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Abstract Although high-level synthesis tools and processor 
synthesis tools have emerged to improve the design productivity of 
SoC components, we have yet to see a practical solution for the 
challenging tasks of system-level integration and verification of 
these individual components involving different design languages, 
different tool sets and different debugging environments. In this 
paper, we propose a new C-based design framework where the 
RTL structure is directly described on dataflow C coding style, 
while the same C code serves as a fast simulation model. Design 
example on image signal processing pipeline shows the 
effectiveness of the proposed C-based tool framework where the 
dataflow C codes have 1/5 of the number of lines compared to 
HDLs, can generate high performance circuits with enormously 
high parallelism of 4000 operations/cycle. Also for RISC 
processor designs, our dataflow C coding style effectively captures 
the behavior of the instruction set simulator with less than 1000 
lines of C code that runs at 11M cycles/sec speed which is 42x 
faster than RTL simulation, that can also be directly transformed 
into RTL description.

1. Introduction

With the increasing design complexities of state-of-the-art 
SoCs and shorter time-to-market, there are ever growing 
demands for enhancing the design productivity as well as 
design quality. High-level synthesis (HLS) tools have 
gained industrial adoptions in the last decade [1][2], many 
focusing on dataflow-oriented DSP application domains 
with software programming language design entry (such as 
C/C++/SystemC). Processor synthesis tools have also 
emerged [3][4][5] that enable easy custom extensions to the 
instruction-set architecture (ISA) or completely define new 
ISAs for designing application specific instruction-set 
processors (ASIPs), where proprietary description 
languages are used here. Although these efforts in 
high-level design tools have contributed in enhancing the 
design productivity and design quality for individual 
components (IPs) of complex SoCs, system-level design 
integration and verification of these individual components 
involving different design languages, different tool sets and 
different debugging environments is still an enormously 
time consuming and difficult task.  
 In this paper, we propose a different approach from 
conventional works in HLS and processor design, where we 
use C language itself to directly describe the RTL structures 
of HW IP blocks and processors without any extensions on 
the C semantics. The designer expresses the algorithm in 
dataflow style on C, while a set of hardware attributes 
required for RTL generation (such as bit-width, clock 
boundary, memory, etc) is described by C pragmas. The 
same C code serves as a simulation model (compiled as 
pure ANSI-C code) as well as the RTL structural model. 
This capability of expressing RTL structure in C can then 
be utilized to construct a fast system-level verification 
model composed of these IP blocks and processors. 
 This paper is organized as follows: section 2 describes 
the related works on HLS and processor synthesis, section 3 

describes our data-flow C coding style and hardware 
attributes, section 4 describes the overall tool framework 
especially on the verification flows, section 5 describes the 
synthesis flow, section 6 gives several design examples on 
image processing and processor design, followed by 
conclusions on section 7. 

2. Related Works 

There are vast amount of works in HLS over the past three 
decades [1], where design capture based on standard 
programming languages such as C, C++ and SystemC 
coupled with advanced compiler optimization techniques 
have finally lead many commercial HLS tools to be adopted 
in real product development. At the very core of these HLS 
tools is a set of synthesis engines composed of operation
scheduling, resource allocation and binding to generate the 
RTL structural description. The quality of the generated 
RTL descriptions depends on a number of factors [2], not 
only on the quality of the internal synthesis engines but also 
on the various annotations in the design entry for guiding 
these synthesis engines as well as the coding style of the 
design input. Thus, optimizing the generated RTL requires 
a firm understanding of the characteristics of tools’ internal 
engines and the appropriate coding style.  
 Processor design tools have also emerged from various 
EDA vendors over the last decade which are mainly 
adopted for developing custom DSPs. Design entry in these 
tools includes the definition of instruction-set, resources 
(register files, memories, registers) and behavioral 
descriptions of each instruction, using proprietary 
architecture description languages such as MIMOLA[3], 
LISA[4] and nML[5]. The use of these proprietary 
description languages may become an obstacle for 
inexperienced designers. Also, key components such as 
caches are usually out of scope of the processor synthesis 
for these tools. 
 The key concept of our proposed framework is the use 
of C language to directly capture the RTL structure of both 
HW IP blocks and processors using data-flow coding style, 
while the C code itself serves as a fast simulation model. 
Our tool framework views the C data-flow description 
merely as a netlist representation of the RTL structure, and 
therefore does not involve the synthesis steps of scheduling, 
resource allocation and binding included in conventional 
HLS tools. Therefore, we do not provide the architecture 
exploration capability (generating multiple RTL 
descriptions with area/time tradeoffs) seen in HLS tools. On 
the other hand, what our framework provides to the 
designer is the expressive capability equivalent to HDLs for 
describing any RTL structure on the C code. Unlike the 
HLS tools where correspondence between the input C code 
and the generated RTL is often obscure and hard to predict, 
our framework provides a direct correspondence between 
the C code and the generated RTL, that is, the property of 
WYSWYG: what you write on your C code is what you get 
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on your RTL code.

