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Abstract— As IoT or CPS devices/systems increase, efficient,
cost effective real-time embedded systems are getting important.
For providing various highly application-specific systems, we are
developing a design environment based on a framework for auto-
matic generation of application-specific FPGA-based SoC. Use of
the environment makes it possible for designers to automatically
generate a target system design which is highly adapted to the
application. Our targets for optimization/customization are mul-
ticore processors, real-time operating systems, and acceleration
hardware in FPGA. This paper shows the outline of the frame-
work.

I. Introduction

Along with popularization of IoT (Internet of Things) and CPS
(Cyber Physical Systems), importance of technologies for real-
time embedded systems is increasing. In addition, use of pro-
grammable devices such as FPGA (Field Programmable Gate Ar-
ray) is spreading to construct application-specific systems. In
order to achieve high efficiency in system running and cost-
performance, we aim at building a development environment
which produces hardware/software cooperative SoC (System-on-
Chips) systems dedicated to specific real-time applications. The
environment consists of adaptation of multicore processors to ap-
plications, optimization of real-time operating systems (RTOS),
hardware acceleration of system calls, and generation of hard-
ware accelerators for computation kernels in applications with
high-level synthesis. For designing highly efficient SoC systems,
developers have only to describe application software codes. Then
the development environment inputs the software descriptions
and automatically outputs the RTL descriptions and RTOS which
are adapted to the application.

In this paper, we show the outline of the design environment
which we have been developing. In particular, we focus on how
to generate application-specific multicore processors and RTOS
kernel with dedicated system calls.

II. Outline of the Environment

We aim at providing a design environment which automati-
cally generates SoC designs which are highly adapted to the tar-
get applications. Figure 1 depicts our development environment
for FPGA-based SoC systems. The inputs are application source
codes written in C language, the full set of RTOS codes, and sys-
tem parameters such as the type of the target FPGA device, the
number of cores to be implemented, structure of cache memory,
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Fig. 1. Organization of the development environment.

real-time scheduling policy used, and performance requirements.
All the inputs are given to each sub module of the environment:
multicore RTL generator, RTOS generator, and accelerator gen-
erator.

The multicore RTL generator outputs descriptions of multi-
core RTL adapted to the application, where the minimum amount
of hardware (FPGA) resources necessary to run the application is
implemented in each core in order to improve the running speed
and reduce the energy dissipation. The details are described in
Section III.

The RTOS generator, which is described in Section IV, opti-
mizes the RTOS codes so that only necessary system calls which
consist of only in-erasable code fragments are included in the
target system and that scheduling algorithm in the scheduler is
customized to the application. The purpose is to improve perfor-
mance in real-time processing.

The accelerator generator extracts the main parts in the ap-
plication and translates them into RTL descriptions by invok-
ing high-level synthesis tools, as well as outputting the remaining
parts as software codes for the multicore processors. It is possible
to obtain high responsiveness and mitigate jitters of application
tasks with long execution times.

Finally, all the generated descriptions/codes are processed by
appropriate compilers or logic synthesis tools to construct the
SoC system.
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III. Multicore RTL Generator for FPGA

Capacity of FPGA devices has been becoming relatively large
so that soft multicore processors can be accommodated in a sin-
gle FPGA chip using programmable resources. Along with it, use
of ASIP (Application-domain Specific Instruction-set Processors)
[1] is a promising option for building efficient application-specific
embedded systems. As an example, an ASIP development envi-
ronment, ASIP Meister [2], generates an application specific pro-
cessor core for given parameters such as register length, a set of
instructions, pipeline depth, and so on.

To create an application specific processor, one approach is to
build a processor with a new instruction set. Another is to make
use of a subset of instructions from an existing instruction set [3].
The latter makes it possible to reuse existing compilers while the
former requires a corresponding new compiler. Techniques for
selecting instructions in [4] show that the selection according to
application programs simplifies the processor’s microarchitecture
and reduces the amount of hardware resources. However, the tar-
get is only a single core processor and does not have cache mem-
ory. The analysis of program codes does not take into account
dependency between instructions which determines necessity of
forwarding paths/dependency detection units. On the other hand,
our techniques described later deal with multiple cores and cache
memory and try to eliminate forwarding paths if they are unnec-
essary for the application.

