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Abstract— We propose a method for calculating

pulse arrival timing at all gates in an RSFQ circuit and

a new definition of timing slacks of gates. In the pro-

posed method, the total path delay, the total length of

PTLs and the number of PTL transmitters/receivers

on a path are also calculated.

I. Introduction

Superconducting rapid-single-flux-quantum (RSFQ)
circuit technology is an emerging technology with high
switching speed and low energy consumption[1]. An
RSFQ logic gate consists of superconducting loops with
Josephson junctions and inductances. Fabrication of an
RSFQ circuit with more than 10,000 Josephson junctions
has become possible [2, 3, 4]. An RSFQ logic circuit uses
a voltage pulse and a magnetic flux quantum as a carrier
of information and for state representation, respectively.
Cell-based design is adopted in designing RSFQ circuits.
A set of logic gates for RSFQ circuits is predefined as a
cell library [5]. Behavior of each gate which is represented
by pulse transferring and state transition is defined in the
cell library.

To design large scale RSFQ circuits, computer-aided
design (CAD) tools are indispensable. Because RSFQ
circuits use voltage pulses and behave differently from
CMOS circuits, CAD tools for CMOS circuits can not
be used in RSFQ circuits as they are without change.
Tools for clock tree synthesis [6], placement and wire
routing[7, 8], circuit description [9, 10], static timing
analysis[11] and formal verification [12] are developed for
RSFQ circuit designs.

RSFQ circuits are driven by voltage pulses. Represen-
tation of logic values using voltage pulse is different from
that using voltage level. In general, the logic values “1”
and “0” are represented by the presence and the absence
of a pulse, respectively. Such representation needs to dis-
tinguish the logic value “0” from the state of “no signal”.
In most common logic representation using a synchroniz-
ing clock, a time frame for a gate is defined as a time
section partitioned by clock pulses and the absence of a
pulse in the time frame represents logic value “0” at the
time frame. Therefore, a gate with clock supply, which is
called a clocked gate, is commonly used in RSFQ circuits.

Because the clocked gates store the data, RSFQ circuits
is often designed with gate-level pipelines.
Switching of RSFQ circuits is faster than that of CMOS

circuits. To achieve multi-giga-hertz circuit, skewed clock-
ing scheme is often chosen in RSFQ circuits. There exist
several clocking schemes with different behavior of a gate.
In the most common clocking scheme in RSFQ circuits,
called concurrent-flow clocking, a data pulse arrives after
the corresponding clock pulse and the gate behaves as a
logic gate combined with a delay flip-flop. In the clock-
ing scheme called clock-follow-data clocking, a data pulse
arrives before the corresponding clock pulse and the gate
behaves as a logic gate in a combinational circuit.
In RSFQ circuits, the order of pulse arrival times of in-

puts of a gate effects the behavior of the gate. A simple
example of the effect of the order is a clocked gate in the
concurrent-flow clocking and the clock-follow-data clock-
ing. A clocked gate in the concurrent-flow clocking has
the different order of pulse arrival times of inputs from
that in the clock-follow-data clocking even if these gates
are the same type, the behavior of a gate are different
from that of the other gate.
In this paper, we propose a timing analysis method to

determine the order of pulse arrival times at each gate
in RSFQ circuits. From the information provided as a
logic cell library, we calculate the path delay time, tim-
ing slacks and the minimum clock period. Based on our
method, temporal behavior of the circuit is determined
and functional verification becomes possible.

II. RSFQ gates and circuits

An RSFQ logic gate consists of some superconducting
loops with Josephson junctions (JJs) and inductances.
When a voltage pulse arrives at a loop, a flux quantum,
i.e. an RSFQ, can be trapped or released. When an RSFQ
is released, a short voltage pulse is produced. A voltage
pulse and an RSFQ are used as a carrier of information
and for state representation, respectively.
Cell-based design is adopted in designing RSFQ cir-

cuits [5]. Timing parameters, i.e. delay and timing con-
straints, and behavior of each gate are defined in a cell
library for RSFQ circuits. While an RSFQ circuit is
working, bias current is supplied to all gates in the cir-
cuit. The timing parameters depend on the amount of
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Fig. 1. State transition diagrams of a clocked AND, an NDRO
and a CB