Figure 1: C coding example 

3. C Dataflow Modeling Scheme for RTL 
Structural Description 

This section describes the C dataflow modeling scheme for 
enabling C to describe the RTL structure.  

3.1. Hardware Attribute Annotations via Pragma 

A number of attributes required for constructing the RTL 
structure are specified with the use of C pragmas such as 
bit-width, clock boundary (register insertion) and storage 
elements (register-files, memories). Fig.1 shows a C code 
example with hardware attribute annotations where the 
attribute type is denoted as , and these 
attributes are attached to user-defined names.
Multiple attributes can be annotated efficiently by 
inheritance. Here, variables  and  are type  which is 
annotated with 10-bit bit-width attribute, variables  and 
are type  with 12-bit bit-width attribute. Variables 
and  are type  annotated with two attributes, 12-bit 
bit-width attribute (inherited from ), and a state
attribute. State attribute is used to specify the clock 
boundary, that is, registers will be allocated to such 
variables where the read operations are delayed by one 
cycle after the write operation to these variables. Attributes 
for specifying memory and register-file are also provided, 
where these attributes also imply clock boundary at the read 
ports. While these hardware attributes will be used by the 
compiler during RTL generation, they have no effect on the 
C semantics. 

3.2. Single Clock Cycle Behavior Restriction 

Primary coding restriction in the C dataflow modeling is 
related to the behavioral model of the top-level function 
targeted for RTL generation, that is, a single call to the 
top-level function needs to model the single clock cycle 
behavior of the entire circuit. Here, we assume that the 
generated RTL model is structured in a pipelined fashion, 
where the single clock cycle behavior corresponds to that of 
each pipeline stage operating in sequence (detailed 
explanation is given in section 3.5). This single cycle 
behavior restriction enforces the C code to be written in a 
dataflow style, thus make the direct translation from C code 
to RTL possible. Clock boundary attributes in the C code 
will be interpreted as pipeline stage boundaries. On the 
other hand, due to this restriction, multiple sequences of 
read/write operations to the same state variable (annotated 

with state attribute) or memory variable (annotated with 
memory or register-file attributes) are prohibited, since RTL 
behavior of such description requires multiple cycles.  
 Parameter variables of the top-level function 
correspond to inputs and outputs of the circuit, where 
input/output port direction for each parameter variable is 
automatically detected by our compiler. In the sample code 
on Fig.1, assuming that function  is the top-level 
function, parameters  are the input ports and  is the 
output port. 

3.3. Function Calls and Loops 

Any levels of function calls from the top-level function are 
allowed as long as they are not recursive. Loops such as 
for-loops are allowed as long as the iteration count can be 
deduced to be constant during compile time (through 
constant propagation). As explained in section 5.2, all 
function calls reachable from the top-level function will be 
completely inlined (flattened) and all loops will be 
completely unrolled during the compilation phase. 

