
An Overlay Architecture for FPGA-based Industrial Control Systems
Designed with Functional Block Diagrams

Taisei Segawa1, Yuichiro Shibata1, Yudai Shirakura1, Kenichi Morimoto1, Hidenori Maruta
1, Fujio Kurokawa1, Masaharu Tanaka2, and Masanori Nobe3

1Nagasaki University 1-14, Bunkyo-machi, Nagasaki,852-8521 Japan
2Mitsubishi Heavy Industries, LTD. 2-16-5 Konan, Minato-ku, Tokyo 108-8225 Japan

3Mitsubishi Hitachi Power Systems, LTD. 3-3-1 Minatomirai, Nishi-ku, Yokohama, 220-8401 Japan

Abstract— This paper discusses FPGA implemen-

tation of industrial control logic described in a func-

tion block diagram (FBD) language. First, we evalu-

ate an approach where FBD descriptions are directly

translated to FPGA hardware using a high level syn-

thesis technique. Second, aiming at improving re-

source utilization efficiency, we proposed an overlay

architecture which helps resource sharing of the same

arithmetic structure utilized in different control logic

sheets. Evaluation results show that the proposed ar-

chitecture can significantly reduce resource require-

ments per control logic sheet, at a cost of acceptable

performance degradation.

I. INTRODUCTION

Recently, demands for highly responsive real-time OS,
highly intelligent communication, and high performance
control operations are increasing in control systems for in-
dustrial infrastructure such as thermal power generation
plants. Although a standard solution to the demands is
multicore CPUs, their complex architecture is not neces-
sarily suited to the industrial control systems.

Generally, long-term utilization of the same CPU ar-
chitecture is difficult, since product cycles of CPUs are
shorter than those of plant equipments. When the CPU
architecture installed in industrial control systems is ex-
changed with new architecture, often software applica-
tions and OS are also needed to be revised due to archi-
tectural changes such as the number of cores. Note that
dedicated OS needs to be often used for industrial con-
trol systems. Regarding development environments for
industrial control systems, function block diagram (FBD)
languages are widely utilized. Usually, FBD descriptions
are translated to standard programming languages such
as C, and then executed sequentially on a CPU. How-
ever, this design and execution flow does not exploit any
inherent parallelism in control logic.

As a solution to these problems, FPGAs are attract-
ing attention. A logical design layer of FPGA circuits

can be inherited and enables long-term utilization of the
design, even when physical FPGA chips are exchanged.
Also, parallelism included in FBD descriptions will be ex-
ploited on FPGAs, by using a high-level synthesis (HLS)
technique.

Although research attempts that translate FBD de-
scriptions to HDL descriptions using HLS have been car-
ried out [1][2][3], it has not been well addressed how these
designs should be implemented on FPGAs in terms of per-
formance and resource utilization. In this paper, we dis-
cuss FPGA implementation of control logic described in
an FBD language. We evaluate two approaches: (1) direct
conversion from FBD to FPGA hardware using HLS and
(2) introduction of an overlay architecture on the FPGA.
While many overlay architectures have been proposed to
speedup application mapping time on FPGAs [4][5][6][7],
our main aim of introducing an overlay architecture is to
improve efficiency of resource utilization.

This paper is organized as follows. Section II explains
about FBD languages. Section III describes direct imple-
mentation of control logic described in FBD and shows
evaluation results. Section IV presents a proposed over-
lay architecture. Section V explains how the proposed
architecture is implemented. Section VI discusses evalu-
ation results on performance and resource utilization of
the proposed architecture. Finally, Section VII concludes
the paper.

II. FBD (Function Block Diagram)

FBD is a graphical diagram, where instruction blocks
(function blocks), which are reusable functional elements,
and flows of data signals between function blocks are
described. FBD languages are also widely utilized for
program description of programmable logic controllers
(PLCs). In this work, we use a sort of FBD language
called IDOL, which was developed by Mitsubishi Hitachi
Power Systems for their DIASYS Netmation control sys-
tems.