bias current to a gate. A gate with clock supply, which
is called a clocked gate, is commonly used in RSFQ cir-
cuits. There are clocked AND, OR, EXOR, NOT, etc. A
delay flip-flop (DFF) is also a clocked gate. Some gates
do not have clock supply. As interconnections in RSFQ
circuits, Josephson-transmission-line (JTL) and Passive-
transmission-line(PTL) cells are used. JTL cells are used
for short interconnections and delay elements to adjust
timing. PTL cells are used for long interconnections. To
connect PTL cells to the other cells, PTL transmitter and
receiver cells are arranged on the source and the destina-
tion of a row of PTL cells, respectively.
Clocking and timing designs are important factors af-

fecting the performance of an RSFQ circuit because gates
switch with high speed and wiring delay is not negligible.
Zero skew clocking, which is commonly used in CMOS
circuits, is not used in most RSFQ circuits. To achieve
multi-gigahertz circuit, flow-clocking is often chosen [13].
In flow-clocking, a skewed clock pulse is distributed to
clocked gates along data path and an interval between
a clock pulse and a data pulse is shorter than that in
zero skew clocking. Several flow-clocking schemes are used
in RSFQ circuits. One scheme is called concurrent-flow
clocking. In the concurrent-flow clocking scheme, a data
pulse arrives after the corresponding to clock pulse and a
gate behaves like as a logic gate combined with a DFF.
There is another flow-clocking scheme, called clock-follow-
data clocking. In the clock-follow-data clocking scheme, a
data pulse arrives before the corresponding to clock pulse
and a gate behaves like as a gate in a combinational cir-
cuit.
There often exists an RSFQ circuit using logic gates

without clock supply. Typical examples of such gates are
Concluence Buffer (CB) and Non-Destructive Read Out
(NDRO). A CB has no clock input and is used as an
asynchronous OR gate. Although an NDRO has a clock
input clk, the clock input sometimes connects to a data
signal line rather than a clock signal line [3, 4, 14].
The digital behavior of gates in RSFQ cell libraries is

described by using a hardware description language. Tim-
ing constraints between an ordered pair of inputs, delay
from an input to an output, state transitions by a pulse
arrival at an input and a pulse generation to an output

by a pulse arrival at an input on a state are described
as behavior of an RSFQ gate. The descriptions of RSFQ
gates enable logic simulation of RSFQ circuits. FIg. 1.
shows state transition diagrams of RSFQ gates.

III. Static timing analysis of RSFQ circuits

A. Overview

Temporal behavior of RSFQ circuits has troublesome
aspects because RSFQ circuits work by pulse logic and
most logic gates are clocked. Firstly, clock cycles are de-
fined locally for each gate and no global synchronous clock
can be defined. Second, depending on the gate types, tim-
ing of the outputs of a gate can depend on the timing of
the data inputs or the clock input. Third, timing depen-
dences and restrictions can exist also between data inputs,
and there can be maximum restriction for the input tim-
ing.
In this section, we describe a method to calculate pulse

arrival timing at all gates in an RSFQ circuit. We assume
that no timing loop exists in given circuit, that is, timing
of a gate input does not depend on itself. In the proposed
method, the total path delay, the total length of PTLs
and the number of PTL transmitters/receivers on a path
are also calculated. These values are required because
the bias current dependences of PTL wire delay and the
transmitter/receiver delay are different from that of active
logic gates and JTL.
In static timing analysis, compared to the conventional

simulation-based analysis, no specific input patterns are
needed and the timing analysis and verification results do
not depend on the patterns.
Calculation of the path delay of an RSFQ circuit is

slightly different from that of a CMOS circuit. In an
RSFQ circuit, memory elements such as delay flip-flop
are not distinguished from other logic gates, because all
logic gates have memory functions. Timing parameters
such as delay and timing constraint of a gate are affected
by bias current, timing jitter and fabrication variability.
In general, timing constraints of an RSFQ gate are

given as setup and hold time constraints [15]. The setup
and hold time constraints represent the relationship be-
tween a data input and a clock input of a gate. The
concurrent-flow clocking and the clock-follow-data clock-
ing have different definitions of setup and hold constraints.
If an RSFQ circuit employs plural clocking schemes with
the different definitions, the clocking schemes need to be
declared on each gate to use setup and hold constraints.
In addition, timing constraints of an RSFQ gate may also
exist between two data inputs. For example, data inputs
s and r of an NDRO gate have an interval time constraint.
If pulses on the inputs arrive closely within the minimum
interval time defined in the constraint, the gate can per-
form incorrectly. On the other hand, inputs a and b of
a CB gate have another interval time constraint. When
a pulse on each of the inputs arrives closely within the
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maximum interval time defined in the constraint, only
one pulse appears on an output c of the CB. When these
two pulses are farther than the maximum interval time
defined in the constraint, two pulses appear on the out-
put c. Because the presence of two pulses on a line in a
time frame is not assumed, a large interval time between
a and b of CB can lead to a timing violation.

