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Abstract— Simulated Annealing is a universal prob-
abilistic metaheuristic for optimization problems of lo-
cating a good approximation to the global minimum
of given function in a large solution space. It is some-
times used for physical design problems. However,
Simulated Annealing is known to be inefficient when
it searches solution spaces containing infeasible solu-
tions. In this paper, we propose two methods to make
adjacent solutions for such solution spaces. Experi-
mental comparisons indicate the effectiveness of the
proposed methods.

I. Introduction

Simulated Annealing (that is called SA in the following)
is a universal probabilistic metaheuristic for optimization
problems of locating a good approximation to the global
minimum of given function in a large solution space. If we
define a method to make adjacent solutions for SA search,
SA can search for an appropriate solution in the solution
space[1][2].
When a solution for a problem does not satisfy a con-

straint of the problem, it is called an “infeasible” solution.
If an adjacent solution obtained is infeasible in SA, it is
rejected and another adjacent solution is made usually
(naive method). Such SA is known to be inefficient when
it searches solution spaces which include many infeasible
solutions. “From any feasible solution, any other feasible
solution can be obtained via a sequence of feasible solu-
tions of the polynomial number of the size of the problem”
is called “reachability”. If a solution space includes many
infeasible solutions, it does not have reachability some-
times.
When a solution space includes infeasible solutions, an-

other technique to search such a solution space by SA is
to impose very large cost to infeasible solutions (penalty
function). However, when the technique is used, there is
no guarantee that SA finds a feasible solution.
A special solution space of a certain problem for SA is

proposed [3], where an adjacent solution can be obtained
with avoiding infeasible solutions in O(n2) time and the
reachability from any solution to any other is proved in
this solution space. However, such method is applicable
to a very limited problem, and it is not universal.
On the other hand, an efficient method to make ad-

jacent solutions is proposed for SA by Tezuka[4]. If we

use this method to search in a solution space that is not
reachable, we can expect that the method makes the so-
lution space reachable. However, the number of adjacent
solutions to be made is determined only by probability,
and it is independent of whether an adjacent solution is
feasible or not. Therefore, we think that the efficiency of
SA searching may not be good.
In this paper, we propose two methods to make adja-

cent solutions. One is the improved method of Tezuka’s
for a solution space which includes infeasible solutions,
and the other is the method when a solution space in-
cludes so many infeasible solutions that Tezuka’s and our
first method can’t search efficiently. Both proposed meth-
ods consider whether an adjacent solution is feasible. We
will discuss these methods on two problems whose so-
lution spaces include many infeasible solutions. One is
the packing problem to pack rectilinear blocks, and the
other is the placement problem for the fixed-die. The
solution spaces of these problems include infeasible solu-
tions, and are used to ensure effectiveness of the proposed
methods. And we compare proposed methods with con-
ventional methods by computer experiments.

II. Simulated Annealing

The idea underlying SA was proposed by Metropolis et
al. in 1953[5]. The phenomenon of annealing is a process
to obtain crystals with few defects from the material in a
molten state at a high temperature. Applicability of the
simulation to search for a good solution in the optimiza-
tion problem was demonstrated by Kirkpatrick et al.[1].
Thereafter, SA was shown to be an effective method for
solving combinatorial optimization problems[6].

A. SA Algorithm[7]

At each step of this simulation algorithm, a new state of
the system is constructed from the current state by giving
a random displacement to a randomly selected particle. If
the energy associated with this new state is lower than the
energy of the current state, the displacement is accepted,
that is, the new state becomes the current state. If the
new state has energy higher by ΔE, it becomes the cur-
rent state with probability

exp(− ΔE

kBT
),
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where kB is Boltzmann’s constant and T is the absolute
temperature.
The only requirement for solving a combinatorial opti-

mization problem with annealing is that there is a set of
MOVEs that can transform one solution (state) into an-
other. Preferably, the scores of such solutions are close.
So, almost any combinatorial problem can be formulated
as an annealing problem. However, not all problems can
be solved equally efficient.

B. Simulated Annealing and solution space[8]

If adjacent solutions are not defined well, SA search be-
comes inefficient. Therefore, the solution space is prefer-
able to satisfy the following property.

Reachability From any feasible solution S0, any other
feasible solution S� can be obtained via a sequence
of feasible solutions S1, S2, · · · , S�−1, where Si+1 is
an adjacent solution of Si, and � is the polynomial
number of the size of the problem.

