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Abstract—Hybrid clock architecture offers a compromise between tree
and mesh. While most of the relative works focus on tree-driven-mesh
configuration, we are interested in the performance and optimization of
multisource CTS flow provided by a state-of-the-art commercial tool,
which applies a coarse mesh with local sub-trees. In this study, we
analyze the QoR of conventional clock tree and multisource CTS on
a real industrial design. We also propose several heuristic approaches
to improving the performance of multisource CTS, especially for skew
optimization. According to the experimental results, we reveal the benefits
and drawbacks of each method, give some guidelines for determining
the proper configuration for a design, and then summarize some future
research directions.

I. INTRODUCTION

Clock network design is one of the most important research
topics in VLSI design. There are two common clock distribution
architectures implemented to meet the timing requirements of the
system. One is conventional clock tree, which is commonly used
due to low power consumption, less routing resource usage as
well as simplicity of implementation and simulation [1]. However,
tree-based architecture can be highly sensitive to process, voltage,
and temperature (PVT) variations, especially in high-performance
chip designs. Clock mesh, the other architecture, provides better
tolerance to variations [2]. Nevertheless, with lots of mesh nodes and
unbalanced loads, clock mesh is difficult to analyze and automate [3].
Besides, additional metal wires and drivers lead to a lot more routing
resource and higher power consumption than conventional clock tree.
Several works for non-tree networks optimization have been pre-

sented. [4] used cross links instead of mesh to improve robustness
with a small increase in power consumption. Mesh edge reduction
algorithms reduced power while a little skew overhead were presented
in [5] and [6]. Moreover, [7] proposed a technique to customize
mesh for non-uniform sink distributions and [8] developed a buffer
reduction method for mesh-based clock distribution.
Hybrid architecture that combines tree and mesh is another method

for power and skew trade-off. Research in [1] built a blockage-
aware tree driving a mesh considering the loadings to minimize local
skew. Others produced a combination of non-uniform meshes and
un-buffered trees to reduce skew variations while minimizing power
and metal area overhead [3]. Besides, the authors of [9] proposed an
algorithm to choose the position of tapping points on a tree-driven-
grid clock network that can handle non-uniform loads. Synopsys
IC Compiler (ICC) provides multisource clock tree synthesis (CTS)
methodology, which applies a coarse mesh with local sub-trees to fill
the gap between conventional clock tree and clock mesh. [10], [11],
[12] and [13] presented the introduction and implementation about
this methodology.
While most of the relative works focus on tree-driven-mesh ar-

chitecture, we are interested in the performance and optimization
of multisource CTS flow provided by a commercial EDA tool. In
this paper, we analyze the quality of results (QoR) of conventional
clock tree and multisource clock network on a real industrial design.
We also propose several heuristic approaches to improving the
performance of multisource CTS, especially for skew optimization.
From the results, we give some guidelines for determining the proper
configuration for a design.

The multisource CTS implementation flow and construction of
different mesh configuration are shown in Section II. Section III
presents the details of proposed approaches for tap-point and sink
assignment. Section IV reports the analysis of our experimental
results on a real industrial case. Finally, we give the conclusions
in Section V.

II. MULTISOURCE MESH CONFIGURATION

A. Overall Flow

Multisource clock network is a hybrid method of conventional CTS
and clock mesh. The structure is shown in Fig. 1, which consists
of a mesh driven by a pre-mesh tree. Multisource drivers connect
to the mesh at a limited number of locations referred to as taps.
A multisource clock tree structure driven by the mesh consists of
subtrees, each driven by a tap.

With the mixed structure, multisource CTS has lower skew, better
QoR and on-chip variation (OCV) tolerance than conventional clock
tree because of the increasing common path. Furthermore, by using
coarse mesh rather than dense mesh, multisource CTS consumes less
power and routing resources and become easier to implement than a
traditional clock mesh.

Fig. 1. Structure of multisource clock distribution network. The red dashed
line divides the structure into global and local clock network. Our modified
parts are marked.

