
Symmetric Segmented Delta Encoding for Wireless Sensor Data Compression

Wireless sensor networks (WSNs) are utilized for various
applications such as environmental monitoring, urban 
surveillance, home security, etc. Ideally, the massively deployed 
sensor nodes should be inexpensive, power-efficient, and reliable 
to maximize the functional lifetime. However, the 
data-transmission energy consumption has become one of the 
most challenging issues. To minimize the data-transmission 
energy cost in wireless applications, we propose a lossless 
Symmetric Segmented Delta encoding (SSD encoding) algorithm,
which exploits high similarity of environmental sensing data in a 
short period of time. According to the experimental results, our 
encoding algorithm achieves better sensor data compression 
ratios and at the same time requires less hardware resource for 
wireless sensor data.

I. Introduction

With the rapid advancement of micro-electro-mechanical 
systems (MEMS), wireless sensor networks (WSNs) could be 
widely deployed in a cost-effective manner for various 
applications. A large number of sensor nodes play a major 
role in sensing, processing and communication. Among them, 
environmental monitoring, urban surveillance, and home 
security have drawn much attention, since those WSN 
applications are related to human lives. In most WSN 
scenarios, sensor nodes are deployed in locations that are not 
conveniently accessible. Therefore, these nodes are usually 
powered by batteries. Ideally, the massively deployed sensor 
nodes should be inexpensive, power-efficient, and reliable to 
maximize the functional lifetime, facilitate data collection, 
and minimize the cost for maintenance. However, the 
data-transmission energy consumption has become one of the 
most challenging issues. Consequently, many researchers 
focus on energy reductions for WSN applications.

The main cause of power consumption is wireless 
communication operation. The energy consumed for 
transmitting a single bit is comparable to that for processing 
thousands of commands [1]. Therefore, reducing the amount 
of sensor data by data compression is a useful solution to 
reduce data-transmission energy. However, the existed
powerful data compression algorithms may not be very 
appropriate for sensor nodes owing to the hardware resource 
constraint. A balanced data compression algorithm for WSN 
application should take hardware cost, compression ratio, and 
overall energy consumption into account. In this paper, we 
first analyze the environmental sensor data characteristics and 

propose a lossless Symmetric Segmented Delta encoding 
(SSD encoding) algorithm by modifying the state-of-the-art 
Delta encoding algorithm with symmetric and segmented 
properties for WSN applications. The SSD encoding can be 
efficiently used to compress environmental sensing data in 
the sensor nodes. With the proposed SSD encoding technique, 
we are capable of not only enhancing the compression ratio 
but also conserving hardware resource.

This paper is organized as followss. The preliminary of 
power consumption in WSNs, state-of-the-art data 
compression algorithms, and environmental temperature data 
characteristics are in Section II. The proposed Symmetric 
Segmented Delta encoding (SSD encoding) is described in 
Section III. The experiment results and hardware resource 
estimation are in Section IV. We conclude this paper and 
points out important issues for future research in Section V.

II. Preliminary

In this section, we give preliminary background of power 
consumption in WSNs and data compression algorithms.
Then, we focus on environmental monitoring applications in 
WSNs – the SensorScope project develops a large-scale 
distributed environmental measurement system in 
Switzerland. According to the environmental temperature 
datasets of this project, we analyze the temperature data 
characteristics.

A. Power Consumption in Wireless Sensor Networks

A wireless sensor network is composed of one or several 
remote sinks and a large number of sensor nodes [2]. Sensor 
nodes have to wirelessly transmit collected data to the sinks 
periodically. Each sensor node contains power unit, sensing 
unit, processor, storage, and transceiver. To massively deploy 
the sensor nodes, sensor nodes are expected to have small 
form factor, reasonable manufacture cost, and long lifetime.
Hence, the design and implementation of WSNs are 
constrained by hardware resource in terms of battery, 
transmission bandwidth, computation capability, and memory 
size.

Since battery replacement and sensor re-deployment are 
prohibitively expensive in common practice, energy saving is 
one of the most important aspect in sensor node design. The 
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energy consumption in sensor nodes can be divided into three 
parts: data collecting, data processing, and data transmission. 
Among those three operations, data transmission consumes 
approximately 80% overall energy [3]. In order to save 
transmission energy, we should minimize the volume of 
transmitted data by compression. With data compression 
technique, we can improve the lifetime of sensor nodes by 
reducing the transmission data volume, the required storage
size, and the hardware cost simultaneously.

However, data compression before data transmission 
consumes more energy as compared to the original raw data 
transmission. Hence, the energy consumption of data 
compression must be smaller than the energy saving from 
data transmission. That is, assume that there are n bits
original data string; there are m bits data string after data 
compression, where � >  �; if c is the energy consumed by 
compressing/decompressing and w is the energy consumed 
by data transmission per bit, the compression algorithm is 
feasible when � <  � ×  (� �  �).

