
C-Based RTL Design Framework for Processor and Hardware-IP Synthesis
Tsuyoshi Isshiki, Koshiro Date, Daisuke Kugimiya, Dongju Li, Hiroaki Kunieda

Dept. of Communications and Computer Engineering
Tokyo Institute of Technology

{isshiki, date, kugimiya, dongju, kunieda}@vlsi.ce.titech.ac.jp

Abstract Although high-level synthesis tools and processor
synthesis tools have emerged to improve the design productivity of
SoC components, we have yet to see a practical solution for the
challenging tasks of system-level integration and verification of
these individual components involving different design languages,
different tool sets and different debugging environments. In this
paper, we propose a new C-based design framework where the
RTL structure is directly described on dataflow C coding style,
while the same C code serves as a fast simulation model. Design
example on image signal processing pipeline shows the
effectiveness of the proposed C-based tool framework where the
dataflow C codes have 1/5 of the number of lines compared to
HDLs, can generate high performance circuits with enormously
high parallelism of 4000 operations/cycle. Also for RISC
processor designs, our dataflow C coding style effectively captures
the behavior of the instruction set simulator with less than 1000
lines of C code that runs at 11M cycles/sec speed which is 42x
faster than RTL simulation, that can also be directly transformed
into RTL description.

1. Introduction

With the increasing design complexities of state-of-the-art
SoCs and shorter time-to-market, there are ever growing
demands for enhancing the design productivity as well as
design quality. High-level synthesis (HLS) tools have
gained industrial adoptions in the last decade [1][2], many
focusing on dataflow-oriented DSP application domains
with software programming language design entry (such as
C/C++/SystemC). Processor synthesis tools have also
emerged [3][4][5] that enable easy custom extensions to the
instruction-set architecture (ISA) or completely define new
ISAs for designing application specific instruction-set
processors (ASIPs), where proprietary description
languages are used here. Although these efforts in
high-level design tools have contributed in enhancing the
design productivity and design quality for individual
components (IPs) of complex SoCs, system-level design
integration and verification of these individual components
involving different design languages, different tool sets and
different debugging environments is still an enormously
time consuming and difficult task.
 In this paper, we propose a different approach from
conventional works in HLS and processor design, where we
use C language itself to directly describe the RTL structures
of HW IP blocks and processors without any extensions on
the C semantics. The designer expresses the algorithm in
dataflow style on C, while a set of hardware attributes
required for RTL generation (such as bit-width, clock
boundary, memory, etc) is described by C pragmas. The
same C code serves as a simulation model (compiled as
pure ANSI-C code) as well as the RTL structural model.
This capability of expressing RTL structure in C can then
be utilized to construct a fast system-level verification
model composed of these IP blocks and processors.
 This paper is organized as follows: section 2 describes
the related works on HLS and processor synthesis, section 3

describes our data-flow C coding style and hardware
attributes, section 4 describes the overall tool framework
especially on the verification flows, section 5 describes the
synthesis flow, section 6 gives several design examples on
image processing and processor design, followed by
conclusions on section 7.

2. Related Works

There are vast amount of works in HLS over the past three
decades [1], where design capture based on standard
programming languages such as C, C++ and SystemC
coupled with advanced compiler optimization techniques
have finally lead many commercial HLS tools to be adopted
in real product development. At the very core of these HLS
tools is a set of synthesis engines composed of operation
scheduling, resource allocation and binding to generate the
RTL structural description. The quality of the generated
RTL descriptions depends on a number of factors [2], not
only on the quality of the internal synthesis engines but also
on the various annotations in the design entry for guiding
these synthesis engines as well as the coding style of the
design input. Thus, optimizing the generated RTL requires
a firm understanding of the characteristics of tools’ internal
engines and the appropriate coding style.
 Processor design tools have also emerged from various
EDA vendors over the last decade which are mainly
adopted for developing custom DSPs. Design entry in these
tools includes the definition of instruction-set, resources
(register files, memories, registers) and behavioral
descriptions of each instruction, using proprietary
architecture description languages such as MIMOLA[3],
LISA[4] and nML[5]. The use of these proprietary
description languages may become an obstacle for
inexperienced designers. Also, key components such as
caches are usually out of scope of the processor synthesis
for these tools.
 The key concept of our proposed framework is the use
of C language to directly capture the RTL structure of both
HW IP blocks and processors using data-flow coding style,
while the C code itself serves as a fast simulation model.
Our tool framework views the C data-flow description
merely as a netlist representation of the RTL structure, and
therefore does not involve the synthesis steps of scheduling,
resource allocation and binding included in conventional
HLS tools. Therefore, we do not provide the architecture
exploration capability (generating multiple RTL
descriptions with area/time tradeoffs) seen in HLS tools. On
the other hand, what our framework provides to the
designer is the expressive capability equivalent to HDLs for
describing any RTL structure on the C code. Unlike the
HLS tools where correspondence between the input C code
and the generated RTL is often obscure and hard to predict,
our framework provides a direct correspondence between
the C code and the generated RTL, that is, the property of
WYSWYG: what you write on your C code is what you get

