
Symmetric Segmented Delta Encoding for Wireless Sensor Data Compression

Wireless sensor networks (WSNs) are utilized for various
applications such as environmental monitoring, urban
surveillance, home security, etc. Ideally, the massively deployed
sensor nodes should be inexpensive, power-efficient, and reliable
to maximize the functional lifetime. However, the
data-transmission energy consumption has become one of the
most challenging issues. To minimize the data-transmission
energy cost in wireless applications, we propose a lossless
Symmetric Segmented Delta encoding (SSD encoding) algorithm,
which exploits high similarity of environmental sensing data in a
short period of time. According to the experimental results, our
encoding algorithm achieves better sensor data compression
ratios and at the same time requires less hardware resource for
wireless sensor data.

I. Introduction

With the rapid advancement of micro-electro-mechanical
systems (MEMS), wireless sensor networks (WSNs) could be
widely deployed in a cost-effective manner for various
applications. A large number of sensor nodes play a major
role in sensing, processing and communication. Among them,
environmental monitoring, urban surveillance, and home
security have drawn much attention, since those WSN
applications are related to human lives. In most WSN
scenarios, sensor nodes are deployed in locations that are not
conveniently accessible. Therefore, these nodes are usually
powered by batteries. Ideally, the massively deployed sensor
nodes should be inexpensive, power-efficient, and reliable to
maximize the functional lifetime, facilitate data collection,
and minimize the cost for maintenance. However, the
data-transmission energy consumption has become one of the
most challenging issues. Consequently, many researchers
focus on energy reductions for WSN applications.

The main cause of power consumption is wireless
communication operation. The energy consumed for
transmitting a single bit is comparable to that for processing
thousands of commands [1]. Therefore, reducing the amount
of sensor data by data compression is a useful solution to
reduce data-transmission energy. However, the existed
powerful data compression algorithms may not be very
appropriate for sensor nodes owing to the hardware resource
constraint. A balanced data compression algorithm for WSN
application should take hardware cost, compression ratio, and
overall energy consumption into account. In this paper, we
first analyze the environmental sensor data characteristics and

propose a lossless Symmetric Segmented Delta encoding
(SSD encoding) algorithm by modifying the state-of-the-art
Delta encoding algorithm with symmetric and segmented
properties for WSN applications. The SSD encoding can be
efficiently used to compress environmental sensing data in
the sensor nodes. With the proposed SSD encoding technique,
we are capable of not only enhancing the compression ratio
but also conserving hardware resource.

This paper is organized as followss. The preliminary of
power consumption in WSNs, state-of-the-art data
compression algorithms, and environmental temperature data
characteristics are in Section II. The proposed Symmetric
Segmented Delta encoding (SSD encoding) is described in
Section III. The experiment results and hardware resource
estimation are in Section IV. We conclude this paper and
points out important issues for future research in Section V.

II. Preliminary

In this section, we give preliminary background of power
consumption in WSNs and data compression algorithms.
Then, we focus on environmental monitoring applications in
WSNs – the SensorScope project develops a large-scale
distributed environmental measurement system in
Switzerland. According to the environmental temperature
datasets of this project, we analyze the temperature data
characteristics.

A. Power Consumption in Wireless Sensor Networks

A wireless sensor network is composed of one or several
remote sinks and a large number of sensor nodes [2]. Sensor
nodes have to wirelessly transmit collected data to the sinks
periodically. Each sensor node contains power unit, sensing
unit, processor, storage, and transceiver. To massively deploy
the sensor nodes, sensor nodes are expected to have small
form factor, reasonable manufacture cost, and long lifetime.
Hence, the design and implementation of WSNs are
constrained by hardware resource in terms of battery,
transmission bandwidth, computation capability, and memory
size.

Since battery replacement and sensor re-deployment are
prohibitively expensive in common practice, energy saving is
one of the most important aspect in sensor node design. The

Shu-Ping Liang

Department of Computer
Science and Engineering,

Yuan Ze University,
Taoyuan, Taiwan 320, R.O.C,
s1011433@mail.yzu.edu.tw

Yi-Yu Liu

Department of Computer
Science and Engineering,

Yuan Ze University,
Taoyuan, Taiwan 320, R.O.C,

yyliu@saturn.yzu.edu.tw

SASIMI 2016 ProceedingsR1-2

- 4 -

energy consumption in sensor nodes can be divided into three
parts: data collecting, data processing, and data transmission.
Among those three operations, data transmission consumes
approximately 80% overall energy [3]. In order to save
transmission energy, we should minimize the volume of
transmitted data by compression. With data compression
technique, we can improve the lifetime of sensor nodes by
reducing the transmission data volume, the required storage
size, and the hardware cost simultaneously.