Typically, control logic for industrial plants consists of a

SASIMI 2016 ProceedingsR2-17

- 164 -

Fig. 1. Loop logic and a sheet

number of feedback control loops. In IDOL, each feedback
loop is called loop logic, and is basically drawn in one
sheet as shown in Figure 1.

III. Direct Translation from FBD to FPGA

by HLS

We implemented two simple control logic loops with
HLS to evaluate performance and resource utilization
of direct translation from FBD to FPGA hardware:
proportional-integral (PI) control logic and on-off control
logic for controlling a liquid level in a water tank.

Figure 2 (a) shows diagram of the evaluated PI control
loop, and Figure 2 (b) shows an assumed plant model as
a control target. Based on input data such as the current
liquid level, the PI loop logic controls the valve aperture
to keep the liquid level at the desired level. The AI and DI
blocks shown in Figure 2 are used for data input, while the
AO block is used for data output. The other blocks such
as FX and PI are arithmetic blocks. In this evaluation,
the target liquid level was set to 5,000.

As Figure 3 illustrates, the on-off control logic consists
of two sheets of control loops, since its plant model has
two control inputs, a water inlet valve and an outlet valve.
Comparing the current liquid level to predefined threshold
levels, each control loop decides whether to open or close
the corresponding valve. In this evaluation, the inlet valve
was controlled to be opened and closed when the level
falls below 2,000 and exceeds 9,000, respectively. For the
outlet valve, the two threshold levels were set to 3,000 and
8,000, respectively. The control cycle time of the systems
was assumed to be 50msec, which is a typical case in
current industrial plants.

A. Implementation

In the DIASYS IDOL system, a script is prepared for
each function block, which is eventually executed on a
CPU. Figure 4 shows the script of the HMH block as an

(a) Control logic

(b) Plant model

Fig. 2. Control logic and plant model of PI control

(a) Control logic 1 (b) Control logic 2

(c) Plant model

Fig. 3. Control logic and plant model of PI control

example. Although IDOL scripts are similar to C descrip-
tions, IDOL has a dedicated grammar and has original
variable types. Therefore, to absorb a grammatical gap
between the IDOL scripts and HLS languages, we imple-
mented a class library where IDOL original types and sys-
tem functions are defined as C++ classes. By using this
class library, IDOL scripts can be interpreted as standard
C++ descriptions to be processed with HLS tools. In
this evaluation, Xilinx Vivado-HLS 2015.2 was utilized for
high-level synthesis. Single-precision floating point arith-
metic was utilized for real number calculations. The con-
trol logic was mapped on a Xilinx Kintex-7 XC7K325T
FPGA with a clock frequency constraint of 100 MHz. The
control target models were also described in C++ and
mapped on the same FPGA to emulate the plant behav-
ior.

B. Evaluation

Figure 5 and Figure 6 show results of the emulation
experiments. For the PI control, the tank level converged
at the target level of 5,000. We confirmed the behavior of
the control logic was appropriately changed by parameters
of PI control. A ’k’ and ’t’ in Figure 5 show a proportional
gain and a time constant, respectively.

Also from the results of the on-off control, it is con-
firmed that the inlet and outlet valves were surely opened
and closed according to the designed threshold levels. The
average arithmetic execution time per control loop was
0.93μsec for the PI control and 0.02μsec for the on-off
control, respectively. Considering a typical calculation
cycle time for many plant equipments is a few msec, the

- 165 -

/************************ HMH*/
void SCR_HMH(Ain X,Ain H,Ain D,Dout Y)
{
if(IS_MA_SET(Q(Y))) return;

if(D<0.0){
Y=1;
SET_CALC_ERROR(Q(Y));
return;
}

if (X>H) Y=1;
else if(X<=H-D) Y=0;
}

Fig. 4. Script of HMH block

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ta
nk

 L
ev

el

Simulation Step

k=5, t=100
k=1, t=100

k=10, t=500

Fig. 5. Emulation result of the PI logic

control logic generated by HLS has a large performance
advantage, more than three orders of magnitude.