If a solution space does not have reachability, SA search
may not be able to reach the optimal or near-optimal
solution, because it is hampered by infeasible solutions.
In this case, merit of SA that can obtain a good solution
according to the time is lost.

III. Method to make adjacent solutions

In this paper, we redefine “making adjacent solutions”
as multiple times of perturbations in succession, in the
same way as Tezuka’s[4], where “perturbation” is defined
as a MOVE, i.e. a single operation.

A. Geometric method

Construction of the solution space using geometric pro-
gression for determining the times of perturbations was
proposed by Tezuka[4]. It is defined as follows.
Geometric method
One operation of making adjacent solutions is defined

as k times of perturbations with probability P ,

P =

{
rk−1(1− r) (1 ≤ k < t)
rk−1 (k = t) ,

where r is a given probability, and t is the given upper
limit of the times of perturbations. This method can be
done by the following algorithm.

Algorithm: Geometric method

Input: a current solution X0

Output: an adjacent solution Xi

for (i = 1, 2, · · · , t){
make an adjacent solution Xi from solution Xi−1;
if (r > (random value between 0 and 1) ) break;
} (Algorithm Geometric method Ends)

B. Proposed methods

If naive method is used to make adjacent solutions, the
solution space may be unreachable when it includes many
infeasible solutions. One of the advantages of the geo-
metric method is to be able to make the solution space
reachable. However, performing multiple times of per-
turbations, the result may be more likely an infeasible
solution than the conventional method. In this paper,
we propose two methods to get feasible solutions in order
to search the solution space including infeasible solutions
efficiently. One is “Rollback method”, and the other is
“Feasible method”. These methods are shown in the fol-
lowing.

Algorithm Rollback method

Input: a current solution X0

Output: an adjacent solution Xi

for (i = 1, 2, · · · , t){
make an adjacent solution Xi from solution Xi−1;
if (r > (random value between 0 and 1) ) break;
}
while (i > 0) {
if (Xi is feasible) break;
i−−;
} (Algorithm Rollback method Ends)

Algorithm Feasible method

Input: a current solution X0

Output: an adjacent solution Xi

i=0;
do{
i++;
make an adjacent solution Xi from solution Xi−1;
}while((Xi is feasible) or (i = t))

(Algorithm Feasible method Ends)

An adjacent solution of Geometric method is a solution
which is “the last solution obtained by a series of pertur-
bations”. But an adjacent solution of Rollback method is
a solution which is “the last feasible solution obtained by
a series of perturbations”. On the other hand, an adjacent
solution of Feasible method is a solution which is “the first
feasible solution obtained by a series of perturbations”.
We use two problems whose solution spaces include in-

feasible solutions to examine the proposed methods. One
is “Rectilinear Block Packing problem” (in IV), and the
other is “Placement Problem for fixed-die” (in V).

IV. Packing Problem

One of the problems for which SA is often used is the
rectangle packing problem that is to pack set of rectan-
gular blocks in the smallest rectangle area without over-
lapping. In this paper, we use sequence-pair as represen-
tation for packing.

A. Sequence-Pair seq-pair [9]

A sequence-pair (seq-pair) is an ordered pair of Γ+

and Γ−, where each of Γ+ and Γ− is a permutation of
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names of given n rectangular blocks. For example, (Γ+;
Γ−)=(abcd; bdac) is a seq-pair of block set {a, b, c, d}. A
seq-pair imposes a “horizontal/vertical(H/V) constraint”
on every block pair as follows. For every block pair {a, b},
a is in the left of b (equivalently, b is in the right of
a) if (Γ+; Γ−) = (· · · a · · · b · · · ; · · · a · · · b · · ·). Similarly,
a is below b (equivalently, b is above a) if (Γ+; Γ−) =
(· · · b · · · a · · · ; · · · a · · · b · · ·).

A.1. Method to make adjacent solution

In this paper, “Full-Half-Half”, that is known to be a good
method to make adjacent solutions for sequence-pair, is
used as a perturbation.

Full-Half-Half Select one of these exchange opera-
tions randomly and execute it: Γ+ Half-exchange or
Γ− Half-exchange or Full-exchange.

Since seq-pair consists of a pair of permutations, its con-
version operation is a permutation transformation. Each
exchange operation is defined in the following.