In our work, first, we generate appropriate size of mesh for the
design, but there are no guides about how dense the mesh should be.
We do some works on mesh configuration to find a good one, and
details are presented in Section II.B and II.C. Next, we insert the
multisource drivers to the intersections of the horizontal and vertical
mesh spines and assign each sink to the corresponding driver. The
influence of this stage on final results are significant, so we propose
some approaches to minimizing clock skew in Section III. Then we
implement the rest of the flow following the steps recommended by
[13], including building pre-mesh tree and the subtrees driven by the
multisource drivers, routing the clock nets and analyzing the results.
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B. Mesh Density Adjustment
The mesh configuration in multisource CTS dominates the latency

shared by each sink. The lower the mesh density, it behaves more like
conventional clock tree. Conversely, as the mesh density increasing,
it becomes like a pure mesh and benefits from better OCV tolerance
but pays expense on higher power consumption and routing resources
[10]. Thus, determination of the mesh density, which means number
of horizontal and vertical straps, is very important.
We first use a design service company in-house utility [14] to get

a recommended mesh size. This utility estimates the mesh density by
the aspect ratio of bounding box of all sink pins and the experiential
average pin number driven by a tap. Take the case we use as an
example, the utility recommends the configuration 7*9 (7 horizontal
with 9 vertical straps). Then we try other mesh sizes based on the
recommended one, and the QoR results are shown in Section IV.

C. Non-uniform Mesh
Because the intersections of the horizontal and vertical mesh

segments are potential multisource driver locations, mesh generation
affects the following clock network significantly. The mesh configura-
tion mentioned in previous section is uniform structure; however, non-
uniform sink distribution and macros in the design might diminish
the performance of mesh, so we use two approaches of non-uniform
clock mesh to fix the problem.
First one is the macro-avoiding approach. Mesh segments that

overlap macros are not useful and will waste the power consumption.
We add a function provided by ICC to avoid creating straps and vias
intersecting those macros so that the power can be reduced. The other
method is creating mesh considering sink distribution. Our flow is
as follows: we collect all sink locations first, and then calculate each
column and row density under the given uniform mesh configuration.
Next, it is necessary to compare a row with its adjacent rows and
a column with its adjacent columns before moving straps. The final
position of a strap depends on the difference in density between it
and its adjacencies. In addition, the straps can only be moved within
a limit range in order to maintain the balanced characteristic of mesh
structure.

III. TAP-POINT DETERMINATION AND SINK ASSIGNMENT

In multisource CTS implementation, determination of the number
and positions of tap points which lower-level sinks are connected to,
as well as the arrangement of sink grouping can affect the QoR of
the final clock network. Variances between the trees that sit beyond a
collection of multisource drivers lead to disparities in local clock skew
and insertion delay, which might impact on buffer area minimization
and inter-clock delay-balancing efforts adversely [12].
In our flow, we choose locations of multisource drivers on the

vias where the horizontal mesh straps intersect the vertical ones for
convenience and uniform distribution. However, loading and topology
of tree are also factors to be considered when making decision on tap
points. Furthermore, ICC assigns sinks to taps based on location and
blockages rather than timing relation between them, which is another
important element for skew minimization.
We propose several heuristic approaches and analytic methods on

tap determination and sink assignment in this section. Because we
can control only a few parts in the flow, our works just modify some
user-defined parameter according to the limited information we get
from ICC and observe if our research is meaningful.

A. Arrival-time-based Approach
Clock skew is defined as the difference of arrival time between any

two registers. In order to minimize the skew, we observe the arrival
time distribution of all sinks. Take Fig. 2 as an example, the more
the color is close to yellow, the bigger the sink arrival time is; the
more the color is similar to blue, the smaller the sink arrival time
is. It is obvious that arrival time of sinks distribute based on the tap
locations since we can easily divide the sinks with different colors

by red dashed lines. Thus, we decide to decrease the delay in the
region where tap driving sinks with higher arrival time, so that clock
skew might be minimized.
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Fig. 2. Arrival time distribution graph of mesh configuration 4*6. We divide
the sinks with different colors by red dashed lines.