The literature [5] shows a customizable multithreaded archi-
tecture for FPGA and the development tools. Forwarding paths
are eliminated when the interleaved multithreaded configuration
is selected and the number of threads is enough large compared to
the pipeline depth, since instructions in different stages are from
different threads and therefore they do not suffer from depen-
dency inside a thread. On the other hand, our techniques do not
require interleaved multithreaded microarchitecture to remove
the forwarding paths. Therefore, our techniques can be applied
to a wide range of microarchitecture.

A. Flow of Multicore Configuration

The configurator generates multicore RTL descriptions in Ver-
ilog HDL. The flow of generating an application-specific multi-
core design is shown in Figure 2. Each process is described in the
following subsections.

A.1. Architecture of the processor

We have developed a multicore processor, of which the core is
MIPS architecture [6], written in Verilog HDL. The features of
the processor we designed are as follows.

1. 5-stage pipeline: This processor core has a 5-stage pipeline,
which consists of IF (Instruction Fetch), ID (Instruction
Decode), EX (Execution), MEM (Memory access) and WB
(Write Back to register) stages.

2. Branch decision: When a conditional branch instruction is
executed, the decision of whether the control proceeds to
the following instruction (not-taken) or branches (taken) is
made in ID stage.

3. Delay slot: A conditional/unconditional branch instruction
has one delay slot, so that the following instruction of
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Fig. 2. Multicore configuration flow.

a branch instruction is always executed regardless of the
branch decision.

4. Forwarding unit: When an instruction uses the results of the
former instructions, the pipeline processing does not have
to be stalled as long as the results can be obtained via the
pipeline registers even if they have not been written back to
general-purpose registers. The forwarding unit detects these
cases.

5. Detection of pipeline stall: When an instruction uses the re-
sults of the former instructions but the forwarding unit can-
not supply the results immediately, the pipeline has to be
stalled. The pipeline-stall-detection unit decides and con-
trols the pipeline stall.

A multicore processor is constructed with a combination of the
cores adapted to the application programs.

The processor can be configured with from one to eight cores.
Figure 3 shows the organization of an eight-core processor. The
number of cores is given to the development environment (con-
figurator) in advance. Each core has on-chip instruction mem-
ory (IMEM) which stores instructions (program codes) and
data cache memory (Cache) which stores data, which is multi-
instruction, multi-data structure.

When a multicore processor is configured, the configurator
outputs Verilog-HDL descriptions for the indicated number of
cores and the coretop module (Figure 3) which connects the cores,
the instruction memories and the data caches. The configurator
builds the connection of each module properly, so the multicore
circuit is generated.

A.2. Configurator GUI for input

Figure 4 shows the graphical user interface of the multicore
configurator, which accepts configuration settings and applica-
tion program files, and invokes the automatic generation of the
application-specific multicore descriptions. The configurator in-
puts the number of cores to be implemented, cache structure in-
formation (size and associativity), source files’ path and library
files’ path. It has other interfaces for object codes’ path, starting
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Fig. 3. Multicore processor structure.

Fig. 4. Configurator GUI.

configuration, and clearing generated objects. (This system runs
on Linux.)

A.3. Building application program

The first step of the configuration is to invoke the compiler (gcc)
with the application source codes in C language or MIPS assem-
bly language, and generate the object codes of the application.

A.4. Analyzing object codes

The object codes of the application are analyzed. First, the ob-
ject codes are dumped to text information by the disassembler
(objdump in GNU package). The text file is analyzed and ma-
chine instructions which are actually used in the application are
extracted.

Then, possibility of forwarding and pipeline stall is checked.
The configurator searches the instruction sequences for depen-
dency between instructions, then decides the necessity of each
forwarding or pipeline stall unit. If it is found that some for-
warding or stall patterns do not occur, the corresponding units
are removed from the final implementation. The outline about
the correspondence between dependency patterns and forward-
ing/stall detection units is as follows. The details are found in [7].

Forwarding patterns are classified into five cases in our proces-
sor core.