Γ+ Half-exchange Exchange two elements that are
selected randomly in Γ+.

Γ− Half-exchange Exchange two elements that are
selected randomly in Γ−.

Full-exchange Exchange two elements that are se-
lected randomly in Γ+ and Γ−.

In the following, “(a, b) Γ+” denotes Γ+ Half-exchange
of elements {a, b}.

B. Rectilinear Block Packing[10]

In this paper, rectilinear block packing problem is used
as a problem whose solution space includes infeasible so-
lutions.
A polygonal block whose outside frame consists of hor-

izontal and vertical lines only is called a “rectilinear
block”. In [10], a seq-pair based method to represent
rectilinear block packing was proposed. As only rect-
angle blocks can be handled by seq-pair basically, each
rectilinear block is partitioned into rectangles by horizon-
tal and/or vertical lines. These rectangular blocks are
called “sub-blocks”. Sub-blocks are treated as rectangu-
lar blocks in seq-pair.
The decode procedure of the representation is as fol-

lows. First, H/V constraint graphs are made from seq-
pair in the similar way to [9], and the weight of each
vertex moves to all of its output edges. Finally, special
edges called “relative position edge pair” are added to the
graphs, in order to pack and align simultaneously. They
make the graphs cyclic. Since the longest path algorithm
for DAG can’t be used, the shortest path algorithm of
Ford’s is applied to calculate the longest path length and
obtains the coordinates of rectangles. Therefore, the time
complexity of this method is O(n3), where n is the num-
ber of sub-blocks.

a1

a2
a3

a4

b

Fig. 1. the most dense packing of a rectilinear block a and a
rectangular block b, corresponding seq-pair is
Sopt=(a1 a2 b a3 a4 ; a2 a4 b a1 a3)

TABLE I
the rests of candidates that is obtained from Sopt by an

exchange
operation seq-pair feasible?

(b, a2)Γ+ (a1 b a2 a3 a4; a2 a4 b a1 a3) infeasible
(b, a3)Γ+ (a1 a2 a3 b a4; a2 a4 b a1 a3) infeasible
(b, a4)Γ− (a1 a2 b a3 a4; a2 b a4 a1 a3) infeasible
(b, a1)Γ− (a1 a2 b a3 a4; a2 a4 a1 b a3) infeasible

B.1. Feasible Sequence-Pair[10]

If all packing objects are rectangles, at least one pack-
ing that keeps H/V constraints imposed by any seq-pair
always exists. However, if packing objects are rectilin-
ear blocks, corresponding packing, that keeps H/V con-
straints imposed by a certain seq-pair, does not exist.
Such seq-pair is infeasible, and called “infeasible seq-
pair”. In addition, seq-pair that has a corresponding
packing is called “feasible seq-pair”.

B.2. Unreachability of solution space

When we search solutions of rectilinear block packing
problem with SA, the solution space does not have reach-
ability often.

Focus on the most dense packing of rectilinear block
a (that consists of four sub-blocks a1, a2, a3, a4) and
a rectangular block b as shown in Fig.1. The place-
ment is represented by the unique seq-pair Sopt =
(a1 a2 b a3 a4 ; a2 a4 b a1 a3). Now, let’s consider reacha-
bility to Sopt from a feasible seq-pair. We will check a
feasible seq-pair that can be obtained from Sopt by an ex-
change because of the reversibility of Full-Half-Half. We
use Full-Half-Half, so an exchange operation is Γ+ Half-
exchange or Γ− Half-exchange or Full-exchange. However,
if we use Full-exchange for any elements, the seq-pair be-
comes infeasible. Moreover, if we exchange two elements
corresponding to sub-blocks that are made from a recti-
linear block, the seq-pair becomes infeasible too. If we
exchange two elements which are not adjacent in Γ+ or
Γ−, the seq-pair becomes infeasible too, and so two ele-
ments to be exchanged have to be adjacent. Table.I shows
the rests of candidates that is obtained from Sopt by an
exchange. This table indicates that this solution space
does not have reachability because any seq-pair adjacent
to Sopt is infeasible. Hence, when the perturbation is Full-
Half-Half, all the adjacent seq-pair of Sopt is infeasible.
Therefore, the solution space does not have reachability.
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Fig. 2. input data (1): a rectilinear block a and a rectangle b

TABLE II
probability that obtained solutions are feasible for three

methods of making adjacent solutions (input data (1))

method probability of feasible solutions

Full-Half-Half 1.85[%]
Geometric 0.26[%]
Rollback 2.49[%]

C. Computer Experiments

We executed two kinds of experiments which are to
check for verification or comparison. We implemented
SA search program based on seq-pair representation.