B. Data Compression Algorithms

Data compression algorithms can be classified into two 
categories, lossless and lossy, depending on whether the 
content can be perfectly restored or not during compression.
Both lossless and lossy compressions can be found in current 
WSNs. In this work, we target the lossless compression for 
users who want to have the raw data intact. Thus, we discuss 
the existed works on lossless data compression methods, such 
as LZW, Huffman encoding, and Delta encoding [4].

Lempel-Ziv-Welch (LZW) algorithm sets same length 
codewords to variable length series of source sequences. 
LZW dynamically builds the dictionary that maps symbol 
sequences to an N-bit index. The dictionary has 2N entries and 
the codeword is an index into the dictionary to retrieve the 
corresponding original sequences. LZW reads a new symbol 
and concatenates it to get a new subsequence that is added in 
the dictionary based on previous sequences. When LZW 
revisits a subsequence, this subsequence will be encoded 
using an index. Usually, the user defines the maximum 
number of dictionary entries, so that the process doesn't run 
away with memory. Based on LZW, prof. Sadler develops 
S-LZW [5] for resource-constrained wireless sensor nodes. 
This work finds that sensing data may be repetitive at short 
intervals, so it also proposes a S-LZW-MC with a mini-cache 
into the dictionary.

Huffman encoding first calculates the occurrence 
frequency of each symbol and sorts the symbols. A binary 
Huffman tree is constructed by iteratively merging two 
symbols with lowest frequencies. Once the Huffman tree is 
constructed, a unique path from root to leaf is encoded as the 
binary codeword for a symbol. Symbols with high occurrence
frequency will near the root of the tree and be represented by 
short codewords. Prof. Jambek [6] analyses the compression 
performance of the Huffman and LZW algorithms. From the 
experimental results, the Huffman algorithm is better than 
LZW for the common data using in WSNs.

Delta encoding is fairly straightforward and the codeword 
size has two types. The Greek letter delta (�) implies 
difference or change in mathematics or science. The first 

value in the input stream is always written out the same as the 
original value. After that, every value is replaced with an S
bits signed binary value representing the difference between 
the previous value in the input stream. The codeword is S bits 
long to allow for differences ranging from -2S-1 to 2S-1-1. 
Another type of the codeword is the original current value, 
when a delta is too large to be represented by S bits. So, the 
compression performance of Delta encoding depends on S.
Keeping S small may get higher compression ratio, but if S is 
too small, the delta may be out of the range of the S bits 
signed binary value.

C. Environmental Temperature Data Information

SensorScope project develops a low-cost and reliable 
system, based on WSN for environmental monitoring in 
Switzerland. The sensor node is Shockfish TinyNode for 
environmental data collection [7]. The sensor is equipped 
with a 16-bit microcontroller, running at 8MHz, and a 
radio transceiver, operating in the 868 MHz band, with a 
transmission rate of 76Kbps. It has 48KB ROM, 10KB 
RAM, and 512KB flash memory. The data packet records 
the station ID, time, ambient temperature, relative 
humidity, rain meter, and so on. In this paper, we focus on 
temperature data analysis.

According to the temperature data from SensorScope 
project [8], we notice that temperature differences between 
adjacent values are small and the temperature distribution 
is uniform. Fig. 1 shows the dataset of temperatures from
pdg2008-meteo-5. Fig. 2 shows the frequency distribution
of temperature differences from dataset pdg2008-meteo-5.

Fig. 1 The pdg2008-meteo-5 temperatures.

Fig. 2. The temperatures difference frequency distribution.
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Based on the two observations, we believe that Delta 
encoding is a good candidate for temperature data 
compression. Let � be the current temperature, �� be the 
previous temperature and 	� be the difference of the 
temperature data. 	� = |� � ��|

TABLE I lists the mean 	�



 and standard deviation �(	�) of temperature deltas from different sensor stations.
We can see that the standard deviation of pdg2008-meteo-5 is 
the largest beyond the other datasets. That is, the temperature 
deltas of pdg2008-meteo-5 are ranged in a wider distribution.
In contrast to pdg2008-meteo-5, the temperature deltas of 
pdg2008-meteo-15 are ranged in a narrow distribution. To 
improve the compression ratios of various temperature 
datasets, it is indeed difficult to select just one delta 
codeword to fit different temperature distributions. In order to 
improve Delta encoding, we propose a new algorithm for 
data compression, Symmetric Segmented Delta encoding
(SSD encoding).