However, data compression before data transmission
consumes more energy as compared to the original raw data
transmission. Hence, the energy consumption of data
compression must be smaller than the energy saving from
data transmission. That is, assume that there are n bits
original data string; there are m bits data string after data
compression, where � > �; if c is the energy consumed by
compressing/decompressing and w is the energy consumed
by data transmission per bit, the compression algorithm is
feasible when � < � × (� � �).

B. Data Compression Algorithms

Data compression algorithms can be classified into two
categories, lossless and lossy, depending on whether the
content can be perfectly restored or not during compression.
Both lossless and lossy compressions can be found in current
WSNs. In this work, we target the lossless compression for
users who want to have the raw data intact. Thus, we discuss
the existed works on lossless data compression methods, such
as LZW, Huffman encoding, and Delta encoding [4].

Lempel-Ziv-Welch (LZW) algorithm sets same length
codewords to variable length series of source sequences.
LZW dynamically builds the dictionary that maps symbol
sequences to an N-bit index. The dictionary has 2N entries and
the codeword is an index into the dictionary to retrieve the
corresponding original sequences. LZW reads a new symbol
and concatenates it to get a new subsequence that is added in
the dictionary based on previous sequences. When LZW
revisits a subsequence, this subsequence will be encoded
using an index. Usually, the user defines the maximum
number of dictionary entries, so that the process doesn't run
away with memory. Based on LZW, prof. Sadler develops
S-LZW [5] for resource-constrained wireless sensor nodes.
This work finds that sensing data may be repetitive at short
intervals, so it also proposes a S-LZW-MC with a mini-cache
into the dictionary.

Huffman encoding first calculates the occurrence
frequency of each symbol and sorts the symbols. A binary
Huffman tree is constructed by iteratively merging two
symbols with lowest frequencies. Once the Huffman tree is
constructed, a unique path from root to leaf is encoded as the
binary codeword for a symbol. Symbols with high occurrence
frequency will near the root of the tree and be represented by
short codewords. Prof. Jambek [6] analyses the compression
performance of the Huffman and LZW algorithms. From the
experimental results, the Huffman algorithm is better than
LZW for the common data using in WSNs.

Delta encoding is fairly straightforward and the codeword
size has two types. The Greek letter delta (�) implies
difference or change in mathematics or science. The first

value in the input stream is always written out the same as the
original value. After that, every value is replaced with an S
bits signed binary value representing the difference between
the previous value in the input stream. The codeword is S bits
long to allow for differences ranging from -2S-1 to 2S-1-1.
Another type of the codeword is the original current value,
when a delta is too large to be represented by S bits. So, the
compression performance of Delta encoding depends on S.
Keeping S small may get higher compression ratio, but if S is
too small, the delta may be out of the range of the S bits
signed binary value.

C. Environmental Temperature Data Information

SensorScope project develops a low-cost and reliable
system, based on WSN for environmental monitoring in
Switzerland. The sensor node is Shockfish TinyNode for
environmental data collection [7]. The sensor is equipped
with a 16-bit microcontroller, running at 8MHz, and a
radio transceiver, operating in the 868 MHz band, with a
transmission rate of 76Kbps. It has 48KB ROM, 10KB
RAM, and 512KB flash memory. The data packet records
the station ID, time, ambient temperature, relative
humidity, rain meter, and so on. In this paper, we focus on
temperature data analysis.

According to the temperature data from SensorScope
project [8], we notice that temperature differences between
adjacent values are small and the temperature distribution
is uniform. Fig. 1 shows the dataset of temperatures from
pdg2008-meteo-5. Fig. 2 shows the frequency distribution
of temperature differences from dataset pdg2008-meteo-5.

Fig. 1 The pdg2008-meteo-5 temperatures.

Fig. 2. The temperatures difference frequency distribution.