3.4. Variable Lifetime and Reference Directions for 
Describing Finite State Machines 

Previous single cycle behavior restriction also dictates how 
finite state machines (FSMs) should be described in our C 
dataflow model. In an FSM, states are updated to 
next-states that are accessible in the next cycle. This 
behavior can be coded in C by the use of state variables
whose lifetime is longer than that of the top-level function 
(variables declared above the top-level function, or global 
lifetime variables). In the code sample on Fig.1, state 
variable  is declared as , and therefore its value will 
exist after  returns and is reused upon the next 
call modeling the behavior of the next cycle. Reference 
directions to these state variables will determine whether 
the current-state or next-state is being referenced. Here, we 
will call the references that occurs after the assignment to 
that variable as forward reference, and the references that 
occurs before the assignment as backward reference.
Forward reference of a state variable require one cycle 
delay after the assignment, thus implies a clock boundary. 
Backward reference of a state variable corresponds to 
accessing the current-state. As will be needed in pipelined 
processor modeling explained in section 6.2, we also allow 
non-state variables (corresponding to combinational logic 
output signals) to be backward referenced as well, which 
will be translated as feedback signals to the previous 
pipeline stages. Variables with backward references require 
that their lifetimes extend beyond the top-level function 
scope.
 In the statement , the reference to  is 
a forward reference which implies one clock delay after the 
previous assignment , where as the reference 
to  in is a backward reference, therefore its 
value is computed by this assignment statement on the 
previous call to , that is, on the previous cycle.

- 41 -



Figure 2: Pipelined RTL structure of C code in Fig.1 

3.5. C Behavioral Model vs. RTL Structural Model 

Fig.2 shows the pipelined RTL structure of the dataflow C 
model in Fig.1. Here, we assume that clock boundaries are 
not inserted inside . Pipeline boundaries are inserted 
on state variables  and , and two function calls to 
are inlined twice. Assignment to  contains a forward 
reference to , and thus  sits on the second pipeline stage. 
Also, the second call to  is also placed in the second 
pipeline stage due to the backward reference to , where the 
computation needs to occur within the same 
cycle as its assignment.. 

Figure 3: Pipelined RTL behavior of C code in Fig.1 

 Next, let us compare the behavior of the original C 
code and the pipelined RTL structure. Figure 3 shows the 
pipelined RTL behavior of the C code in Fig.1 where the 
numbers in the shaded boxes correspond to the call 
sequence indices to the top-level function  (“0” 
corresponds to the first call, “1” corresponds to the second 
call, etc). Compared with the pipelined RTL model where 
each pipeline stage operates on the same cycle (t = 0, 1, 2, 
…), the single clock behavior model of the C dataflow 
model executes the pipeline stages in sequence, virtually 
ignoring the pipeline boundaries. Despite the difference in 
computation ordering between the “untimed” C dataflow 
model and “timed” pipelined RTL model, they result in the 
same computational model, that is, sequence of values 
observed at each variable will be identical. With 
our proposed C dataflow modeling with pragma-based 
hardware attribute annotation scheme, we are able to 
express virtually any kind of RTL structure on the 
C-language. Pipelined structure is expressed naturally by 
the use of state attributes to insert clock boundaries. FSMs 
can also be expressed naturally by the use of backward 
references to state variables, and can even be distributed 
among different pipeline stages. 

4. Proposed “C2PixPipe” Tool Framework 

Fig.4 illustrates the overall flow of our proposed tool 
framework. Our tool framework which we call C2PixPipe
(since our initial target for this framework was image 
processing) parses the C behavioral model coded in 
dataflow style and generates the RTL structural descriptions 
in two languages, Verilog-HDL for circuit implementation 

and cycle-level verification, and also in C code whose 
behavior is equivalent to RTL model (RTL-equivalent C 
model). These RTL models serve as verification models 
against the original C dataflow model according to the 
below verification flow: 

Figure 4: Proposed C2PixPipe tool framework 

RTL-equivalent C model verification: Top-level 
function of the RTL-equivalent C model contains the 
same list of function parameters as the top-level function 
of the original C dataflow model. Thus the same 
testbench for verifying the C dataflow model can be used 
for verifying the RTL-equivalent C model, although the 
circuit outputs will be delayed by the number of pipeline 
stages.
Verilog RTL model verification: RTL-equivalent C 
model is also equipped with the functionality of 
recording all input/output port signals during the entire 
simulation run. We also provide a C pragma to specify a 
list of signals to be probed during the RTL verification, 
in which case these probe signals will also be recorded. 
Verilog testbench model is also generated that reads in 
the recorded test vectors, drives the input signals of the 
top-level RTL model, and verifies the output and probe 
signals. 