TABLE I
The Mean and Standard Deviation of pdg2008-x Deltas
Station ID 1 5 10 15 16

Mean 0.3490 0.3543 0.1582 0.1586 0.2436
Standard 
deviation 0.2584 0.4084 0.2728 0.1282 0.2740

III. Symmetric Segmented Delta Encoding

The main idea of Symmetric Segmented Delta encoding 
(SSD encoding) algorithm is similar to Huffman encoding, 
which utilizes fewer bits to represent data with higher 
occurrence frequencies. That is, the range of temperature
delta is partitioned into several segments. The temperature 
delta segment with high occurrence frequency will be 
assigned short codes.

We first calculate differences by subtracting the current 
value T from the previous value T'. Then, delta is the absolute 
value of the difference. The distribution of deltas is 
segmented into four continuous segments. Each segment has 
a base field and an offset field. For delta beyond the base of 
fourth segment, we keep the original temperature data
unchanged. That is, the offset field stores the absolute value 
of the current temperature T. If the delta is less than the base
of the fourth segment, denoted as ����, we use offset field 
to store the difference between delta and bases as follows.

If ���� < ���� , the delta is in the first three 
segments and satisfy the given rules:

� ���� = |� � ��|������ =  ���� � ���� 0 � ������ < 2������ �����  , ! = 1, 2, 3
Otherwise," ������ = |�|0 � ������ < 2������ ����  , ! = 4
The code format is divided into three fields as shown in 

Fig. 3.

Segment

1 ~ 3

4

Fig. 3. The format of Symmetric Segmented Delta encoding.

The index field determines which segment a delta 
belongs to. When the delta is in the first three segments, the 
offset filed identifies offsets of the delta within that segment 
and the sign bit indicates the sign of the delta. In contrast to 
above segments, the offset field of the fourth segment 
represents the absolute value of the raw data and the sign bit 
indicates the sign of the raw data.

Figures 4 and 5 illustrate the flow charts of the SSD
encoding compression and decompression, respectively. T is 
the current temperature; T' is the previous T; C is the code; i
is the index of the segment; Bi is the base of the i-th segment; 
O is the offset. When the first data read in, T' is 0. Next, the 
second data read in, T' is the first data. The third data read in,
T' is the second data, and so on. Exit on the end of data 
transmission. The compression and decompression algorithm 
both have time complexity O(N).

Fig. 4. Flow chart of SSD encoding (compression).
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Fig. 5. Flow chart of SSD decoding (decompression).

According to the SensorScope historical temperature 
datasets, the values are in the range -20 to 20°C and have a 
precision of 0.01. The raw datatype is defined as a 12-bit 
signed integer. The maximum offset field length of the first 
three segments must be less than 9-bit (12-1-2=9). As a result, 
the first three segments can contain delta values in the range 
0 to 2.56 (28�0.01). We then use a brute-force approach to 
find the optimal segment combination with the best 
compression ratio by adjusting the offset field length of the 
first three segments. Take pdg2008-meteo-5 as an example. 
The first segment uses a 4-bit offset, and the base1 is 0. The 
second segment uses a 5-bit offset, and the base2 is 16 (0 + 
24). The third segment uses a 6-bit offset, and the base3 is 48 
(16 + 26). The fourth segment uses an 11-bit offset to store the 
absolution temperature values, and the base4 is 112 (48 + 26). 
Figures 6 and 7 list step-by-step compression and 
decompression for SSD encoding and decoding, respectively.

Input Process Code

T T – T' delta - basei = offset Sign Index Offset

-10.08 -10.08 1008 – 0 = 1008 1 11 01111110000

-10.26 -0.18 18 – 16 = 2 1 01 00010

-10.10 0.16 16 – 16 = 0 0 01 00000

-10.00 0.1 10 – 0 = 10 0 00 1010

-9.72 0.28 28 – 16 = 12 0 01 01100
Fig. 6. Step-by-step compression.

Code Process Output

Sign Index Offset basei + offset = delta T

1 11 01111110000 � -10.08

1 01 00010 16 + 2 = 18 -10.26

0 01 00000 0 +16 = 16 -10.10

0 00 1010 0 +10 = 10 -10.00

0 01 01100 16 + 12 = 28 -9.72
Fig. 7. Step-by-Step decompression.

TABLE II shows the compression results for 
pdg2008-meteo-5. Although the fourth segment increases 
0.95% data volume, this segment only contains 6% of all data.
The advantages of saving more bits in the other segments 
after compression outweigh this disadvantage. For example, 
the first segment contains 40% of all data, and saves 16.66% 
data volume. Unlike conventional Delta encoding, which
represents the deltas by a fixed offset field, our SSD encoding
dynamically represents the deltas by different length bits
according to the occurrence frequency. Therefore, SSD
encoding increases the flexibility of compressing delta and 
improves the compression performance.