Table I shows the amounts of FPGA resources con-
sumed by each control logic. When attention is paid
to the PI control, a total of 906 SLICEs, each of which
consists of 4 look-up tables (LUTs) and flip-flops (FFs),
were needed to implement this control logic. Since a
Kintex-7 XC7K325T FPGA provides 50,950 SLICEs, this
FPGA can implement 56 sheets of PI control loops on the
chip. However, recent control systems for large-scale en-
ergy plants execute about 1,000 sheets of logic. Since
even a high-end Virtex-7 XC7V200T FPGA, which of-
fers 30,5400 SLICEs, can implement only 337 sheets, it is
essential to improve area efficiently of the system. Con-
sidering that the calculation speed of the control logic
is fast enough for the required performance, we propose
an architecture where arithmetic hardware for multiple
loop logics is not simply expanded in space, but hardware
resources for the same function blocks used in different
sheets are shared and reused.

IV. PROPOSED ARCHITECTURE

In this section, we explain a proposed architecture,
which focuses on sharing of hardware resources.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 100 200 300 400 500

Ta
nk

 L
ev

el

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

In
le

t V
al

ve
 O

pe
n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

O
ut

le
t V

al
ve

 O
pe

n

Fig. 6. Emulation results of the on-off logic

TABLE I
Resource utilization

Resource
PI Control On Off Control

Utilization Utilization Utilization Utilization
Rate[%] Rate[%]

SLICE 906 1.78 104 0.204
LUT 3093 1.52 332 0.162
FF 1934 0.474 17 0.00417

DSP 12 1.42 0 0
BRAM 2 0.224 0 0

As shown Figure 7, processing elements (PEs) needed
for desired control logic are placed to form an array of
(n × m). The PEs in the same row and column are con-
nected with horizontal buses and vertical buses, respec-
tively. For simplicity of the layout, PEs of the same type
of function block are placed in the same column. That
is, n corresponds to how many different types of function
blocks, and m corresponds to the maximum number of
PEs of the same type of function block are utilized.

A PE that finishes its calculation transmits the calcu-
lation result to the PE that will use the result for the
next operation. The data transmission is performed by
the 2-D buses in the following manner. Here, we denote
the horizontal axis as x-axis and the vertical axis as y-axis
for explanation.

1. A PE which finished its calculation broadcasts the
result to all the PEs on the same horizontal bus. The
coordinate of the destination PE is appended in the
header of the packet.

2. Each PE that receives the broadcast data checks the
destination coordinate of the data. Only the PE that
has the same x-coordinate with the destination re-
tains the data, while the other PEs just discard the
data.

3. The PE which retains the data broadcasts the data
to all the PEs on the same vertical bus.

- 166 -

Fig. 7. Proposed architecture

Fig. 8. Transmission to horizontal direction

4. Each PE that receives the data verifies the destina-
tion, and only the PE that has the same y-coordinate
with the destination retains the data.

For example, when the PE (0,1) transmits data to the
PE (j,k), first, the sender PE broadcasts the data on
the same horizontal bus and the PE (j,1) retains data as
shown in Figure 8. Next, the PE (j,1) sends the data on
the vertical bus as shown in Figure 9, and lastly PE (j,k)
retains the data. In this way, communication between
any combinations of PEs can be completed in two-hop
routing.

A. Execution Order Controller

All PEs are connected to an execution order controller,
which controls the order of PE execution as shown Fig-
ure 10. The execution controller activates the PE to be
executed next by sending the coordinate of the PE. The
execution controller also sends the sheet number to be ex-
ecuted. The order of PE execution is stored in the table in
the execution order controller, whose contents are written
when an application is mapped on the architecture.

Fig. 9. Transmission to vertical direction

Fig. 10. Execution order controller

B. PE (Processing Element)

Figure 11 shows the structure of a PE in the proposed
architecture. The PE consists of a router, a register file,
and execution module. The router controls data trans-
mission and bus interfaces. In concrete, the router checks
the destination of transmitted data and decides whether
it accepts or discards the data. When the execution mod-
ule finish its calculation, the router appends the routing
header to the result data and sends the packets. When
a PE receives data, it is stored in the register file. The
register file can hold data individually for each sheet and
each input port, so that the functionality of the execu-
tion module is shared by different sheets. When a PE is
activated by the execution controller, execution module
reads required data from the register file and starts its
calculation.

