R4-1

SASIMI 2016 Proceedings

Mathematical Algorithm Hardware Description Languages
for System Level Modeling

Ryo Hikawa, Ryuji Kishimoto, Takashi Kambet
Graduate School of Science and Engineering, Kindai University
3-4-1 Kowakae, Higashi-Osaka City, Osaka, Japan
TDepart. of Electric and Electronic Engineering, Kindai University

Abstract— Mathematical modeling is an important
approach for both solving problems and visualizing the
abstract concepts involved in system and/or products.
Thus a mathematical algorithm description language
(HDLMath) should be capable of describing and ver-
ifying the entire behavior of electronic systems using
mathematical algorithms.

In this paper, the functional requirements of HDL-
Maths are proposed and several current HDLMaths
are compared from a design viewpoint.

I. INTRODUCTION

Around the world, engineers in industries such as elec-
tronics and automobiles are developing many kinds of sys-
tems and products. However, these are developed based
on conventional design processes and suffer from many de-
sign problems and long design times. Because the laws of
nature can be expressed mathematically, mathematics is
a good algorithmic method for the description and mod-
eling of such systems. Mathematical modeling is also an
important approach for both solving problems and visu-
alizing the abstract concepts involved.

A mathematical algorithm description language (HDL-
Math) should be able to describe and verify the entire
behavior of systems and/or products using mathematical
algorithms of electronic systems. It is a higher level lan-
guage than conventional HDL such as VHDL and System
Verilog. HDLMath and its design environment should
support the design of many domains and applications
such as digital signal processing, computer graphics, dig-
ital communications techniques, and so on.

Recently, HDLMath languages such as
MATLAB/SIMULINK][1], FinSimMath[2], and Sys-
tem C-AMS [3] are already being used to design the
mathematical algorithms in electronic systems. In this
paper, we call them HDLMath1,2,and 3 respectively.

The paper describes nine functional requirements for
an HDLMath and compares current HDLMath languages
from a design viewpoint. It is hoped that this will con-
tribute to accelerating the development and utilization of
a common mathematical algorithm design language and
to establish a good system modeling environment in the
industry.

II. DEFINITION AND POSITIONING OF HDLMATH

HDLMath is defined as a language for describing and
verifying the behavior of an entire system or product us-
ing mathematical algorithms. When compared with the
number of lines of code written using a HDLMath and
the length of the C-code generated automatically from its
HDLMath description, the number of lines of C-code is
several hundred times larger than that of the HDLMath
descriptions. This indicates how HDLMath languages can
be used to design at a higher level of design abstraction
and hence how design productivity is higher than C level
design.

III. FUNCTIONAL REQUIREMENTS OF HDLMATH

When designing mathematical algorithms for system
level modeling with an HDLMath, the HDLMath should
cover the following functional requirements in order to
achieve utmost precision.

A. Mathematical expressions

The mathematical operators (for example, +, —, *,
xx, and /) should be applicable to any combination
of the following operand and result formats: arbitrary-
precision fixed-point, arbitrary-precision floating-point,
integer, real, register, and constants. Trigonometric and
hyperbolic (direct and inverse) functions should also be
supported for any precision and power, logarithm, and
square root operations are also needed.

B. Various kinds of precision computation

Data should include scalar, complex numbers in Carte-
sian co-ordinates, and complex numbers in Polar coor-
dinates. The high level support should be bit-accurate,
i.e. the result of computations performed during simu-
lation should match the results produced by the actual
hardware. The formats (floating or fixed point) of high
level data, as well as the number of bits in their respec-
tive fields should be modifiable during algorithm design.
Modifying formats and their respective fields allows for a
more efficient design space exploration.

-283 -



C. Exception and error handling

To help optimize the implementation of mathematical
algorithms, errors should be minimized using only the nec-
essary number of bits. Access should also be provided to
information regarding the occurrence of overflow, under-
flow, maximum number of bits required, and cumulative
error.

D. Multi-dimensional arrays

One and two-dimensional arrays of any kind of data,
including sparse arrays, and arithmetic and logical oper-
ations on any kind of legal combination of data should be
supported. This capability allows the implementation of
all mathematical algorithms.

E. DMathematical functions

There should be support for a large number of math-
ematical functions, such as differential equations, FFT,
DFT, finding eigenvalues and eigenvectors, norms and dis-
tances, finding roots of polynomials. Although all mathe-
matical functionality can be written using the arithmetic
operators, such an implementation would be slow.

F. Mixed numerical and symbolic computations

All the necessary processing should be performed in
one execution. Users should not be burdened with pass-
ing data from a symbolic environment to a numeric en-
vironment. When performing symbolic simulation using
strings, a string should be evaluated in the current con-
text, as if it were an expression in the numeric environ-
ment.

G. Feedback process

One important aspect in control system design is to
analyze the effects of feedback loops on the overall system.

H. User-defined functions in C-code

Support for extending simulation functionality by hav-
ing the capability to incorporate C code execution in the
simulation in a standard manner is required to enhance
performance. The rationale behind this requirement is
that many design teams have their own mathematical li-
braries and nothing else can work as well for them. In
such cases, the designers can use their own libraries.

1. Verification environment

Test benches are an essential tool in the circuit design
environment. They provide a virtual environment used
to verify the correctness of the design or model. The
test bench capability of an HDLMath language should
include four components: input, circuit, check functions,
and output.

TABLE I
COMPARISON OF CURRENT HDLMATH LANGUAGES

Requirements HDLMathl | HDLMath2 | HDLMath3
Mathematical expressions v v (%)
Variable precision (1) v (%)
Exception handling (%2) v (%)
Multi-dimensional arrays (x3) v (%)
Mixed computations v (%)
Mathematical functions v v (%)
Feedback process v (%) (*)
User-defined C-code(*) v v v
Verification environment v v v

() Implemented using additional C coding.

(%1) The computation should be preceded by digits(n).
(¥2) HDLMath1 does not support flag setting.

(*3) Limited to small array sizes.

IV. COMPARISON OF CURRENT HDLMATH
LANGUAGES

Table 1 shows a comparison between current HDLMath
languages based on the functional requirements for an
HDLMath. These languages support most of the func-
tional requirements, but they still require further de-
scriptive capabilities for larger scale designs. HDLmathl
has bit length limitations (maximum 64 bits) and sev-
eral problems from a hardware design perspective such as
limitations for functional requirements 2, 3, and 4. HDL-
math2 requires more functionality such as the ability to
handle feedback processes without additional C coding.
HDLmath3 is able to describe mathematical algorithms,
but it requires a lot of C coding and debugging.

V. CONCLUSION

In this paper we have described the nine functional
requirements that an HDLMath language specification
should cover in order to design mathematical algorithms
for system level models precisely and concisely. Current
HDLMath languages have certain of the functionalities re-
quired for mathematical algorithm design. However, they
still require more extensive descriptive capabilities in or-
der to handle larger scale design.

REFERENCES

[1] A.K. Tyagi: "MATLAB and Simulink for Engineers,” Oxford
University Press, (2012).

[2] http://www.fintronic.com/finmath.html

[3] Vachoux, A., et al. : "Extending SystemC to support mixed
discrete-continuous system modeling and simulation,” pp5166-
5169, Vol.5, the proceeding of IEEE International Symposium
on Circuits and Systems (2005).

284 -