1. Forwarding ALU result to the next instruction:
When the result of ALU calculation is used in the next in-
struction, the result is forwarded to the next instruction via
a pipeline register. An example is as follows.

add $10, $8, $9

sub $12, $10, $11

2. Forwarding ALU result to the instruction immediately after the
next instruction: When the result of ALU calculation is used
in the instruction immediately after the next instruction, the
result is forwarded to the instruction. An example is as fol-
lows.

add $10, $8, $9

sub $14, $13, $12

lw $11, 0($10)

3. Forwarding ALU result to conditional branch instruction:
When the result of ALU calculation is used in the conditional
branch instruction just after the next instruction, forward-
ing from MEM stage to ID stage is performed. An example
is as follows.

add $10, $8, $9

sub $14, $13, $12

beq $10, $11, label

4. Forwarding ALU result to the following store instruction: When
the result of ALU calculation is used in the next store in-
struction as the stored value, the value in WB stage is for-
warded to MEM stage. An example is as follows.

add $10, $8, $9

sw $10, 0($11)

5. Forwarding from jal,jalr: Jump and link instructions (jal,
jalr) write the return address in $31 register. When the
jump target instruction is a jump register instruction (jr)
with $31, the return address being written in $31 is for-
warded to jr. An example is as follows.

jal label

nop

label:

jr $31

There are five cases where the pipeline stalls.

1. Result of load instruction used by the next instruction: When
the result of a load instruction is used by the next instruction,
the pipeline has to be stalled. An example is as follows.

lw $8 0($9)

add $9, $8, $10

2. Result of ALU/load instruction used by the next conditional
branch: When the result of ALU calculation or the load in-
struction is used in the next conditional branch instruction,
pipeline has to be stalled. An example is as follows.
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add $10, $8, $9

beq $10, $11, label

3. Result of load instruction used by conditional branch after the
next instruction: When the result of a load instruction is used
in a conditional branch instruction after the next instruc-
tion, the pipeline has to be stalled for one cycle. An example
is as follows.

lw $10, 0($9)

nop

beq $10, $11, label

4. Result of ALU used by jr or jalr: When the result of ALU
calculation is used in the next jump register or jump and
link register instruction, the pipeline has to be stalled. An
example is as follows.

add $10, $8, $9

jr $10

5. Result of load instruction used by jr or jalr after the next instruc-
tion: When the result of a load instruction is used in jr or jalr
after the next instruction, the pipeline has to be stalled. An
example is as follows.

lw $10, 0($9)

nop

jr $10

A.5. Selecting processor resources

After the analysis of the application programs is done, hardware
resources/components which are necessary for the instructions in
the application to be executed can be fixed. In other words, unnec-
essary resources for the application (for example, multiplexors,
adders, divider, etc.) can be excluded from the final implementa-
tion.

Figure 5 depicts an example of selecting necessary resources.
M_MUX2 is a multiplexor for extracting a target byte (8 bits) from
a 32-bit word read from the memory. This multiplexor is used
by load-byte instructions (lb and lbu). It is not used if any
load-byte instructions are not required. If unnecessary, M_MUX4
and the connections from M_MUX2 to M_MUX4 including sign/zero-
extension components are not needed either, which leads to re-
moving M_MUX2, M_MUX4, and the two extension components. Sim-
ilarly, if the application does not use load-halfword instructions
(lh and lhu), M_MUX3, M_MUX5, and the corresponding two exten-
sion components can be eliminated.

A.6. Output

RTL descriptions of the processor and a macro definition file are
the output of the configurator. Selected resources for the applica-
tion are indicated by the macro definition file. In the macro defi-
nition file, each resource is assigned with its symbolic constant as
follows.

‘define memmux_2_nouse

‘define memmux_3_nouse

...

...

Fig. 5. Selection of multiplexors.

The corresponding processor RTL source files include the
macro descriptions as follows.

/* MUX2 MEM */

‘ifdef memmux_2_nouse

; /* M_MUX2 is removed */

‘elsif memmux_2_mux

MUX8_4to1 CPU_MUX8 (

.A (DATA_IN[31:24], .B (DATA_IN[23:16],

.C (DATA_IN[15:8], .D (DATA_IN[7:0],

.SEL (DATA_ADDR[1:0], .Z (DATA_IN2_8 ) );

‘else /* ERROR: Never Reached */

assign DATA_IN2_8 = 32’hf0200bad;

‘endif

Synthesizing the source RTL codes with the macro definition
file, proper resources are chosen to build the application-specific
processor. For more detailed information, [7] can be referred to.