TABLE II
The Compression Results for Pdg2008-meteo-5

Segment Offset Quantity Compressed 
size (Bits)

Compression 
ratio (%)

1 4-bit 561 (40.0%) 3,927 16.66
2 5-bit 493 (35.1%) 3,944 11.71
3 6-bit 269 (19.2%) 2,421 4.79
4 11-bit 80 (5.7%) 1,120 -0.95

Overall 1,403 11,412 32.21

IV. Experimental Results

To implement the SSD algorithm and to compare with 
other state-of-the-art compression techniques, LZW, Huffman
encoding and Delta encoding, we calculate compression 
ratios for different datasets and estimate the required 
hardware resource for compression.

We use distinct regional temperature datasets with 
various weather conditions. SensorScope datasets [8] have a 
precision of 0.01, so the raw datatype is a 12-bit signed 
integer. Daily temperature for one year in Taipei [9], Tokyo 
[10] and New York [11] have precision of 0.1, so the raw 
datatype is defined as a 10-bit signed integer. Datasets for the 
experiment are listed in TABLE III.

The performance of a compressed algorithm can be 
defined by compression ratio as shown below:Compression Ratio

= #($����%&����� '!*� � +��%&����� '!*�)$����%&����� '!*� - × 100%
Fig. 8 shows the compression results for the above data 

compressed using LZW, Huffman encoding, Delta encoding
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and SSD encoding. From Fig. 8, LZW performs poorly for 
temperature because LZW compresses data by using the 
dictionary that is inefficient for numerical data. Huffman
encoding performs better than LZW. The arithmetic average 
compression ratio is 20% due to highly repetitive values,
which are suitable for Huffman encoding.

As compared to LZW and Huffman encoding, Delta
encoding gives higher compression results. This is because 
Delta encoding analyzes and models numerical data before 
compressing data. For compressing deltas, the compression 
ratios of SSD encoding are approximately 7% more than 
Delta encoding. The highest compression ratio is 58% for 
daily temperature in New York. Unlike Delta encoding, SSD
encoding is not limited by the fixed length representation of 
deltas. Therefore, SSD encoding improves Delta encoding by 
the use of symmetric segment method for deltas.

Fig. 8. Compression ratio comparisons.

TABLE IV compares required hardware resource of 
LZW, Huffman encoding, Delta encoding and SSD
encoding. The width of data sample is 12bits. The LZW
dictionary storage capacity is 6K. As a result, the resource
utilization and power consumption of memory is much 
higher than the others. Huffman encoding use 4-bit buffer, 
and the data sample is divided into 3 parts. The Huffman 
tree stores codes and the length of each code. Huffman
encoding compresses data by accessing a symbol value in 
a Huffman table, so comparators and adders are not used,
which is very energy-efficient.

Delta and SSD encodings perform addition and 
subtraction operations for input data. The memory 
requirement to store the base values is much less than 

LZW and Huffman encoding. The SSD encoding utilizes
more memory and performs 2 more arithmetic operations 
as compared to the Delta encoding.

TABLE III
Datasets for Compression

Name File Information
Dataset Region Quantity Spec File Size

pdg2008-meteo
(Precision is 0.01)

1 3,665 12 bits 43,980
5 1,403 12 bits 16,836

10 3,657 12 bits 43,884
15 4,662 12 bits 55,944
16 3,072 12 bits 36,864

Daily temperature 
for one year

(Precision is 0.1)

Taipei 365 10 bits 3,650
Tokyo 365 10 bits 3,650

NY 365 10 bits 3,650

TABLE IV
Hardware Resources

Algorithm
Sources LZW Huffman

encoding
Delta

encoding
SSD

encoding

memory 2048 * 24
bits 16 *19 bits 2 * 12

bits
4 * 12

bits
comparator 12 bits � 12 bits 12 bits
Maximum 
number of 

comparisons
2048 � 1 3

adder � � 12 bits 12 bits
buffer 12 bits 4 bits 12 bits 12 bits

V. Summary and Conclusions

We have proposed a lossless data encoding algorithm for 
sensor nodes to optimize data-transmission energy in WSN.
We also make a comparison with other typical data 
compression techniques for WSN applications. The results
indicate that our approach achieves better compression
performance. The proposed Symmetric Segmented Delta
encoding (SSD encoding) technique alleviates the problem of 
Delta encoding by making a simple distinction of deltas. 
Taking sensor data compression hardware cost, compression 
ratio, and overall energy consumption into account, we would 
suggest SSD encoding algorithm for environmental sensing 
data. We are now working on the heuristics to determine the 
size of offset fields to avoid brute-force computations.
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