SASIMI 2015 ProceedingsR1-8

- 40 -

on your RTL code.

Figure 1: C coding example

3. C Dataflow Modeling Scheme for RTL
Structural Description

This section describes the C dataflow modeling scheme for
enabling C to describe the RTL structure.

3.1. Hardware Attribute Annotations via Pragma

A number of attributes required for constructing the RTL
structure are specified with the use of C pragmas such as
bit-width, clock boundary (register insertion) and storage
elements (register-files, memories). Fig.1 shows a C code
example with hardware attribute annotations where the
attribute type is denoted as , and these
attributes are attached to user-defined names.
Multiple attributes can be annotated efficiently by
inheritance. Here, variables and are type which is
annotated with 10-bit bit-width attribute, variables and
are type with 12-bit bit-width attribute. Variables
and are type annotated with two attributes, 12-bit
bit-width attribute (inherited from), and a state
attribute. State attribute is used to specify the clock
boundary, that is, registers will be allocated to such
variables where the read operations are delayed by one
cycle after the write operation to these variables. Attributes
for specifying memory and register-file are also provided,
where these attributes also imply clock boundary at the read
ports. While these hardware attributes will be used by the
compiler during RTL generation, they have no effect on the
C semantics.

3.2. Single Clock Cycle Behavior Restriction

Primary coding restriction in the C dataflow modeling is
related to the behavioral model of the top-level function
targeted for RTL generation, that is, a single call to the
top-level function needs to model the single clock cycle
behavior of the entire circuit. Here, we assume that the
generated RTL model is structured in a pipelined fashion,
where the single clock cycle behavior corresponds to that of
each pipeline stage operating in sequence (detailed
explanation is given in section 3.5). This single cycle
behavior restriction enforces the C code to be written in a
dataflow style, thus make the direct translation from C code
to RTL possible. Clock boundary attributes in the C code
will be interpreted as pipeline stage boundaries. On the
other hand, due to this restriction, multiple sequences of
read/write operations to the same state variable (annotated

with state attribute) or memory variable (annotated with
memory or register-file attributes) are prohibited, since RTL
behavior of such description requires multiple cycles.
 Parameter variables of the top-level function
correspond to inputs and outputs of the circuit, where
input/output port direction for each parameter variable is
automatically detected by our compiler. In the sample code
on Fig.1, assuming that function is the top-level
function, parameters are the input ports and is the
output port.

3.3. Function Calls and Loops

Any levels of function calls from the top-level function are
allowed as long as they are not recursive. Loops such as
for-loops are allowed as long as the iteration count can be
deduced to be constant during compile time (through
constant propagation). As explained in section 5.2, all
function calls reachable from the top-level function will be
completely inlined (flattened) and all loops will be
completely unrolled during the compilation phase.

3.4. Variable Lifetime and Reference Directions for
Describing Finite State Machines

Previous single cycle behavior restriction also dictates how
finite state machines (FSMs) should be described in our C
dataflow model. In an FSM, states are updated to
next-states that are accessible in the next cycle. This
behavior can be coded in C by the use of state variables
whose lifetime is longer than that of the top-level function
(variables declared above the top-level function, or global
lifetime variables). In the code sample on Fig.1, state
variable is declared as , and therefore its value will
exist after returns and is reused upon the next
call modeling the behavior of the next cycle. Reference
directions to these state variables will determine whether
the current-state or next-state is being referenced. Here, we
will call the references that occurs after the assignment to
that variable as forward reference, and the references that
occurs before the assignment as backward reference.
Forward reference of a state variable require one cycle
delay after the assignment, thus implies a clock boundary.
Backward reference of a state variable corresponds to
accessing the current-state. As will be needed in pipelined
processor modeling explained in section 6.2, we also allow
non-state variables (corresponding to combinational logic
output signals) to be backward referenced as well, which
will be translated as feedback signals to the previous
pipeline stages. Variables with backward references require
that their lifetimes extend beyond the top-level function
scope.
 In the statement , the reference to is
a forward reference which implies one clock delay after the
previous assignment , where as the reference
to in is a backward reference, therefore its
value is computed by this assignment statement on the
previous call to , that is, on the previous cycle.