Figure 5: Synthesis flow of our tool framework 

5. RTL Synthesis Flow from C Dataflow Model 

As explained earlier, our tool framework views the C 
dataflow model as a direct netlist representation of the RTL 
structure, and therefore the required synthesis steps are 
quite different from conventional HLS. Fig. 5 shows the 
overall synthesis flow in our framework which consists of 
straightforward transformations using compiler and graph 
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techniques.

5.1. C Parsing 

This part was realized by the compiler framework originally 
targeted for program parallelization in our previous work 
[6]. C dataflow description is parsed as pure ANSI-C code 
and transformed into interprocedural control flow graph 
(I-CFG). Also, C pragmas for annotating hardware 
attributes are also recognized and passed on to the later 
synthesis stages.  

5.2. I-CFG Expansion 

As mentioned earlier, all function calls under the top-level 
function will be completely inlined and loops will be 
completely unrolled. Constant propagation is performed 
during the function inlining and before the loop unrolling in 
order to deduce the constant iteration count. This procedure 
results in a flat CFG (no function hierarchy) which is also 
acyclic (does not contain cycles in the CFG). 

5.3. DFG Extraction 

This flat acyclic CFG is then transformed into a dataflow 
graph (DFG) by first transforming each C statement into 
static single assignment (SSA) form, where -functions are 
inserted on the multiply assigned variables on mutually 
exclusive control flows. These -functions are then replaced 
with multiplexers controlled by the conditional bits which 
indicate the executed control flow path. Since the input 
CFG to this step is flat and acyclic, control-flow nodes 
(branches and joins) can be totally eliminated such that the 
entire design is represented by a single DFG.

5.4. DFG Optimization 

This step consists of standard compiler optimization 
procedures such as strength reduction and common
subexpression elimination. Strength reduction includes the 
following transformations:  

Constant multiplications into adds and shifts 
Power-of-2 divisions into shifts 
Divisions into series of shift-subtract operations 

5.5. HW Cost Evaluation 

This step consists of analyzing each operations in the DFG 
to evaluate the required bit-widths of the intermediate 
variables (DFG edges), and also estimating the gate counts 
and delay model for each operation (DFG vertices). 
Bit-width evaluation is done by computing the value ranges 
of each operation from the value ranges of its inputs and 
propagating the value ranges from the primary inputs of the 
DFG towards its primary outputs. Gate count and delay 
models are estimated by a fairly abstract datapath circuit 
model for each operation type. 

5.6. Pipeline Optimization 

This step determines the optimal pipeline boundaries on the 
optimized DFG which is formulated as a problem of finding 
the optimal cuts on the DFG. Due to the clock boundary 
annotations given by the C pragmas in the C dataflow 

model, there exists a lower bound on the number of pipeline 
stages. This lower bound is determined by examining all
possible paths from the primary inputs to primary outputs 
of the DFG and counting the maximum number of clock 
boundaries that each path crosses. The designer can choose 
any desired number of pipeline stages equal to or above this 
lower bound. Thus the problem is formulated as finding the 
optimal locations of predetermined number of cuts on the 
DFG which is achieved by the following procedures: 
1. Backward reference grouping: For each state variable, 
any paths from its backward reference nodes to its 
assignment node cannot cross any clock boundaries 
(otherwise, the current-state will delay more than one cycle 
from the next-state). Thus, nodes on these paths are grouped 
into a single node to assure that these nodes will be located 
on the same pipeline stage. Also, the combinational logic 
feedback signals explained in section 3.4 will be 
disconnected. By this node reduction procedure, all cycles 
in the original DFG will be contained inside these node 
groups and thus the reduced DFG will become acyclic, in 
other words, a directed acyclic graph (DAG).  
2. Initial cut placement: After DFG reduction into DAG, 
initial cut placement is determined. This is accomplished by 
a simple DAG longest path algorithm where the distance is 
measured by the number of clock boundary edges on the 
path from primary inputs to each node. Edges connecting 
nodes with different distances become the locations of the 
cuts.
3. Cut placement optimization by simulated annealing:
Cut placement is gradually modified by a sequence of local 
node moves between adjacent pipeline stages by simulated 
annealing. Here we divide the annealing process into two 
phases, where first phase attempts to minimize the 
maximum logic delay among the pipeline stages and the 
second phase attempts to minimize the total cut cost, that is, 
the number of bits crossing the pipeline boundaries. 