V. IMPLEMENTATION OF PROPOSED

ARCHITECTURE

Figure 12 and Figure 13 illustrate how the control logic
shown in Figure 2 and Figure 3 were implemented on the
proposed overlay architecture, respectively.

To simplify the structure and routing logic in the archi-
tecture, we placed different types of PEs along the hori-
zontal direction and the same types of PEs along the ver-

- 167 -

Fig. 11. Inside of the PE

Fig. 12. Implementation of the PI logic on the overlay architecture

tical direction, forming a rectangular array. The number
of PEs in the vertical direction, which was four in both
examples in this evaluation, corresponds to the number of
the PEs of the type with the most usage. Each number
at the upper left corner of PEs shows the coordinate of
the PE. The router module and the register file for each
PE and the execution order controller were designed in a
register transfer level with Verilog-HDL. RTL designs for
execution module were translated from IDOL scripts us-
ing HLS. In this evaluation, the depth of the register file
was set to 4096, so that 4096 sheets of control logic can
be executed. As in the case of the implementation using
only HLS, single-precision floating point arithmetic was
utilized with the target clock frequency of 100 MHz. Fi-
nally, the overlay architecture was mapped on a Kintex-7
XC7K325T FPGA with Xilinx Vivado 2015.2.

Fig. 13. Implementation of the on-off logic on the overlay
architecture

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000

Ta
nk

 L
ev

el

 0

 2000

 4000

 6000

 8000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

V
al

ve
 A

pe
rtu

re

(a) PI logic

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 2000 4000 6000 8000 10000

Ta
nk

 L
ev

el

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

In
le

t V
al

ve
 O

pe
n

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000

O
ut

le
t V

al
ve

 O
pe

n

(b) On-off logic

Fig. 14. Emulation results of the proposed architecture

TABLE II
a Quantity of resource utilization of a proposed

architecture

Resource
PI Control On Off Control

Utilization Utilization Utilization Utilization
Rate[%] Rate[%]

SLICE 4126 8.01 1154 2.26
LUT 12292 1.76 3595 1.76
FF 10883 0.566 2308 0.566

DSP 50 5.95 16 1.90
BRAM 76 17.1 19 4.27

VI. EVALUATION

Figure 14 show the emulation results of the control logic
implemented on the proposed overlay architecture. For
both examples, it was confirmed that the control logic
worked appropriately to regulate the tank level.

Table II shows resource utilization for both control
logic. Compared with the HLS implementation shown
in Table I, BRAM utilization increased by 30 times and
other resources increased by 4 to 5 times. This increase
in the resources is mainly due to newly added mechanism
such as the routers and register files in PEs. In addition,
since we formed a rectangular array of PEs to simplify
the architecture, some PEs were not utilized for the con-
trol logic. Also, unlike HLS implementations, the resource
sharing between different PEs cannot be performed with
this architecture.

However, the proposed architecture can process 4096
sheets of control logic, in contrast to the HLS implemen-
tation that can execute only one sheet. Table III shows
comparison results of resource utilization for PI control
per one sheet. It is shown that, utilization efficiency of
BRAM was improved by about 100 times for BRAM. Also
for other resources, improvement of approximately 800
times was achieved by introducing the overlay architec-
ture.

To analyze the hardware overhead imposed by the addi-
tional mechanisms, we evaluated the breakdown of the re-
source usage, which is summarized in Table IV. This time,
all BRAMs were utilized for the register files in PEs, since
any function blocks in the evaluated control logic did not
use BRAMs. For other resources, about 80% were de-
voted to the arithmetic circuits. It is revealed that the

- 168 -

TABLE III
Comparison resource utilization for PI control per one

sheet

Resource Proposed HLS Utilization Efficiency
Architecture Implementation Improvement

SLICE 1.01 906 897.0
LUT 3.00 3093 1031
FF 2.66 1934 727.1

DSP 0.0122 12 983.6
BRAM 0.0186 2 107.5

TABLE IV
Breakdown of resource utilization used overlay

architecture

Resource SLICE[%] LUT[%] FF[%] DSP[%] BRAM[%]
Calculation 79.8 90.9 93.0 100 0
Router 19.2 8.3 6.9 0 100Register File

Execution Order 1.0 0.8 0.1 0 0Controller

resource overhead of the proposed overlay architecture is
about 20% in terms of SLICEs.