- 41 -

Figure 2: Pipelined RTL structure of C code in Fig.1

3.5. C Behavioral Model vs. RTL Structural Model

Fig.2 shows the pipelined RTL structure of the dataflow C
model in Fig.1. Here, we assume that clock boundaries are
not inserted inside . Pipeline boundaries are inserted
on state variables and , and two function calls to
are inlined twice. Assignment to contains a forward
reference to , and thus sits on the second pipeline stage.
Also, the second call to is also placed in the second
pipeline stage due to the backward reference to , where the
computation needs to occur within the same
cycle as its assignment..

Figure 3: Pipelined RTL behavior of C code in Fig.1

 Next, let us compare the behavior of the original C
code and the pipelined RTL structure. Figure 3 shows the
pipelined RTL behavior of the C code in Fig.1 where the
numbers in the shaded boxes correspond to the call
sequence indices to the top-level function (“0”
corresponds to the first call, “1” corresponds to the second
call, etc). Compared with the pipelined RTL model where
each pipeline stage operates on the same cycle (t = 0, 1, 2,
…), the single clock behavior model of the C dataflow
model executes the pipeline stages in sequence, virtually
ignoring the pipeline boundaries. Despite the difference in
computation ordering between the “untimed” C dataflow
model and “timed” pipelined RTL model, they result in the
same computational model, that is, sequence of values
observed at each variable will be identical. With
our proposed C dataflow modeling with pragma-based
hardware attribute annotation scheme, we are able to
express virtually any kind of RTL structure on the
C-language. Pipelined structure is expressed naturally by
the use of state attributes to insert clock boundaries. FSMs
can also be expressed naturally by the use of backward
references to state variables, and can even be distributed
among different pipeline stages.

4. Proposed “C2PixPipe” Tool Framework

Fig.4 illustrates the overall flow of our proposed tool
framework. Our tool framework which we call C2PixPipe
(since our initial target for this framework was image
processing) parses the C behavioral model coded in
dataflow style and generates the RTL structural descriptions
in two languages, Verilog-HDL for circuit implementation

and cycle-level verification, and also in C code whose
behavior is equivalent to RTL model (RTL-equivalent C
model). These RTL models serve as verification models
against the original C dataflow model according to the
below verification flow:

Figure 4: Proposed C2PixPipe tool framework

RTL-equivalent C model verification: Top-level
function of the RTL-equivalent C model contains the
same list of function parameters as the top-level function
of the original C dataflow model. Thus the same
testbench for verifying the C dataflow model can be used
for verifying the RTL-equivalent C model, although the
circuit outputs will be delayed by the number of pipeline
stages.
Verilog RTL model verification: RTL-equivalent C
model is also equipped with the functionality of
recording all input/output port signals during the entire
simulation run. We also provide a C pragma to specify a
list of signals to be probed during the RTL verification,
in which case these probe signals will also be recorded.
Verilog testbench model is also generated that reads in
the recorded test vectors, drives the input signals of the
top-level RTL model, and verifies the output and probe
signals.

Figure 5: Synthesis flow of our tool framework

5. RTL Synthesis Flow from C Dataflow Model

As explained earlier, our tool framework views the C
dataflow model as a direct netlist representation of the RTL
structure, and therefore the required synthesis steps are
quite different from conventional HLS. Fig. 5 shows the
overall synthesis flow in our framework which consists of
straightforward transformations using compiler and graph

- 42 -

techniques.

5.1. C Parsing

This part was realized by the compiler framework originally
targeted for program parallelization in our previous work
[6]. C dataflow description is parsed as pure ANSI-C code
and transformed into interprocedural control flow graph
(I-CFG). Also, C pragmas for annotating hardware
attributes are also recognized and passed on to the later
synthesis stages.

5.2. I-CFG Expansion

As mentioned earlier, all function calls under the top-level
function will be completely inlined and loops will be
completely unrolled. Constant propagation is performed
during the function inlining and before the loop unrolling in
order to deduce the constant iteration count. This procedure
results in a flat CFG (no function hierarchy) which is also
acyclic (does not contain cycles in the CFG).