C.1. Verification of Rollback method

Since Rollback method is an improved method of Geo-
metric method for the solution space including infeasible
solutions, we expect that Rollback method is more effec-
tive than Geometric method in such a solution space. We
executed SA search with three methods that were Full-
Half-Half, Geometric method, and Rollback method.
We use the input data (1) which is made artifi-

cially as shown in Fig.2. The data consists of a
rectilinear block a (that consists of eight sub-blocks
a1, a2, a3, a4, a5, a6, a7, a8) and a rectangular block b.
When b is put into a, the area of the bounding box is
smallest. The common initial seq-pair was obtained by
encoding the placement shown in Fig.2. The upper limit
of the times of perturbations t is nine, and probability of
perturbation r=0.5. Resultant probability that obtained
solutions are feasible is shown in Table.II, where it is ob-
tained by dividing the number of feasible solutions by the
total times of making adjacent solutions.
From this table, when SA searches the solution space by

Rollback method, feasible probability is bigger than that
of Full-Half-Half and Geometric method. Therefore, we
consider that Rollback method is effective to get feasible
solutions in such a solution space.

C.2. Verification of Feasible method

We proposed Feasible method for a solution space which
includes many infeasible solutions. Therefore, we expect
that Feasible method makes such a solution space reach-
able. We use the input data (1) as shown in Fig.2, whose
solution space has thick barrier around the densest solu-
tion and doesn’t have reachability.
We executed SA search using Feasible method with sev-

eral kinds of the upper limit of the times of perturbations
t. Note that the method is equal to Full-Half-Half when t

TABLE III
probability that final packing is the densest (input data

(1))

method parameters
times of making
adjacent solutions probability

t=1(FHH) 6.0*108 0[%]
t=2 2.0*108 0[%]
t=3 1.6*108 0[%]
t=4 1.2*108 28[%]

Feasible t=5 1.0*108 48[%]
t=6 8.0*107 56[%]
t=7 7.2*107 50[%]
t=8 6.4*107 50[%]
t=9 6.0*107 56[%]

r=0.3 5.7*108 10[%]
Geometric r=0.6 5.4*108 40[%]

r=0.9 4.9*108 42[%]
r=0.3 2.3*108 6[%]

Rollback r=0.6 1.5*108 28[%]
r=0.9 7.3*107 48[%]

is one. For comparison, we executed SA search using Ge-
ometric method and Rollback method with several kinds
of probability of perturbation r. The calculation time of
Feasible method is greatly affected by the upper limit of
times of perturbations t, and that of Geometric method
and Rollback method is greatly affected by probability
of perturbation r. Therefore, we adjusted the times of
making adjacent solutions so that the calculation time is
about 2000[sec]. To examine the probability that the fi-
nal packing by SA search is the densest, SA is executed 50
times with distinct seeds of pseudorandom numbers. Ta-
ble.III shows probabilities which are obtained by dividing
the number of getting the densest packing by the total
times of SA search.
From this table, when t is more than three, the densest

packing is often obtained by SA search. Hence, we confirm
that Feasible method makes the solution space reachable.
When t is more than four, the probability are not very dif-
ferent. When Geometric and Rollback methods are used,
the densest packing is sometimes obtained by SA search.
However, the probabilities of the two methods are not as
high as that of Feasible method. We think that Feasible
method makes SA search more effective than the others
when a solution space includes many infeasible solutions.

C.3. Experimental comparison for efficiency

We used four methods to make adjacent solutions in the
following for comparison.

Full-Half-Half (FHH)

Geometric method (Tezuka’s method): The up-
per limit of the times of perturbations t is set to
the number of blocks, and probability of perturba-
tion r=0.5.

Rollback method: The parameters of this method
are the same as Geometric method.