IV. Optimization of RTOS

Use of RTOS is effective in designing efficient real-time systems
since RTOS provides various synchronization/communication ca-
pabilities as well as real-time scheduling. However, RTOS is
multifunctional to cope with various real-time embedded appli-
cations, and therefore it is desired to remove unused functions
for execution/space efficiency and cost-performance. Examples
of optimization of RTOSs are found in [8, 9], where only func-
tions/components used by the application are included in the im-
plemented RTOS. While these techniques try to prepare fine-
grained functions and select appropriate functions according to
the application, some of execution/control paths in the functions
are still unused. On the other hand, we try to eliminate as many
unused code fragments as possible in system calls provided by
RTOS.

We have developed an RTOS kernel conforming to μITRON4.0
specification[10]. μITRON4.0 is a specification for embedded op-
erating systems [11]. μITRON4.0 can provide adapted systems
where only system calls which are called in the application are
linked to the executable binaries. Basically, each system call is
supposed to provide a single (primitive) function. However, look-
ing into the specification, two or more options are included in sev-
eral system calls. For example, in communication mechanisms
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using mail-boxes, messages are managed in FIFO order or they
can be prioritized according to their fixed priorities. A system
call for mail-boxes copes with both management policies which
are selected in runtime according to the given attributes. Analyz-
ing the source codes in terms of the attributes can eliminate some
paths which are never traced in runtime.

In addition, each system call checks several errors defined in
the specification. The checking is done during the first phase of
its execution. When an application is fixed in advance, several
errors can be regarded as never happening ones, which leads to
removing the corresponding checking codes.

While various useful real-time scheduling algorithms have
been proposed in theory of real-time processing, μITRON4.0
specification defines only a fixed-priority (static) scheduling. Our
environment enables to select various scheduling algorithms ac-
cording the applications, while keeping application programming
interfaces of μITRON4.01.

With fine-grained elimination of code fragments and use of
flexible scheduling mentioned above, the purposes of our envi-
ronment are downsizing of codes and improvement of real-time
processing. The following subsections describe techniques of code
elimination and selection of scheduling algorithms.

A. Adaptation of Functions Based on Attributes

Although each system call in μITRON4.0 is basically uni-
functional in a large sense, it includes multiple paths (code frag-
ments) to support several options based on attributes. Here, we
show an example of a system call, snd_mbx, which sends a mes-
sage to a mail box.

In μITRON4.0, messages can be exchanged between tasks via
mail-box services. Each mail-box holds messages in FIFO order
or in prioritized order where priorities are attached to messages.
Which order is used depends on the attribute with which the mail-
box is associated when it is created. In most applications, the
attributes are given statically. Therefore, a part of codes corre-
sponding to unused management order can be removed by ana-
lyzing the source codes.

As a result of the analysis, a macro definition file is generated
as follows.

#define CHK_MBX_MFIFO

...

A part of the source file of snd_mbx for sending a message via
a mail-box is as follows.

...

#if defined(CHK_MBX_MPRI) && defined(CHK_MBX_MFIFO)

/* Both FIFO and PRI (Based on runtime decision) */

if ((mbxcb -> mbxatr & TA_MPRI) != FALSE) /* PRI */

_kernel_queue_insert_msgpri ( ... );

else { /* FIFO */

....

....

}

#else

#ifdef CHK_MBX_MPRI /* PRI */

1Strictly speaking, systems generated by our environment cannot be re-

garded as ones conforming to μITRON4.0, since the scheduling rules are dif-

ferent from the specification.

_kernel_queue_insert_msgpri ( ... );

#endif /* CHK_MBX_MPRI */

#ifdef CHK_MBX_MFIFO /* FIFO */

....

....

#endif /* CHK_MBX_MFIFO */

#endif

...

Compiling this source code chooses only necessary code
fragments according to the definitions of CHK_MBX_MPRI and
CHK_MBX_MFIFO. When only FIFO order is used in the applica-
tion, the codes corresponding to the management with prioritized
order are removed.