Next, we evaluated the execution performance of the
control logic implemented on the proposed architecture.
The calculation times per control loop (minimum control
cycles) of the PI control and on-off control were 2.34 μsec
and 1.66μsec, respectively. The performance degradation
compared to the HLS direct implementation was 3 times
for the PI control and 83 times for the on-off control. The
main reason is the data transfer on the two-dimension
buses, which is required for every interval between PE
executions. Especially in the on-off control logic, this
overhead was significant, since the time required for arith-
metic execution for this logic was originally quite small.
Another cause is the proposed architecture executes PEs
sequentially and does not extract parallelism from differ-
ent PEs, while the HLS direct implementation spatially
expands arithmetic hardware so that inter PE parallelism
is fully exploited.

However, the proposed architecture achieved the con-
trol cycle of several micro seconds, which is still several or-
ders of magnitude faster than the required performance in
general industrial control systems. Therefore, the perfor-
mance degradation observed by the proposed architecture
is considered to be acceptable as a trade-off for the 800
times improvement in the resource utilization efficiency.

VII. Conclusion

In this paper, we proposed an overlay architecture fo-
cusing on sharing of hardware resources, in which the re-
sources for the same function blocks that are utilized in
different sheets of control logic. We compared the per-

formance and resource utilization between the proposed
architecture and HLS direct implementation using two ex-
amples of control logic.

As a result of evaluation, it was shown that the pro-
posed architecture still achieved practical control perfor-
mance while an overhead of data communication degraded
the performance to some extent. On the other hand, the
resource sharing mechanism of the proposed architecture
improved the resource requirements per sheet by about
100 times for BRAM and by about 800 times for the other
resources.

As future work, we will evaluate the architecture with
more practical control logic sheets that are utilized in ac-
tual industrial plants. Although the proposed architec-
ture does not exploit inter-PE parallelism at this moment,
we will address improvement of the architecture so that
logic sheets that have no dependency each other are exe-
cuted in parallel.

References

[1] D. A. Lee, E. s. Kim, J. Yoo, J. S. Lee, and J. G. Choi. Fb-
dtoverilog 2.0: An automatic translation of fbd into verilog
to develop fpga. In Proc.2014 International Conference on
Information Science Applications (ICISA), pages 1–4, May
2014.

[2] J. Yoo, J. G. Choi, Y. J. Lee, and J. S. Lee. A technique for
demonstrating safety and correctness of program transla-
tors: Strategy and case study. In Proc.Software Reliability
Engineering Workshops (ISSREW), 2014 IEEE Interna-
tional Symposium on, pages 210–215, Nov 2014.

[3] J. Yoo, E. S. Kim, D. A. Lee, J. G. Choi, Y. J. Lee, and
J. S. Lee. Nude 2.0: A model-based software development
environment for the plc amp; fpga based digital systems
in nuclear power plants. In Proc.2014 International Sym-
posium on Integrated Circuits (ISIC), pages 604–607, Dec
2014.

[4] A. K. Jain, S. A. Fahmy, and D. L. Maskell. Efficient
overlay architecture based on dsp blocks. In Proc.Field-
Programmable Custom Computing Machines (FCCM),
2015 IEEE 23rd Annual International Symposium on,
pages 25–28, May 2015.

[5] A. K. Jain, D. L. Maskell, and S. A. Fahmy. Through-
put oriented fpga overlays using dsp blocks. In Proc.2016
Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1628–1633, March 2016.

[6] G. Stitt and J. Coole. Intermediate fabrics: Virtual archi-
tectures for near-instant fpga compilation. IEEE Embedded
Systems Letters, 3(3):81–84, Sept 2011.

[7] D. Capalija and T. S. Abdelrahman. A high-performance
overlay architecture for pipelined execution of data flow
graphs. In Proc.2013 23rd International Conference on
Field programmable Logic and Applications, pages 1–8,
Sept 2013.

- 169 -