5.3. DFG Extraction

This flat acyclic CFG is then transformed into a dataflow
graph (DFG) by first transforming each C statement into
static single assignment (SSA) form, where -functions are
inserted on the multiply assigned variables on mutually
exclusive control flows. These -functions are then replaced
with multiplexers controlled by the conditional bits which
indicate the executed control flow path. Since the input
CFG to this step is flat and acyclic, control-flow nodes
(branches and joins) can be totally eliminated such that the
entire design is represented by a single DFG.

5.4. DFG Optimization

This step consists of standard compiler optimization
procedures such as strength reduction and common
subexpression elimination. Strength reduction includes the
following transformations:

Constant multiplications into adds and shifts
Power-of-2 divisions into shifts
Divisions into series of shift-subtract operations

5.5. HW Cost Evaluation

This step consists of analyzing each operations in the DFG
to evaluate the required bit-widths of the intermediate
variables (DFG edges), and also estimating the gate counts
and delay model for each operation (DFG vertices).
Bit-width evaluation is done by computing the value ranges
of each operation from the value ranges of its inputs and
propagating the value ranges from the primary inputs of the
DFG towards its primary outputs. Gate count and delay
models are estimated by a fairly abstract datapath circuit
model for each operation type.

5.6. Pipeline Optimization

This step determines the optimal pipeline boundaries on the
optimized DFG which is formulated as a problem of finding
the optimal cuts on the DFG. Due to the clock boundary
annotations given by the C pragmas in the C dataflow

model, there exists a lower bound on the number of pipeline
stages. This lower bound is determined by examining all
possible paths from the primary inputs to primary outputs
of the DFG and counting the maximum number of clock
boundaries that each path crosses. The designer can choose
any desired number of pipeline stages equal to or above this
lower bound. Thus the problem is formulated as finding the
optimal locations of predetermined number of cuts on the
DFG which is achieved by the following procedures:
1. Backward reference grouping: For each state variable,
any paths from its backward reference nodes to its
assignment node cannot cross any clock boundaries
(otherwise, the current-state will delay more than one cycle
from the next-state). Thus, nodes on these paths are grouped
into a single node to assure that these nodes will be located
on the same pipeline stage. Also, the combinational logic
feedback signals explained in section 3.4 will be
disconnected. By this node reduction procedure, all cycles
in the original DFG will be contained inside these node
groups and thus the reduced DFG will become acyclic, in
other words, a directed acyclic graph (DAG).
2. Initial cut placement: After DFG reduction into DAG,
initial cut placement is determined. This is accomplished by
a simple DAG longest path algorithm where the distance is
measured by the number of clock boundary edges on the
path from primary inputs to each node. Edges connecting
nodes with different distances become the locations of the
cuts.
3. Cut placement optimization by simulated annealing:
Cut placement is gradually modified by a sequence of local
node moves between adjacent pipeline stages by simulated
annealing. Here we divide the annealing process into two
phases, where first phase attempts to minimize the
maximum logic delay among the pipeline stages and the
second phase attempts to minimize the total cut cost, that is,
the number of bits crossing the pipeline boundaries.

6. Design Case Studies

In this section, we introduce two design examples, a camera
front-end image signal processing system and pipelined
RISC processor.

6.1. Image Signal Processing System

Image signal processing (ISP) system for camera sensor
front-end [7] was our initial motivation for developing our
C-based framework (thus the name C2PixPipe). The target
ISP system architecture for this project consisted of the
following properties:

ISP pipeline blocks operates on the same clock
frequency as the camera sensor interface delivering one
pixel per clock with vertical and horizontal blank
periods..
C algorithm models for each ISP pipeline stages will be
modeled as one clock cycle behavior.
All input pixel data at each pixel pipeline stages are
delivered from the pixel stream interface between each
ISP blocks and line-buffers, thus direct access from the
frame-buffer was not considered.