As shown in Fig. 2, red dots with white text on them denote the
tap drivers. We can see that the sinks around Tap 5 and Tap 6 are
most orange and yellow, while others are pink, purple and even blue
ones. According to this distribution, we insert another tap between
Tap 5 and Tap 6 to share the sinks driven by them and hope this can
lower the latency of those sinks. The result after tap insertion shows
that colors change not only around the inserted tap but also in other
regions of the design. It is true that the sinks in the targeted range
have lower arrival time than in the original case, but we cannot make
sure whether the overall skew would be better after tap insertion.

B. Loading-based Approach

To work on tap location determination, we collect the information
of each tap after multisource CTS. From the results, we know how
many sinks and levels of sub-tree under each driver, the number of
buffers used by each tap and where the tap located in the design.
We find that the differences in levels, the depth of taps, do not

change as number of sinks increases (as shown in Fig. 3(a)). Thus, we
infer that subtrees with huge different number of sinks have similar
levels because of the objective in balancing the latency. In contrast of
level, number of buffers is more related to the driven sinks (as shown
in Fig. 3(b)). We decide to have the same number of sinks driven by
each tap so that the number of used buffers could be similar as well.
That is, this approach is based on balancing the number of sinks and
buffers, which means the loading of each tap keeps the same.

(a) Sink vs. level (b) Sink vs. buffer

Fig. 3. Relation between number of sinks, buffers and levels. Number of
level does not change a lot as number of sinks increases. In contrast, number
of buffers is more related to the driven sinks.

We focus on the taps driving bigger number of sinks and find that
there are two pairs of these taps next to each other. To share the sinks
with them, a new tap is inserted to the middle of each pair. From the
results, we confirm that loadings of taps become more balanced than
the original since the biggest difference in number of driven sinks
and in numbers of buffers are both reduced near 25%.
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C. Local-skew-based Approach
The skew between a sequentially related sink pair is called local

clock skew. To minimize clock skew, we wonder where the worse
local skews appear in the design. We use ICC to report the worst
200 local clock skew pairs of sinks and check which taps the sinks
are driven by. Then we make a list of those worse skew tap pairs in
Fig. 4.
In the upper right of Fig. 4 shows the worst local skew pairs

statistic. We can see that these pairs contain the close tap pairs and
the far ones. That is, the sinks with sequential relation may be placed
in the locations far from each other. However, in this stage we cannot
modify the placement, so if there is a worst local skew pair with long
distance between each sink, it is hard to fix during this step. Thus,
we choose the skew pairs with distance less than or equal to a given
threshold as listed in the lower right of Fig. 4.

Fig. 4. Statistics of worst local skew tap pairs.

1) Tap-point Determination: After filtering the worst local skew
pairs, it is clear that which adjacent pairs of taps have more skew
violations. Since the skew violation occurs due to different taps the
sinks assigned to, we hope to fix this by making these sinks driven
by the same tap. Insert a tap in the middle or merge two taps
are candidates for solution. However, both of them have potential
drawback: this does not improve the result but make it worse.
Fig. 5 is an example of tap insertion. Rectangles with same color

represent the sinks with timing relation between them. Local skew
violations of blue sinks and black sinks happen in the original tap
arrangement in the left of Fig. 5. Therefore, we insert Tap 3 between
Tap 1 and Tap 2 as shown in the right of Fig. 5. The result is that we
successfully assign all blue sinks to the same tap, but the green ones
which are grouped to the same tap at first become separated after tap
insertion.

Fig. 5. An example of tap insertion based on local skew violation. After
adding Tap 3, some timing-related sinks are assigned to the same tap, while
others are not.

To sum up, it is hard to expect the result of tap rearrangement
based on local skew violations because other sinks driven by the
targeted taps can be affected due to automated sink assignment.
2) Sink Reassignment: In multisource CTS flow, ICC automati-

cally splits sinks to multisource drivers based on their placement and
the blockages after tap point determination. As a result, sinks with
timing relation might be assigned to different taps. Furthermore, ICC
only provides a command to force a sink to assign to a specific tap
driver. Although we find a way to check whether a pair of sinks have
timing relation between them by checking their local skew report,
there is still no way to control sink grouping and assignment.

