharing

M

A

C

0

10

20

30

40

50

60

70

80

90

1 1 2 2 2 3 3 4

1 2 2 2 3 3 4 4

1 1 1 2 2 2 2 2

la
te

n
cy

 [
co

n
tr

o
l

st
e

p
s]

8IDCT
w/o specula�ve sharing

with specula�ve sharing

M

A

C

0

10

20

30

40

50

60

70

80

1 1 2 2 2 3 3 4

1 2 2 2 3 3 4 4

1 1 1 2 2 2 2 2

la
te

n
cy

 [
co

n
tr

o
l

st
e

p
s]

5EWDF
w/o specula�ve sharing

with specula�ve sharing

M

A

C

0

20

40

60

80

100

120

140

160

1 1 2 2 2 3 3 4

1 2 2 2 3 3 4 4

1 1 1 2 2 2 2 2

la
te

n
cy

 [
co

n
tr

o
l

st
e

p
s]

IDCT-c
w/o specula�ve sharing

with specula�ve sharing

M

A

C

0

10

20

30

40

50

1 1 2 2 2 3 3 4

1 2 2 2 3 3 4 4

1 1 1 2 2 2 2 2

la
te

n
cy

 [
co

n
tr

o
l

st
e

p
s]

ARF
w/o specula�ve sharing

with specula�ve sharing

M

A

C

0
5

10
15
20
25
30
35
40
45
50

1 1 2 2 2 3 3 4

1 2 2 2 3 3 4 4

1 1 1 2 2 2 2 2

la
te

n
cy

 [
co

n
tr

o
l

st
e

p
s]

16FIRF
w/o specula�ve sharing

with specula�ve sharing

M

A

C

Fig. 4. Experimental results by various computational algorithms.
Each column represents allocated resources (C:Comparator,
A:ALU, M:Multiplier). Every column in each graph has two
grouping bars. Left bars represent scheduling results without
speculative resource sharing and right bars represent proposed
scheduling results with speculative resource sharing.

with column-wise decomposition (IDCT-c). In order to
evaluate our scheduling algorithm, we also implemented
a conventional list scheduling algorithm without specula-
tive resource sharing.
Fig. 4 and Table I show experimental results. Each

graph in Fig. 4 illustrates the achieved latencies with dif-
ferent specifications of resources. Table I shows the maxi-
mum improvement rates in latency between conventional
list scheduling results without speculative resource shar-
ing and proposed list scheduling results with speculative
resource sharing. We can find from those results that, for
every application algorithm, the latency is improved more
or less by the speculative resource sharing. Also we found
that the proposed method is more effective when a com-
putation algorithm possesses higher parallelism (16FFT,
IDCT-c and 8IDCT) and the improvement in latency is
larger when a smaller number of resources is allocated.
The reason is that there are more possibilities to share
resources speculatively between retry-cones and second-
cones and, in consequence, many chances for speculative
resource sharing can conceal the extension of latency.

VII. Conclusion

Concerning soft-error tolerant datapath synthesis based
on triplication of an input computation algorithm via

TABLE I
Experimental results; latency improvement rate

Computation Total # of operations Max. improvement
algorithm (triplicate algorithm) rate [%]

16FFT 328 32.3
IDCT-c 234 31.0
8IDCT 160 29.5
ARF 96 22

16FIRF 80 20.7
5EWDF 120 17.5

high-level synthesis, constraints for soft-error tolerance
and a scheduling algorithm considering speculative re-
source sharing are proposed. Datapath circuits designed
by our method tolerate multi-component and multi-cycle
errors caused by single soft-errors. From the results of
soft-error tolerant datapath synthesis experiments, we
found that our speculative resource sharing achieves max-
imum 32.3% improvement in latency. Especially, our pro-
posed method is more effective when an input computa-
tion algorithm possesses higher parallelism, and the num-
ber of allocated resource is relatively small. Optimization
of cone partitioning and register binding are left as fu-
ture works. Moreover, we needed to investigate that our
method is applicable to more practical problems such as
more large applications and CDFG with loop structures.

References

[1] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Im-
pact of scaling on neutron-induced soft error in srams from a
250 nm to a 22 nm design rule,” Electron Devices, IEEE Trans-
actions on, vol. 57, no. 7, pp. 1527–1538, July 2010.

[2] H. Fuketa, R. Harada, M. Hashimoto, and T. Onoye, “Mea-
surement and analysis of alpha-particle-induced soft errors and
multiple-cell upsets in 10t subthreshold sram,” Device and Ma-
terials Reliability, IEEE Transactions on, vol. 14, no. 1, pp.
463–470, March 2014.

[3] M. Masuda, K. Kubota, R. Yamamoto, J. Furuta, K. Kobayashi,
and H. Onodera, “A 65 nm low-power adaptive-coupling redun-
dant flip-flop,” Nuclear Science, IEEE Transactions on, vol. 60,
no. 4, pp. 2750–2755, Aug 2013.

[4] Y. Lin and M. Zwolinski, “Settoff: A fault tolerant flip-flop
for building cost-efficient reliable systems,” in On-Line Test-
ing Symposium (IOLTS), 2012 IEEE 18th International, June
2012, pp. 7–12.

[5] A. Orailoglu and R. Karri, “Automatic synthesis of self-
recovering vlsi systems,” Computers, IEEE Transactions on,
vol. 45, no. 2, pp. 131–142, Feb 1996.

[6] K. Wu and R. Karri, “Fault secure datapath synthesis using
hybrid time and hardware redundancy,” Computer-Aided De-
sign of Integrated Circuits and Systems, IEEE Transactions on,
vol. 23, no. 10, pp. 1476–1485, Oct 2004.

[7] T. Inoue, H. Henmi, Y. Yoshikawa, and H. Ichihara, “High-level
synthesis for multi-cycle transient fault tolerant datapaths,” in
On-Line Testing Symposium (IOLTS), 2011 IEEE 17th Inter-
national, July 2011, pp. 13–18.

[8] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and
K. Lundgreen, “Domain crossing errors: Limitations on single
device triple-modular redundancy circuits in xilinx fpgas,” Nu-
clear Science, IEEE Transactions on, vol. 54, no. 6, pp. 2037–
2043, Dec 2007.

- 277 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

