
Application of Monte-Carlo Tree Search to Traveling-Salesman Problem

Masato Shimomura Yasuhiro Takashima

Faculty of Environmental Engineering

University of Kitakyushu

Kitakyushu, Fukuoka 808-0135

{masato.shimomura@is.env.,takasima@}kitakyu-u.ac.jp

Abstract— This paper shows an application of Monte-Carlo
Tree Search (MCT) to Traveling-Salesman Problem (TSP). Com-
pared with the simulated annealing, which is one of the general
probabilistic optimization methods, MCT has very high ability of
optimization with problem-aware implementation. Its efficiency
is confirmed, empirically.

I. Introduction

Recently, the performance of computers and the size of the

problems are increased. But, there is a gap, that is, the speed

for the problems is larger than that for the computers. Thus, the

importance of the efficient method becomes larger and larger.

Especially, the problems in NP-hard [1] needs to the efficient

method, strongly.

For the optimization method, there are 3 types, 1) strict

method, 2) approximate method, and 3) heuristic method. The

strict method is the method which outputs the optimum solu-

tion exactly. It typically is formulated as the SAT problem [2]

or the ILP problem [3, 4]. These frameworks have noted for

this decade, since the performance of their solvers are much

improved. But, the exponential increase of the runtime can not

be avoided due to the character of the method. The approxi-

mate method has the guarantee of the solution performance. [1]

introduces several approximate method. One of the drawbacks

of the approximate algorithm is that it may not exists for some

problem. The heuristic method does not have any guarantee

of the solution but has reasonable runtime algorithm. In this

class, simulated annealing and genetic algorithm are enumer-

ated. These methods are general. Thus, they are applicable to

any problem. But, especially, when the constraint is strict, the

search efficiency degrades.

Recently, Monte-Carlo tree search is noted, especially from

the game-tree search area. Furthermore, its application to the

optimization problem is proposed [5]. This paper follows the

proposition from [5] and introduces an application of Monte-

Carlo tree search to Traveling-salesman problem, one of the

combination problem. Compared with SA, it obtains 40% per-

formance improvement with same runtime and the same per-

formance with 685 times faster. Thus, we conclude the Monte-

Carlo tree search is efficient.

The rest of this paper is as follows: Section II introduction

the Monte-Carlo tree search; Section III describes how to ap-

ply the Monte-Carlo tree to Traveling-salesman problem; Sec-

tion IV reports experimental results; and SectionV concludes

this paper.

II. Monte-Carlo Tree Search

Monte-Carlo method is a method which calculates statistical

values, for example, an expected value, with a random sam-

pling. For a recent decade, Monte-Carlo Tree Search (MCT)

is watched, where it utilizes Monte-Carlo method to the tree

search. It is a beginning to apply MCT to the game tree search.

Furthermore, there are several propositions to employ MCT to

the solution of the optimization problems. Especially, the uti-

lization of MCT to CAD is also considered.

Fig. 1 shows a framework of MCT. In the MCT, each node

and each terminal corresponds to a sub-solution and a solution,

respectively. In Fig. 1, a rectangle node which is a terminal

corresponds to a solution, and the other nodes correspond to

sub-solutions. Each edge between two nodes corresponds to

an expansion from a sub-solution to a larger solution. In this

case, the original sub-solution is parent and the constructed so-

lution is child. In Fig. 1, for the parent node p1, node c1, c2,

and c3 are children. For the child node, two classes exist, ex-
tended and unextended. They correspond to the sub-solutions

which have already visited and have not visited yet, respec-

tively, during the previous search. In Fig. 1, the nodes c1 and

c2 are extended and the node c3 is unextended. For the termi-

nal, its evaluation can be calculated uniquely.

Fig.2 shows a pseudo code of MCT. In the figure, V0 is a

root node.

In the code shown in Fig.2, node V0 is a root node and its

stopping criteria is until satisfying the calculation time or the

iteration number which are given. This flow is applied to the

example shown in Fig.1.

At the beginning of the execution of TREE POLICY, the

search starts at the node V0. At the search of the node V0, all

children of V0 are extended. Thus, select the child p which

has the best evaluation among them. At the node p, there exist

unextended child, thus select a node among the unextended

children randomly. As a result, the node c3 is selected and Vl

is set to c3 (shown in Fig.3).

After the selection of the node c3, construct the solution cor-

responding to the terminal Ve by DEFAULT POLICY and cal-

SASIMI 2016 ProceedingsR4-14

- 352 -



V0

p

c1 c2 c3

Figure 1: Framework of Monte-Carlo Tree Search

� �
function MCT SEARCH(V0) {

while (stopping criteria is not satisfied) {
Vl ← TREE POLICY (V0)

Δ← DEFAULT POLICY (Vl)

BACKUP (Vl,Δ)

}
return BEST CHILD (V0)

}
� �

Figure 2: Pseudo code of MCT

culate the evaluation value of Ve (shown in Fig.4).