6. Design Case Studies 

In this section, we introduce two design examples, a camera 
front-end image signal processing system and pipelined 
RISC processor. 

6.1. Image Signal Processing System 

Image signal processing (ISP) system for camera sensor 
front-end [7] was our initial motivation for developing our 
C-based framework (thus the name C2PixPipe). The target 
ISP system architecture for this project consisted of the 
following properties:  

ISP pipeline blocks operates on the same clock 
frequency as the camera sensor interface delivering one 
pixel per clock with vertical and horizontal blank 
periods..
C algorithm models for each ISP pipeline stages will be 
modeled as one clock cycle behavior. 
All input pixel data at each pixel pipeline stages are 
delivered from the pixel stream interface between each 
ISP blocks and line-buffers, thus direct access from the 
frame-buffer was not considered. 
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Figure 6: ISP pipeline architecture 

Figure 7: Top-level function of the ISP pipeline 

Table 1: RTL synthesis results of ISP pipeline 
ISP functions: Pixel interface conversion, color adjustments, 
Bayer-RGB demosaic, denoising, color conversion, gamma 
correction, etc. 
C code size 5,000 lines, 15 source files 
# operations 4,195 ops (76 multiplications) 
line buffer memory 64 lines (2,304 pixels wide), 1.9M bits 
# pipeline stages 32 
RTL code size 27,000 lines (Verilog), 20,000 lines (C)
comb. circuit size 225,279 gates (approx.)
FF count 23,393 bits 
max clock freq. 300 MHz (approx., @90nm CMOS)
synthesis time 56.8 seconds (excl. C parsing) 

Fig.6 shows the assumed ISP pixel pipeline architecture in 
this design case. Fig.7 shows the top-level function of the 
ISP pixel pipeline where a total of 10 ISP blocks are called, 
each having a common pixel stream interface. Table 1 
shows the RTL synthesis results of this ISP pipeline design. 
The entire C dataflow model consists of more than 5000 
lines distributed over 15 source files. After parsing these C 
source files and undergoing the synthesis steps, the final 
optimized DFG consisted of 4,195 operation nodes, 
including 76 multiplications whose bit-widths were 
distributed between 9 bits and 36 bits. It should be noted 
that this vast amount of operations occur concurrently on 
the pipelined RTL, thus parallelism of 4,195 operations are 
achieved by the C dataflow model. A total of 64 line buffers 
(2,304 pixels wide) are instantiated inside the ISP blocks. 
The generated RTL consists of 32 pipeline stages 
(user-specified) where the circuit size is 225K gates for 
combinational logic, 23K bits of flip-flops, and maximum 
clock frequency of 300 MHz using 90nm CMOS (here, gate 
count and clock frequency are approximated by the tool’s 
gate model). It takes a total of 56.8 seconds to generate the 
RTL descriptions which consists of 27,000 lines of Verilog 
code and 21,000 lines of RTL-equivalent C code.  

6.2. RISC Processor 

Upon the successful generation of the previous ISP pipeline 
architecture with our framework, we set our next target to 
the RISC processor design. The RISC processor 
architecture used here comes from authors’ previous works 
on MPSoC designs [8] originally on manual RTL coding 
and later by Synopsys Processor Designer using LISA 

language [9][10][11]. Our RISC core is a 32-bit architecture 
with 4 pipeline stages (FE: fetch, DE: decode, EX: execute, 
WB: writeback), 32 general purpose registers, with integer 
multiplier and multi-cycle integer divider (Fig. 8), and has 
been shown to have comparable performance to that of 
ARM9 processor [9].  

