A Shift HSV Algorithm for a Low-Power Monitoring System using an FPGA toward Internet of Things Agriculture

Takahisa Kurose 1
Hiroki Nakahara 2
Shimpei Sato 1
Tetsuo Morimoto 1

1Ehime University, Japan 2Tokyo Institute of Technology, Japan

Abstract—An agriculture monitoring system observes growth of agricultural crops. It requires high-performance with a battery drivable system. To satisfy them, we use an FPGA, and realize a shift operation based HSV converter. Although the proposed shift-based HSV converter causes 8.4% error compared with the original HSV one, its power consumption is 26.51 times smaller than the original one.

I. INTRODUCTION

With a rapid increase of the Internet devices and the sensor devices, the Internet of Things (IoT) has been proposed as a keyword for the next generation industry. In 2020, due to a growth of the Internet, the number of sensor devices will reach to five billion [3], and they will be connected to the Internet. However, since a large scale spread of such devices increases the amount of communication between sensor devices and the cloud, its power consumption is a dominant in the IoT era. Many of sensor devices are required to operate in a standalone. Therefore, when driving by a battery, it cannot be operated for a long time unless reducing power consumption.

II. A Monitoring System for an IoT Agriculture

In this paper, we propose a low power agriculture monitoring system toward to the IoT. In the case of monitoring for outdoor cultivation, it requires a battery driving system. To reduce the power consumption, we propose a shift HSV color conversion. Fig. 1 shows a monitoring system for a growth of a green leaf. First, a green leaf image is captured by a camera, and it is send to an FPGA. Then, it performs an image processing to calculate the growth degree which is defined by the number of pixels for a green leaf area. Finally, a wireless communication module transfers growth degree to a server on a cloud. In this paper, we used the Bluetooth low-energy (BLE) [1] that is a low power and satisfies a practical transfer speed.

III. HSV Converter to Compute a Growth Degree

To recognize the color of a green leaf, we convert the input RGB images into the HSV ones [2]. We set thresholds for hue (H), saturation (S) and brightness (V), and count the number of pixels which exceeds the thresholds as greed leaf area. In this paper, we realize it by a hardware friendly circuit. Let max denotes the maximum pixel value for the RGB, and min denotes the minimum one. Then, the HSV conversion is shown as follows:

\[H = \begin{cases} 60 \times \frac{B-G}{\max - \min} & (R = \max) \\ 60 \times \left(2 + \frac{B-G}{\max - \min}\right) & (G = \max) \\ 60 \times \left(4 + \frac{B-G}{\max - \min}\right) & (B = \max) \end{cases} \]

\[S = 255 \times \frac{\max - \min}{\max} \]

\[V = \max \]

Next, we show an algorithm for the growth degree.

Algorithm 3.1
1. Obtain the RGB image from the camera.
2. Convert into the HSV image.
3. \(g \leftarrow 0 \).
4. For each a pixel, if an HSV pixel value exceeds the threshold, then \(g \leftarrow g + 1 \).
5. Output \(g \), then Terminate.

Since algorithm 3.1 requires the threshold, we empirically set it. Fig. 2 shows an original HSV converter. Since it requires multipliers and dividers, the amount of hardware tends to be large, and dissipates much power.

IV. POWER REDUCTION BY SHIFT HSV

As shown in Fig. 2, since the original HSV converter uses the multiplier and divider, the conversion is slow and power consumption is large. Especially, since the divider realized by a sequential circuit requires many cycles, it is
not suitable for the hardware realization. In this paper, we propose a shift HSV which approximates the HSV conversion by a shift operation. Following expressions show the proposed conversion.

\[
H = \begin{cases}
64 \times \left(\frac{B-G}{\text{Steps}(\max-min)} \right) & (R = \max) \\
64 \times \left(2 + \frac{B-G}{\text{Steps}(\max-min)} \right) & (G = \max) \\
64 \times \left(4 + \frac{B-G}{\text{Steps}(\max-min)} \right) & (B = \max)
\end{cases}
\]

\[
S = 256 \times \frac{\max - \min}{\text{Steps}(\max)}
\]

\[
V = \max,
\]

where \(\text{Steps}(X)\) denotes a step function which approximates the given \(X\):

\[
\text{Steps}(X) = 2^n, \text{where } 3 \cdot 2^{n-2} \leq X \leq 3 \cdot 2^{n-1}
\]

Fig. 3 shows a shift HSV converter. Since the proposed HSV converter treats the values for the power of two, the multiplier and divider are replaced into the shift circuits. Although it causes the error compared with the original HSV, it does not affect the identification of the green leaf area by using an appropriate threshold.

VI. Conclusion

In this paper, we proposed a shift operation based HSV converter in order to reduce the power consumption for the IoT agriculture monitoring system. Although the proposed shift-based HSV converter caused 8.4% error compared with the original HSV one, its power consumption was 26.51 times smaller than the original one.

VII. Acknowledgements

This research is supported in part by the Grants in Aid for Scientific Research of JSPS.

References