Finally, in BACKUP, the information including the evalu-

ation is returned hierarchically and update the information of

the ancestors (Fig.5).

In the remains of this section, the above steps are introduced

briefly. In the following description, the optimization objective

is the maximization.

A. TREE POLICY

This step is formulated by the Multi-Armed Bandit Problem

[6] which selects the best item statistically among K items. Its

pseudo code is shown in Fig.6.

This Multi-Armed Bandit Problem can be solved with high

probability if a large number of trials are executed. However,

the selection must be done with the limited number of trials.

In this case, Upper Confidential Bound for Trees (UCT) is pro-

posed. This method select the node which has the highest eval-

uation by Eq.1.

UCT = x j + 2Cp

√
2 ln n

n j
, (1)

where x j is the average value of node j among the previous

trials; n is the total number of trails; n j is the number of trials

V0

p

c1 c2 c3

Figure 3: Example of TREE POLICY

V0

p

c1 c2 c3

Ve

Figure 4: Example of DEFAULT POLICY

which select node j; Cp is the weight. This equation tends to

return the large value when the average of the previous eval-

uation is large. But, when the number of trials is relative

small, the sub-solution corresponding to the node has a poten-

tial where it can extend to a good solution. Thus, the second

term reflects such variation.

B. DEFAULT POLICY

This step consists of constructing solution randomly from

the sub-solution corresponding to the selected node by

TREE POLICY and evaluating the solution. The pseudo code

is shown in Fig.7.

C. BACKUP

This step traverses the tree from the selected node to root

hierarchically with updating the information of each node by

the solution and its evaluation from DEFAULT POLICY. The

update modifies the average x j and the trial number n j for each

node j.

- 353 -



V0

p

c1 c2 c3

Ve

Figure 5: Example of BACKUP

� �
function TREE POLICY (V) {

while (V is not terminal) {
if (all children of V are extended) {

select the child of V with the best evaluation

of UCT(Eq.(1)) and set it to V
} else {

select the child V ′ of V which is unextended

return V ′
}

}
return V．

}
� �

Figure 6: Pseudo code of TREE POLITY

III. Application ofMCT to TSP

This section describes how to apply MCT to Traveling

Salesman Problem (TSP). The TSP is defined as Def.1

In this paper, TSP is a path-version between two cites. TSP

is known as NP-hard problem [1]. Thus, it is difficult to solve

it in the polynomial time. To solve it, there are several meth-

ods proposed. Especially, [1] introduces an approximated al-

gorithm with the minimum spanning tree (MST).

This paper tries to apply MCT to TSP. In the rest of this

section, this application is described briefly.

A. Solution Representation

The solution of TSP is represented by the sequence of the

cities which corresponds to the order of the route. Thus, a sub-

solution corresponding to the node of MCT is represented as

the sub-sequence.

� �
function DEFAULT POLICY (V) {

while (V is not terminal) {
Select the child V ′ of V randomly

set V ← V ′
}
return (evaluation of V)

}
� �

Figure 7: Pseudo code of DEFAULT POLICY

Def. 1 (Traveling Salseman Problem (TSP))
Input: Set of cities C = {ci} and distance function

d(ci, c j)

Output: Minimum route length
Constraint: The route visits each city exactly

once

B. TREE POLICY

To define TREE POLICY, the evaluation function UCT

must be defined. Since TSP is the minimized problem, Eq.1 is

modified as Eq.2, where the sign of the second term is changed

to negative.

UCT = x j − 2Cp

√
2 ln n

n j
(2)

In TREE POLICY, the best child with UCT is the minimum

node by Eq.2. For the selection of Cp, no concrete formula-

tion exists. This paper considers two methods, 1) utilization of

MST value, and 2) utilization of sampling values. For the uti-

lization of MST value, we calculate the MST value for given

Graph and decide Cp by it. On the other hand, for utilization

of sampling values, we focus on the framework of MCT. In

the MCT process, the UCT value is not used during the exten-

sion of root node. Therefore, when all children are extended,

standard deviation of the route length among the children is

calculated and Cp is decided according to it.

C. DEFAULT POLICY

In DEFAULT POLICY, several random methods to con-

struct a solution can be selected. In this paper, we consider

two methods, 1) uniform distribution, and 2) roulette selection.

This step constructs the route from the sub-route correspond-

ing to the node selected by TREE POLICY. We note the selec-

tion of the next city among all unvisited cities from the current

last city. For the uniform distribution, each unvisited city has

an equal probability of selection. On the other hand, for the

roulette selection, we calculate the reciprocal of the distance

from the last city to each unvisited city and employ the ratio

over the total of the reciprocal as probability.

As comparing them, the method with the uniform distribu-

tion can be calculated easier than that with roulette selection.

- 354 -



Thus, the execution time should be shorter. On the other hand,

for the minimum route, the distance between the consequence

two cities may be desirable. Thus, the resultant route may be

smaller.

D. BACKUP

In this step, the best route is remained for each node.