We decide to fix these violations by reassigning the sinks to the
same tap without modifying location and number of taps. We still
focus on the sink pairs with distance under a given threshold so that
the reassignment would cause little drawback in latency. As illustrated
in Fig. 6, sinks can have timing relation with more than one sink.
We change the assignment of sinks with most of their relative sinks
assigned to another tap. For example, B3 is reassigned rather than B1
or B2, and in the same way A1 and A2 are chosen to be reassigned.
Furthermore, if a sink has only one relative sink driven by another
tap, we ignore it because this kind of sinks are too many and the
reassignment might be insufficient. For instance, we do not change
the assignment of both black sinks in Fig. 6.

Fig. 6. An example of sink reassignment. We reassign the A1, A2 and B3
because most of their relative sinks are assigned to another tap.

IV. EXPERIMENT RESULTS

A. Experiment Setup
Our experiments are performed on a real industrial case applying

28nm process and other characteristics are listed in Table I. All of
our flows use the same placement results made from ICC as the
input. We implement our works on two clock domains with different
number of sinks in this design, and the information of the clocks are
displayed in Table II. We analyze the results after the CTS stage and
before routing, and we collect the data under the scenario operating
on typical conditions and considering OCV effects.

TABLE I
TEST DESIGN DATA

Case Name ASIC1

Process 28nm

Number of Macro Cell 101

Number of Std Cell 782460

Total Macro Cell Area 907977.76 μm2

Total Std Cell Area 756555.47 μm2

Clock Routing Layers M3-M6

Clock Mesh Layers M7,M8

TABLE II
DATA OF TWO CLOCKS IN ASIC1

Clock Name CLK1 CLK2

Number of Sinks 79380 3007

Period 1.49 ns 2.50 ns

Maximum Transition Time 100 ps 100 ps

B. Different Mesh Sizes
In Table III and Table IV, we present the QoR results of mul-

tisource CTS flow under different mesh configurations. We apply
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different mesh settings on each case based on the rule we mentioned
in Section II.B. The CTS row means the result of original CTS flow
while others are results of multisource CTS flow with different mesh
densities. The ClkCells item is the total number of cells in the clock
network. The blue and the red data denote the best and the worst one
in each column.

TABLE III
QOR OF DIFFERENT MESH CONFIGURATIONS UNDER CLK1

TABLE IV
QOR OF DIFFERENT MESH CONFIGURATIONS UNDER CLK2

From the results, the difference between multisource CTS and
original CTS is obvious. Multisource CTS flow consumes more clock
network power and has longer latency than original CTS flow. But
on the other hand, it has 20-50% improvement in clock skew and
over 70% improvement in total negative slack (TNS).
The trends of variation among multisource CTS with different

mesh sizes are not significant, but we can still see that as mesh size
growing up, the skew is getting better but the power consumption
increases. The timing performance is unstable, but it is clear that
when mesh size exceeds a threshold, timing performance starts to
decrease. This phenomenon may be caused by congestion. Thus, it
seems that the most portable configuration can be 6*8 or 7*9, both of
whom are near the default configuration recommended by in-house
utility mentioned in Section II.B.
The above analysis is based on the results of CLK1 because

multisource CTS flow seems not so efficient on CLK2. We believe
that this situation is due to the distribution and number of sinks. As
shown in Fig. 7, most of the sinks of CLK2 locate in the left of the
chip and are sparse while sinks of CLK1 are much denser and spread
all over the chip. We can conclude that multisource CTS performs
better when the target clock has to cover larger area.