B. Adaptation of Error Check Codes

Our kernel provides seventy system calls in the standard profile
defined by μITRON4.0. Each system call includes several error
checking codes. For example, a system call, act_tsk, which ac-
tivates a task, checks four types of errors, E_CTX, E_ID, E_NOEXS,
and E_QOVER. E_CTXmeans that the system call is called in a CPU-
locking state or in non-task context (e.g., in interrupt handlers).
E_ID means that the task identifier given through an argument
is not within the predefined range. E_NOEXS means that a task
corresponding to the task identifier has not been registered. The
last error, E_QOVR, means the count of activation requests for the
task exceeds the predefined value. Depending on how, where, and
when to call act_tsk in the source codes, it is possible to statically
decide whether each of these four types of errors can happen or
not. If the errors are found not to occur, the corresponding code
fragments can be eliminated.

According to the analysis results, a macro definition file is gen-
erated where a symbolic constant is defined if the corresponding
error has to be checked in runtime. An example is below.

#define CHK_ACT_TSK_E_CTX

#define CHK_ACT_TSK_E_ID

...

A part of the source file of act_tsk includes macro descriptions
as follows.

...

#ifdef CHK_ACT_TSK_E_CTX

if ( _KERNEL_SNS_LOC () || _KERNEL_SNS_CTX () )

/* cpu lock state or non-task context */

return E_CTX;

#endif /* CHK_ACT_TSK_E_CTX */

#ifdef CHK_ACT_TSK_E_ID

if ( tskid < 1 || tskid >= TMAX_TSKID )

/* not within the range */

return E_ID;

#endif /* CHK_ACT_TSK_E_ID */

...

...

#ifdef CHK_ACT_TSK_E_NOEXS

if ( _kernel_tskid_tab[tskid] != TRUE ) {

/* not registered yet */

_kernel_unl_cpu ();
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return E_NOEXS;

}

#endif /* CHK_ACT_TSK_E_NOEXS */

...

...

if ( tcb -> actcnt < TMAX_ACTCNT ) {

/* less than the max count */

...

...

}

#ifdef CHK_ACT_TSK_E_QOVR

else { /* more than the max count */

...

...

_kernel_unl_cpu ();

return E_QOVR;

}

#endif /* CHK_ACT_TSK_E_QOVR */

...

Compiling this source code excludes unnecessary code frag-
ments and generates an appropriate binary executable file which
reflects the analysis results.

C. Adaptation of Scheduler

μITRON4.0 specification defines a scheduling rule which is
based on fixed (static) priorities of tasks. On the other hand,
in order to cope with various real-time embedded applications,
our RTOS implementation provides several options for schedul-
ing: fixed priority-based, EDF-based, and adaptive TBS(Total
Bandwidth Server)-based scheduling [12, 13]. According to de-
signers’ choice, the scheduler is replaced with appropriate one.
The purpose of this replacement is to improve real-time process-
ing in terms of response times and jitters.

The EDF-based and adaptive TBS-based techniques require
additional data structure for time (deadline) management. There-
fore, as well as the scheduler itself, other kernel data structure
such as task control blocks (TCB) is extensible in our kernel im-
plementation. Designers have only to select options when building
their applications to make use of the sophisticated scheduling al-
gorithms.

High complexity of the sophisticated scheduling algorithms
leads to large overhead of scheduling operation. We plan to make
it possible to select hardware implementation of the scheduler to
alleviate the overhead. Along with it, other system calls, after
adaptation to the application, can be candidates of hardware im-
plementation according to designers’ demands.

V. Conclusions

In this paper, we introduced a framework for designing
application-specific systems where multicore processors and real-
time operating systems are adapted to the application. In the
generated systems, only hardware and software resources which
the applications actually require are implemented, which leads to
highly efficient systems in terms of runtime, energy dissipation,
and cost-performance. At present, generation of homogeneous,
adapted multicore processors and generation of adapted RTOS
software implementation are done.

In the near future, we undertake heterogeneous multicore pro-
cessors where different tasks are allocated to different cores which
are adapted to the corresponding tasks. In addition, hardware
implementation of RTOS primitives including the scheduler is a
plan to be followed and we compare our environment with some
existing techniques [14, 15].
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