IV. Experiments

To confirm the performance of MCT, we implement MCT

on the computer. The computational environment is as fol-

lows: Processor is Intel Core i5 3.2GHz; Memory is 32GB

1600MHz DDR3; OS is OSX 10.11.4. we compare the results

among Simulated annealing (SA), MCT with uniform distri-

bution and Cp by MST (MCT UM), MCT with roulette selec-

tion and Cp by MST (MCT RM), and MCT with roulette se-

lection and Cp by standard deviation (MCT RS). For SA, the

initial temperature, the final temperature, the iteration number

on each temperature, and the cooling ratio are 10000K, 10K,

1000, and 0.99, respectively. For the movement of SA, we em-

ploy that two cities are selected randomly and exchange their

orders. For the stopping criteria of MCT, we use the running

time of SA.

For the benchmarks, we select 77 data from [7]. The distri-

bution of the number of cites is between 48 and 15112.

A. Comparison with the random method on DE-

FAULT POLICY

We confirm the comparison of the results with the ran-

dom method on DEFAULT POLICY. In this experiment, set

Cp = 2 ∗ (MS T ). The experimental result is shown in Fig.8,

where the horizontal and vertical axis correspond to the loga-

rithm of the number of cities and the logarithm of the normal-

ized route length by MST. In this figure, SA, MCT Uni2, and

MCT RLT2 correspond to the results from SA, MCT UM, and

MCT RM, respectively.

From the comparison, the utilization of uniform distribu-

tion is a little worse than SA. On the other hand, the uti-

lization of roulette selection is much better than SA. That is,

the utilization of uniform distribution outputs 8% longer route

length, while that of roulette selection outputs 37% shorter

route length. Thus, we confirm the method how to construct

a solution much is important.

We also confirm the efficiency of the roulette selection by

the runtime in which the MCT can achieve better solution than

SA. As a result, only 0.15% runtime is needed on the average.

Thus, MCT is about 685 times faster than SA.

B. Comparison with Cp

Next, we confirm the affect of Cp. In this experiment, DE-

FAULT POLICY employs roulette selection. The experimen-

tal results are shown in Fig.9, where the horizontal and vertical

axis also correspond to the logarithm of the number of cities

and the logarithm of the normalized route length by MST. In

this figure, k*MST and k*SD correspond to the result with

Cp = k ∗ (MS T ) and Cp = k ∗ (S tandardDeviation), respec-

tively.

From the result, no significant difference exist among them.

For example, the average improvements from SA are 0.628 for

0*MST, 0.632 for 2*MST, 0.633 for 4*MST, 0.629 for 0*SD,

0.633 for 2*SD, and 0.634 for 4*MST, respectively. The differ-

ence among them is about 1%. Especially, 0*MST and 0*SD

correspond to no consideration of the second term in Eq.2.

Thus, it means that almost same results are obtained with or

without this term. The reason may be that no affect by the

consideration of Cp may occur since the efficiency of the uti-

lization of roulette selection is good enough. However, the

decision of Cp with sampling may be general. Thus, it is easy

to apply the decision to other problems.

V. Conclusion

This paper proposes the application of Monte-Carlo tree

search to Traveling-Salesman problem. Compared with sim-

ulated annealing, it was confirmed empirically that MCT out-

puts 1) 40% length route with the same runtime, and 2) same

length route with 685 times faster runtime. From the exper-

iments, we also confirmed that the random selection in DE-

FAULT POLICY is much important to the result. As a conse-

quent, the efficiency to apply MCT to the optimization problem

is confirmed.

The Future works are as follows: (1) application of MCT

to EDA problem; (2) proper decision of UCT. For the issue

(1), the architecture of DEFAULT POLICY is important to ob-

tain the high optimization ability. Thus, we need to select the

proper method to each problem. For the issue (2), TSP does

not matter the construction of UCT. But, in general, Cp may

be important to the performance of result. We expect the stan-

dard deviation based method is promising. We plan to show its

efficiency.

References

[1] M. R. Garey and D. S. Johnson, “COMPUTERS AND INTRACTABIL-

ITY”, 1979.

[2] MiniSat, http://minisat.se.

[3] IBM CPLEX Optimizer, http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer/.

[4] Gurobi Optimizer, http://www.gurobi.com.

[5] Yusuke Matsunaga, “On applications of Monte-Carlo tree search algo-

rithm for CAD problems”, IEICE Tech. Rep., VLD2015-46, pp. 51–55,

2015.

[6] P.Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the mul-

tiarmed bandit problem”, Machine Learning, Vol. 47, No. 2, pp.235–256,

2002.

[7] Symmetric traveling salesman problem，http://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/tsp/.

- 355 -



1

10

100

10 100 1000 10000

SA
MCT_Uni2
MCT_RLT2

Figure 8: Comparison of the route length between the random method on DEFAULT POLICY

1

10

100

10 100 1000 10000

0*MST
2*MST
4*MST
0*SD
2*SD
4*SD

Figure 9: Comparison with Cp

- 356 -