Fig. 7. Sink distribution of 2 target clock domains. The left is CLK1, and
the right is CLK2

C. Non-uniform Mesh
Table V represents the results of different non-uniform mesh

configurations, including macro-avoiding approach and mesh con-
sidering sink distribution. The red data indicate it is worse than the
original one while the blue data represents that it is better, and the
black ones are similar to the original. The results show that macro-
avoiding approach averagely consumes 3-4% less clock power than
uniform mesh configuration with a little tradeoff in skew or timing
performance.
We use C++ programing language with sink locations and number

of straps as input to get non-uniform mesh configuration. In Table V,
we can see that clock skew is reduced obviously when creating mesh
considering sink locations. However, more clock power is consumed
and the reason may be the increase in number of buffers used to
balance the non-uniform mesh.

TABLE V
QOR OF DIFFERENT MESH AND NON-UNIFORM MESH CONFIGURATIONS

CLK1 AND CLK2

D. Tap Determination
In each approach of tap point determination, we first get the

information we need by ICC commands and use TCL or C++
programing language to collect these data in the way we want.
Results of tap determination based on arrival time distribution is
listed in Table VI. We use the case mentioned in Section III.A, but
it seems that balance of arrival time just appear in the limit range,
so the overall skew and timing do not have significant improvement
compared with the original structure.

TABLE VI
QOR OF ARRIVAL-TIME-BASED TAP ASSIGNMENT FOR CLK1

In the experiment of loading-based approach, we combine with
non-uniform mesh and the results are shown in Table VII. We insert
two taps in 3*4 nonuni configuration, and one of them is located in
the middle of four high-loading-taps so this tap is not near any mesh
strap. This may be the reason for worse performance of this case. In
case 6*8n tap-4, we remove four taps with much less loading than
others from 6*8 nonuni configuration, and the result shows that it
saves some power with a little increase in skew timing violations.
Taps and sink arrival time distribution of case 3*4 tap+1 are shown
in Fig. 8. We can see that after adding Tap 11 between Tap 10 and
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Tap 12, most sinks in that region are assigned to Tap 11 rather than
split to different taps. Thus, the more unbalanced loading of each tap
leads to the worse skew, but timing violations reduce because lots of
nearby sinks are grouped to the same tap. We can also explain the
results of other cases by this reason.

TABLE VII
QOR OF LOADING-BASED TAP ASSIGNMENT FOR CLK1 AND CLK2

Fig. 8. Taps and sink arrival time distribution of case 3*4 tap+1

Table VIII shows the results of tap assignment based on worse local
skew pairs. We apply tap insertion and tap merging in the case 6*8.
According to the QoR results, it seems that only clock skew in case
4*6 tap+1 is improved, but nothing gets better in other cases. The
results are expected due to the potential risk mentioned in Section
3.1.1. From the reports of worse skew pairs in original and modified
configurations, we can see that violations in original case almost
disappear in the modified ones with a few new violations. To sum
up, though overall skew and QoR performance may not be improved
by this approach, it can help reduce the skew in local area.

TABLE VIII
QOR OF LOCAL-SKEW-BASED TAP ASSIGNMENT FOR CLK1 AND CLK2

E. Sink Reassignment
The data shown in Table IX is the result of the approach mentioned

in Section III.C, which is also based on worse local skew pairs. We

only reassign a few sinks to the proper taps where lots of their timing-
related sinks assigned to. After the reassignment, the tap pairs shown
in the original worse skew report are gone, and it seems that the
overall skew is reduced without significant trade-off in clock power
consumption. These results show that clock skew and QoR may
become better when grouping sinks to taps considering both location
and timing relation.

TABLE IX
QOR OF LOCAL-SKEW-BASED SINK REASSIGNMENT FOR CLK1

V. CONCLUSIONS

In this work, we present a study by analyzing the QoR of
conventional clock tree and multisource clock network implemented
with state-of-the-art tool on a real industrial design. We focus on
the steps which can be controlled in the flow and propose some
heuristic approaches to improving the performance of multisource
CTS, especially for skew optimization. From the results, we find the
proper mesh configuration for a design and that multisource CTS
performs better when the target clock covers larger area. Though the
results seem to be case-dependent, we can still conclude that skew
and QoR may get better by performing tap and sink assignment,
considering both location and timing relation of sinks. How to
automate this flow is an important future research direction.
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