Feasible method: The upper limit of the times of
perturbations t is set to three.
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(a)input data(2): two rectilinear

blocks and four rectangles

1
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4

5

6

7

8

9

10

(b)result obtained by Feasible

method, packing ratio=1.0 (the

densest packing of data (2))

Fig. 3. input data (2), whose solution space doesn’t have
reachability
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Fig. 4. input data (3), whose solution space has reachability: three
rectilinear blocks and 22 rectangles. result obtained by Feasible
method, calculation time=1572.1[sec] packing ratio=1.173

We used two input data which are made artificially.
One consists of two rectilinear blocks and four rectan-
gles as shown in Fig.3. The solution space does not have
reachability with naive method. The other consists of
three rectilinear blocks and 22 rectangles, where the re-
sult of the densest packing is shown in Fig.4. The solution
space has reachability with naive method. The initial seq-
pair of each problem was obtained by encoding a packing
where each rectilinear block forms a row.

For each input data, we fixed the initial and final tem-
peratures appropriately by pre-runs and carried out ex-
periments for several cooling ratios. For each cooling ra-
tio, SA searches are carried out five times with distinct
seeds of pseudorandom numbers. Results are shown in
Fig.5 and Fig.6, where the x-axis is the CPU time, and
the y-axis is the packing ratio. The packing ratio is ob-
tained by dividing the area of the bounding box by the
total area of all blocks. Note that these figures do not
show the process of SA. These show five final solutions
obtained and the averages of them.

From Fig.5, SA search using Full-Half-Half (naive
method) does not find the densest packing since the solu-
tion space does not have reachability, but SA search using
the other methods can find one of the densest packing.
From Fig.6, packing ratio of Full-Half-Half is better than
that of the others in less than 100[sec]. But, since pack-
ing ratio of all methods are not very different in more
than 100[sec], they can search the solution space which
has reachability. Therefore, we consider that proposed
methods are efficient and independent of whether or not
the solution space has reachability.
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Fig. 5. comparison of search efficiency on input data (2), whose
solution space doesn’t have reachability
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Fig. 6. comparison of search efficiency on input data (3), whose
solution space has reachability

V. Placement Problem for fixed-die

One of the problems for which SA is often used is the
placement problem in the LSI design, which is to place a
given set of rectangular blocks into the area that is pre-
defined size (fixed-die) so that wire length is as short as
possible[11].
In other words, Lx and Ly denote the width and the

height of the fixed-die respectively. Xmax and Ymax de-
note the width and the height of a result packing respec-
tively. Each value must meet the following requirement.

Lx ≥ Xmax and Ly ≥ Ymax

In the following, a solution that does not satisfy the
requirement is treated as an infeasible solution.

A. Computer experiment

MCNC benchmark “ami49” was used for our experi-
ments in this section. To fix the size of die, one of the
packing results of the appropriate size is selected, and we
fixed the die size as that of the packing. And the seq-pair
of this packing was used as the initial seq-pair.
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Fig. 7. comparison of search efficiency on “ami49”(49 rectangles)

The upper limit of the times of perturbations t of Feasi-
ble method is four, and the upper limit of the times of per-
turbations t of Geometric method and Rollback method
is 49, and probability of perturbation r=0.75. Then, we
fixed the initial and final temperatures appropriately by
pre-runs and carried out experiments for several cooling
ratios. For each cooling ratio, SA searches are carried out
five times with distinct seeds of pseudorandom numbers.
Result is shown in Fig.7, where the x-axis is the CPU
time, and the y-axis is the HPWL, and a resultant pack-
ing is shown in Fig.8. Note that Fig.7 does not show the
process of SA. It shows five final solutions obtained and
the averages of them.
In this experiment, we also carry out SA search using

penalty function, but the experimental results were hardly
feasible. Therefore, we consider that penalty function is
not suitable for such a problem whose solution space in-
cludes many infeasible solutions.
From Fig.7, we can find that proposed methods and

Geometric method can make the solution space reach-
able for the problem with Full-Half-Half, though it is
not reachable with only Full-Half-Half. In addition, pro-
posed methods are a little more efficient than Geometric
method.
From the above observations, we consider that proposed

methods can make the solution space, which does not have
reachability with naive method, reachable, and these are
more efficient than Geometric method.

VI. Conclusion

In this paper, we proposed two methods to make
adjacent solutions, which are efficient for the problem
whose solution space does not have reachability. One is
the improved method of Tezuka’s method for a solution
space which includes infeasible solutions, the other is the
method when a solution space includes many infeasible
solutions. And experimental comparisons indicate the ef-
fectiveness of the proposed methods.
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