Figure 8: 4-stage RISC pipeline architecture 

Figure 9: CPU resource data structure 

Figure 10: Top-level function of RISC ISS code 

 In this design exercise, we have started by completely 
rewriting the processor model in C dataflow model as a 
simple interpretive instruction-set simulator (ISS) [12][13] 
which consists of 500 lines of C header file declaring RISC 
resource data structures (registers, register files, memories, 
etc) as shown in Fig.9, with another 500 lines of C code for 
describing the full details of the baseline pipeline behavior 
as shown in Fig.10. In accordance to the single cycle 
behavior coding restriction explained in section 3, one call 
to the top-level function  models the single cycle 
behavior of the RISC pipeline, such coding style comes 
naturally for such interpretive ISS.  
 Inside the top-level function , lower-level 
functions corresponding to the 4 pipeline stages are called 
consecutively. Fig.11 shows the function for the FE-stage 
where program memory array  is accessed by a 
normal array indexing expression. The entire C dataflow 
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code, in fact, only uses standard C expressions without any 
use of tool-specific predefined macros, data structures or 
libraries. This makes our C dataflow modeling quite 
intuitive to any C programmers. 

Figure 11: FE-stage C function 

 Fig.11 contains some special features required in RISC 
pipeline modeling, that is, the feedback signals from the 
later pipeline stages (described in section 3.4). 

 is a backward reference from the 
DC-stage which indicates that a branch instruction is 
decoded whose target address computed also at DC-stage as 

 is used to access the program memory. 
Such backward references in the C dataflow model is 
necessary for modeling pipeline stalls and data forwarding.  

Table 2: RTL synthesis results of RISC pipeline 
RISC features: 32-bit data, 4 stage pipeline, 32 general purpose 
registers, integer multiply unit, multi-cycle integer division unit, 
UART port (including SerDes), interrupt handling logic
C code size 850 lines, 5 source files 
# operations 1,824 ops (1 multiplication)
# pipeline stages 4 
RTL code size 4,100 lines (Verilog), 3,650 lines (C)
comb. circuit size 44,268 gates (approx.)
FF count 3,449 bits (pipeline registers + reg-file) 
max clock freq. 300 MHz (approx., @90nm CMOS)
synthesis time 30.5 seconds (excl. C parsing) 

Table 3: Instruction-set simulation speed comparison 
test program: calculation of 200 prime numbers with UART message 
of output results (5,600 characters @ 115.2K bps)
simulation cycles 10,764,342 cycles
ISS time (C dataflow) 0.918 sec (11.726 M cycles/sec) 
ISS time (RTL-equiv. C)  5.558 sec (1.937 M cycles/sec)
ISS time (Verilog) 38.850 sec (0.277 M cycles/sec) 

 Table 2 shows the RTL synthesis results of the RISC 
pipeline design, where in addition to the baseline RISC 
pipeline (about 500 lines), additional features such as 
UART port with SerDes for pin-accurate serial IO modeling 
and interrupt handling logic are implemented in the C 
model, resulting in 850 lines of C code. The number of 
pipeline stages for pipeline optimization phase was 
obviously set to 4, where changing the number of pipeline 
stages involves reworking the pipeline control logic 
(pipeline stalls, data-forwarding) and cannot be simply 
handled by graph cut algorithm. Generated RTL codes were 
4,100 lines of Verilog and 3,650 lines of RTL-equivalent C 
code. Table 3 shows the simulation speed comparison on 
the 3 different ISS (instruction-set simulator) models. The 
original C dataflow model has a throughput of 11.726 M 
cycles/sec, compared to 1.937 M cycles/sec for the 

RTL-equivalent C model and 0.277 M cycles/sec for 
Verilog model. 

7. Conclusion 

In this paper, we have proposed a novel C dataflow 
modeling scheme for directly describing the RTL structures 
of HW IP blocks and processors without any extensions on 
the C semantics, where a set of hardware attributes are 
annotated by C pragmas. The required synthesis steps are 
composed of standard compiler optimization and graph 
algorithms which allow the tool framework to directly 
handle relatively large designs exceeding 5000 lines of C 
code and generate deeply pipelined RTL structure of over 
220K gates with parallelism of over 4000 operations per 
cycle in the case of ISP pipeline synthesis. Our C dataflow 
modeling applied to processors in turn is a cycle-level ISS 
with the full details of the processor pipeline behavior with 
pipeline control logic for pipeline stalls and data-forwarding. 
Our tool framework enables the designers to describe the 
RTL structures on C language, where the very same C 
model serves as a fast simulation model which can be 
integrated as a simulation component for the system-level 
verification. In the future, we plan to develop many C 
dataflow models for various IOs, accelerator engines for 
creating a wide range of ASIPs.  
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