B. Calculation of delay

In this paper, we refer to an input pin of a gate as
an input of a gate. Similarly, an output pin of a gate is
referred to as an output of a gate.
Timing dependency between an input and an output of

each gate is described in the gate library. When a pulse
on an output of a gate can be produced by a pulse arrival
on an input of the gate, pulse arrival time of the output
depends on that of the input. A pulse arrival time of an
output often depends on those of several inputs.
The earliest pulse arrival time to output o, Te(o), and

the latest pulse arrival time to o, Tl(o), are calculated by
the followings,

Tl(o) = max
i∈ID(o)

(Tl(i) +D(i, o)), (1)

Te(o) = min
i∈ID(o)

(Te(i) +D(i, o)), (2)

where the set of inputs whose pulse arrival times affect
that of o is ID(o) and the delay from i to o is D(i, o).
The pulse arrival times to input i, Te(i) and Tl(i) are
calculated by the followings,

Tl(i) = (Tl(fi) +D(fi, i)), (3)

Te(i) = (Te(fi) +D(fi, i)), (4)

where the fanin of i is fi which is an output of a gate.
Algorithm 1 shows the calculation process of the path

delay in an RSFQ circuit. This algorithm calculate pulse
arrival time of outputs of a gate by Eqs. 1 and 2. At
the same time, the number of PTL transmitters and PTL
length, which equals to the number of PTL cells, are cal-
culated. PTL receiver must have the corresponding PTL
transmitter. Therefore, the number of PTL receiver is not
calculated in this algorithm. This algorithm assumes that
the arrival time of an output of a gate in the circuit does
not depend on itself. If there exists such output, pulse
arrival time of it cannot be defined.

C. Calculation of timing slack and clock period

We classify these interval time constraints of a gate into
two types. They are the minimum and the maximum
interval time constraints. Each ordered pair of inputs of
a gate has one of these constraints or does not have an
interval time constraint. We consider an ordered pair of
inputs (x, y) such that a pulse of y arrives after a pulse
arrival at x. When (x, y) has the minimum interval time

Input: an RSFQ circuit
Output: pulse arrival times of primary outputs and

inputs of all gates
// FO(o) is the set of inputs which are

fan-outs of output o
// ID(o) is the set of inputs whose pulse

arrival times affect that of output o
// OD(i) is the set of outputs whose pulse

arrival times depend on that of input i
I ← the set of inputs connecting to primary inputs;
while I �= ∅ do

Pick an input i ∈ I;
I ← I − {i};
foreach od ∈ OD(i) do

if ∀id ∈ ID(od), Te(id) and Tl(id) are
calculated then

Calculate Te(od) and Tl(od) by Eq. 1 and
Eq. 2;
if od is an output of a PTL transmitter
then

the number of PTL transmitter ++
end
if od is an output of a PTL cell then

the number of PTL cell ++
end
foreach fo ∈ FO(od) do

Calculate Te(fo) and Tl(fo) by Eq. 3
and Eq. 4;

end
I ← I∪ FO(od);

end

end

end
Algorithm 1: Calculation of delay

constraint, a pulse on y should arrive after the elapse of
the minimum interval time from a pulse arrival time of
x at the earliest. When (x, y) has the maximum interval
time constraint, a pulse on y should arrive by the elapse
of the maximum interval time from a pulse arrival time
of x at the latest. The interval time constraints do not
depend on clocking schemes. Therefore, the declaration
of a clocking scheme on each gate is not necessary in the
proposed verification method.