- 43 -

Figure 6: ISP pipeline architecture

Figure 7: Top-level function of the ISP pipeline

Table 1: RTL synthesis results of ISP pipeline
ISP functions: Pixel interface conversion, color adjustments,
Bayer-RGB demosaic, denoising, color conversion, gamma
correction, etc.
C code size 5,000 lines, 15 source files
operations 4,195 ops (76 multiplications)
line buffer memory 64 lines (2,304 pixels wide), 1.9M bits
pipeline stages 32
RTL code size 27,000 lines (Verilog), 20,000 lines (C)
comb. circuit size 225,279 gates (approx.)
FF count 23,393 bits
max clock freq. 300 MHz (approx., @90nm CMOS)
synthesis time 56.8 seconds (excl. C parsing)

Fig.6 shows the assumed ISP pixel pipeline architecture in
this design case. Fig.7 shows the top-level function of the
ISP pixel pipeline where a total of 10 ISP blocks are called,
each having a common pixel stream interface. Table 1
shows the RTL synthesis results of this ISP pipeline design.
The entire C dataflow model consists of more than 5000
lines distributed over 15 source files. After parsing these C
source files and undergoing the synthesis steps, the final
optimized DFG consisted of 4,195 operation nodes,
including 76 multiplications whose bit-widths were
distributed between 9 bits and 36 bits. It should be noted
that this vast amount of operations occur concurrently on
the pipelined RTL, thus parallelism of 4,195 operations are
achieved by the C dataflow model. A total of 64 line buffers
(2,304 pixels wide) are instantiated inside the ISP blocks.
The generated RTL consists of 32 pipeline stages
(user-specified) where the circuit size is 225K gates for
combinational logic, 23K bits of flip-flops, and maximum
clock frequency of 300 MHz using 90nm CMOS (here, gate
count and clock frequency are approximated by the tool’s
gate model). It takes a total of 56.8 seconds to generate the
RTL descriptions which consists of 27,000 lines of Verilog
code and 21,000 lines of RTL-equivalent C code.

6.2. RISC Processor

Upon the successful generation of the previous ISP pipeline
architecture with our framework, we set our next target to
the RISC processor design. The RISC processor
architecture used here comes from authors’ previous works
on MPSoC designs [8] originally on manual RTL coding
and later by Synopsys Processor Designer using LISA

language [9][10][11]. Our RISC core is a 32-bit architecture
with 4 pipeline stages (FE: fetch, DE: decode, EX: execute,
WB: writeback), 32 general purpose registers, with integer
multiplier and multi-cycle integer divider (Fig. 8), and has
been shown to have comparable performance to that of
ARM9 processor [9].

Figure 8: 4-stage RISC pipeline architecture

Figure 9: CPU resource data structure

Figure 10: Top-level function of RISC ISS code

 In this design exercise, we have started by completely
rewriting the processor model in C dataflow model as a
simple interpretive instruction-set simulator (ISS) [12][13]
which consists of 500 lines of C header file declaring RISC
resource data structures (registers, register files, memories,
etc) as shown in Fig.9, with another 500 lines of C code for
describing the full details of the baseline pipeline behavior
as shown in Fig.10. In accordance to the single cycle
behavior coding restriction explained in section 3, one call
to the top-level function models the single cycle
behavior of the RISC pipeline, such coding style comes
naturally for such interpretive ISS.
 Inside the top-level function , lower-level
functions corresponding to the 4 pipeline stages are called
consecutively. Fig.11 shows the function for the FE-stage
where program memory array is accessed by a
normal array indexing expression. The entire C dataflow

- 44 -

code, in fact, only uses standard C expressions without any
use of tool-specific predefined macros, data structures or
libraries. This makes our C dataflow modeling quite
intuitive to any C programmers.

Figure 11: FE-stage C function

 Fig.11 contains some special features required in RISC
pipeline modeling, that is, the feedback signals from the
later pipeline stages (described in section 3.4).

 is a backward reference from the
DC-stage which indicates that a branch instruction is
decoded whose target address computed also at DC-stage as

 is used to access the program memory.
Such backward references in the C dataflow model is
necessary for modeling pipeline stalls and data forwarding.

Table 2: RTL synthesis results of RISC pipeline
RISC features: 32-bit data, 4 stage pipeline, 32 general purpose
registers, integer multiply unit, multi-cycle integer division unit,
UART port (including SerDes), interrupt handling logic
C code size 850 lines, 5 source files
operations 1,824 ops (1 multiplication)
pipeline stages 4
RTL code size 4,100 lines (Verilog), 3,650 lines (C)
comb. circuit size 44,268 gates (approx.)
FF count 3,449 bits (pipeline registers + reg-file)
max clock freq. 300 MHz (approx., @90nm CMOS)
synthesis time 30.5 seconds (excl. C parsing)

Table 3: Instruction-set simulation speed comparison
test program: calculation of 200 prime numbers with UART message
of output results (5,600 characters @ 115.2K bps)
simulation cycles 10,764,342 cycles
ISS time (C dataflow) 0.918 sec (11.726 M cycles/sec)
ISS time (RTL-equiv. C) 5.558 sec (1.937 M cycles/sec)
ISS time (Verilog) 38.850 sec (0.277 M cycles/sec)