For an ordered pair of inputs (x, y) of gate g, the tim-
ing slack TS(g, x, y) is defined in three cases: (a) Tl(y)
is larger than Te(x) and (x, y) has the minimum interval
time constraint (b) Tl(y) is larger than Te(x) and (x, y)
has the maximum interval time constraint (c) otherwise,
namely, Tl(y) is not larger than Te(x) or (x, y) does not
have the minimum or the maximum interval time con-
straint. Fig. 2(a) shows the timing slack calculated by
the minimum interval time constraint. Fig. 2(b) shows
the timing slack calculated by the maximum interval time
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constraint. TS(g, x, y) is calculated by the following,

TS(g, x, y) =

⎧⎪⎨
⎪⎩

Te(y)− Tl(x)− ITmin(x, y) (a)

Te(x) + ITmax(x, y)− Tl(y) (b)

no value (c)

(5)

where the minimum and the maximum interval times of
(x, y) are ITmin(x, y) and ITmax(x, y), respectively. If
TS(g, x, y) or TS(g, y, x) is negative, a timing violation
may occur between x and y.
A clocked AND gate has the minimum interval time

constraints on (a, clk), (clk, a), (b, clk), (clk, b), (a, a),
(b, b) and (clk, clk). This gate does not have the inter-
val time constraints on (a, b) and (b, a). A CB gate has
the minimum interval time constraints on (a, a) and (b, b)
and the maximum interval time constraints on (a, b) and
(b, a).
To guarantee satisfying the interval time constraints be-

tween inputs in a time frame and the next time frame,
we calculate the minimum clock period. Fig. 2 shows
the minimum clock period of each gate. The minimum
clock period of an ordered pair of inputs (x, y) of gate g,
CPmin(g, x, y), and the minimum clock period of gate g,
CPmin(g), are calculated by the followings,

CPmin(g, x, y) = {Tl(y)− Te(x) + IT (y, x)}, (6)

CPmin(g) = max
x,y∈I(g)

(CP (g, x, y)), (7)

where I(g) is the set of inputs of gate g and IT (y, x) is
ITmin(y, x) in Fig. 2(a), ITmax(y, x) in Fig. 2(b) or 0 in
Fig. 2(c). When an interval time constraint does not exist
on (y, x), IT (y, x) is 0. IT (y, x) includes ITmax(y, x),
because ITmax(y, x) is the interval time constraint in a
time frame. If the clock period is smaller than Tl(y) −
Te(x) + ITmax(y, x), a pulse on x in a time frame is dealt
with as a pulse in the previous frame. The minimum clock
period of the circuit is

CPmin = max
∀g

(CPmin(g)). (8)

Fig. 2 shows examples of calculated timing slacks and
clock period. Calculated timing slacks and clock period
of a clocked AND gate g1, which has inputs a, b and clk,
is shown in Fig. 2 (a). In this figure, TS(g1, b, clk), is cal-
culated as Te(b)− Tl(clk)− ITmin(b, clk) because Tl(clk)
is larger than Te(b) and (b, clk) has the minimum inter-
val time constraint. Similarly, TS(g1, a, clk) has a cal-
culated value. TS(g1, a, b) and TS(g1, b, a) have no value
because there are no timing constraints on (a, b) and (b, a).
TS(g1, clk, a) and TS(g1, clk, b) have no value because
the latest arrival time of the successor of an ordered pair is
not larger than the earliest arrival time of the predecessor
of the ordered pair. The minimum clock period defined
by (a, clk), CPmin(g1, a, clk) is shown in Fig. 2 (a). If
CPmin(g1, a, clk) is larger than any calculated clock pe-
riod on g1, CPmin(g1, a, clk) is the minimum clock period
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Fig. 2. Calculated timing slack and clock period
(a) TS(g1, a, b) = no value,
TS(g1, b, a) = no value,
TS(g1, a, clk) = Te(clk)− Tl(a)− ITmin(a, clk),
TS(g1, clk, a) = no value,
TS(g1, b, clk) = Te(b)− Tl(clk)− ITmin(b, clk),
TS(g1, clk, b) = no value,
and CPmin(g1, a, clk) = Tl(clk)− Te(a) + ITmin(clk, a)
(b) TS(g2, a, b) = Te(a) + ITmax(a, b)− Tl(b),
TS(g2, b, a) = no value
CPmin(g2, a, b) = Tl(b)− Te(a) + ITmax(b, a)

defined by g1. Fig. 2 (b) shows calculated timing slacks
and clock period of CB gate g2 which has the maximum
interval time constraints.

IV. Conclusion

We have proposed a method for static timing analysis
of RSFQ circuits. To verify the timing of RSFQ circuits,
we have introduced a new definition of timing slacks of
RSFQ gates. Additionally, analysing the total length of
PTLs is useful to design a circuit which has large bias
current margin.
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