 Table 2 shows the RTL synthesis results of the RISC
pipeline design, where in addition to the baseline RISC
pipeline (about 500 lines), additional features such as
UART port with SerDes for pin-accurate serial IO modeling
and interrupt handling logic are implemented in the C
model, resulting in 850 lines of C code. The number of
pipeline stages for pipeline optimization phase was
obviously set to 4, where changing the number of pipeline
stages involves reworking the pipeline control logic
(pipeline stalls, data-forwarding) and cannot be simply
handled by graph cut algorithm. Generated RTL codes were
4,100 lines of Verilog and 3,650 lines of RTL-equivalent C
code. Table 3 shows the simulation speed comparison on
the 3 different ISS (instruction-set simulator) models. The
original C dataflow model has a throughput of 11.726 M
cycles/sec, compared to 1.937 M cycles/sec for the

RTL-equivalent C model and 0.277 M cycles/sec for
Verilog model.

7. Conclusion

In this paper, we have proposed a novel C dataflow
modeling scheme for directly describing the RTL structures
of HW IP blocks and processors without any extensions on
the C semantics, where a set of hardware attributes are
annotated by C pragmas. The required synthesis steps are
composed of standard compiler optimization and graph
algorithms which allow the tool framework to directly
handle relatively large designs exceeding 5000 lines of C
code and generate deeply pipelined RTL structure of over
220K gates with parallelism of over 4000 operations per
cycle in the case of ISP pipeline synthesis. Our C dataflow
modeling applied to processors in turn is a cycle-level ISS
with the full details of the processor pipeline behavior with
pipeline control logic for pipeline stalls and data-forwarding.
Our tool framework enables the designers to describe the
RTL structures on C language, where the very same C
model serves as a fast simulation model which can be
integrated as a simulation component for the system-level
verification. In the future, we plan to develop many C
dataflow models for various IOs, accelerator engines for
creating a wide range of ASIPs.

References

[1] G. Martin, G. Smith, "High-Level Synthesis: Past, Present, and
Future", IEEE Design & Test of Computers, vol.26, no.4, pp.18 - 25, 2009
[2] W. Meeus, et.al, "An overview of today's high-level synthesis tools",
Design Automation for Embedded Systems, vol.16, no.3, pp.31 - 51, 2012
[3] P. Marwedel, "The MIMOLA Design System: Tools for the Design of
Digital Processors", Design Automation Conference, pp.587 - 593, 1984
[4] A. Hoffmann, et. al, "A novel methodology for the design of
application-specific instruction-set processors (ASIPs) using a machine
description language", IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol.20, no.11, pp.1338 - 1354, 2001
[5] S. Basu, R. Moona, "High level synthesis from Sim-nML processor
models", 16th Int. Conf. VLSI Design, pp. 255 - 260, 2003
[6] M. Z. Urfianto, et. al, "Decomposition of task-level concurrency on C
programs applied to the design of multiprocessor SoC", IEICE Trans.
Fundamentals, vol.91, no.7, pp.1748 - 1756, 2008
[7] R. Ramanath, et. al, "Color Image Processing Pipeline", IEEE Signal
Processing Magazine, vol.22, no.1, pp. 34 - 43, 2005
[8] M. Z. Urfianto, et. al, "A multiprocessor SoC architecture with
efficient communication infrastructure and advanced compiler support for
easy application development", IEICE Trans. Fundamentals, vol.91, no.4,
pp.1185 - 1196, 2008
[9] H. Xiao, et. al, "A Low-Cost and Energy-Efficient Multiprocessor
System-on-Chip for UWB MAC Layer", IEICE Trans. Information and
Systems, vol.95, no.8, pp. 2027 - 2038, 2012
[10] H. C. Liao, et. al, "A Design of High Performance Parallel
Architecture and Communication for Multi-ASIP Based Image Processing
Engine", IEICE Trans. Fundamentals, vol.E96-A, no.6, pp. 1222 - 1235,
2013
[11] http://www.synopsys.com
[12] R. Leupers, et. al, "Generation of interpretive and compiled
instruction set simulators", ASP-DAC '99, pp. 339 - 342, 1999
[13] M. Reshadi, et. al, "Instruction set compiled simulation: a technique
for fast and flexible instruction set simulation", Design Automation
Conference, pp. 758 - 763, 2003

- 45 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