-20

-15

-10

-5

0

5

10

15

20

1 48 95 14
2

18
9

23
6

28
3

33
0

37
7

42
4

47
1

51
8

56
5

61
2

65
9

70
6

75
3

80
0

84
7

89
4

94
1

98
8

10
35

10
82

11
29

11
76

12
23

12
70

13
17

13
64

Te
m

pe
ra

tu
re

 (°
C)

Time (2 minutes)

7 4 4 7 11 12
36 43

89

130

311

375

154

91

40 32 20 13 8 9 6
0

50

100

150

200

250

300

350

400

-2
-1

.8
-1

.6
-1

.4
-1

.2 -1
-0

.8
-0

.6
-0

.4
-0

.2 0
0.

2
0.

4
0.

6
0.

8 1
1.

2
1.

4
1.

6
1.

8 2

N
um

be
r o

f D
at

a

Temperture Difference (°C)

- 5 -

Based on the two observations, we believe that Delta
encoding is a good candidate for temperature data
compression. Let � be the current temperature, �� be the
previous temperature and 	� be the difference of the
temperature data. 	� = |� � ��|

TABLE I lists the mean 	�

 and standard deviation �(�) of temperature deltas from different sensor stations.
We can see that the standard deviation of pdg2008-meteo-5 is
the largest beyond the other datasets. That is, the temperature
deltas of pdg2008-meteo-5 are ranged in a wider distribution.
In contrast to pdg2008-meteo-5, the temperature deltas of
pdg2008-meteo-15 are ranged in a narrow distribution. To
improve the compression ratios of various temperature
datasets, it is indeed difficult to select just one delta
codeword to fit different temperature distributions. In order to
improve Delta encoding, we propose a new algorithm for
data compression, Symmetric Segmented Delta encoding
(SSD encoding).

TABLE I
The Mean and Standard Deviation of pdg2008-x Deltas
Station ID 1 5 10 15 16

Mean 0.3490 0.3543 0.1582 0.1586 0.2436
Standard
deviation 0.2584 0.4084 0.2728 0.1282 0.2740

III. Symmetric Segmented Delta Encoding

The main idea of Symmetric Segmented Delta encoding
(SSD encoding) algorithm is similar to Huffman encoding,
which utilizes fewer bits to represent data with higher
occurrence frequencies. That is, the range of temperature
delta is partitioned into several segments. The temperature
delta segment with high occurrence frequency will be
assigned short codes.

We first calculate differences by subtracting the current
value T from the previous value T'. Then, delta is the absolute
value of the difference. The distribution of deltas is
segmented into four continuous segments. Each segment has
a base field and an offset field. For delta beyond the base of
fourth segment, we keep the original temperature data
unchanged. That is, the offset field stores the absolute value
of the current temperature T. If the delta is less than the base
of the fourth segment, denoted as ����, we use offset field
to store the difference between delta and bases as follows.

If ���� < ���� , the delta is in the first three
segments and satisfy the given rules:

� ���� = |� � ��|������ = ���� � ���� 0 � ������ < 2������ ����� , ! = 1, 2, 3
Otherwise," ������ = |�|0 � ������ < 2������ ���� , ! = 4
The code format is divided into three fields as shown in

Fig. 3.

Segment

1 ~ 3

4

Fig. 3. The format of Symmetric Segmented Delta encoding.

The index field determines which segment a delta
belongs to. When the delta is in the first three segments, the
offset filed identifies offsets of the delta within that segment
and the sign bit indicates the sign of the delta. In contrast to
above segments, the offset field of the fourth segment
represents the absolute value of the raw data and the sign bit
indicates the sign of the raw data.

Figures 4 and 5 illustrate the flow charts of the SSD
encoding compression and decompression, respectively. T is
the current temperature; T' is the previous T; C is the code; i
is the index of the segment; Bi is the base of the i-th segment;
O is the offset. When the first data read in, T' is 0. Next, the
second data read in, T' is the first data. The third data read in,
T' is the second data, and so on. Exit on the end of data
transmission. The compression and decompression algorithm
both have time complexity O(N).

Fig. 4. Flow chart of SSD encoding (compression).

- 6 -

Fig. 5. Flow chart of SSD decoding (decompression).

According to the SensorScope historical temperature
datasets, the values are in the range -20 to 20°C and have a
precision of 0.01. The raw datatype is defined as a 12-bit
signed integer. The maximum offset field length of the first
three segments must be less than 9-bit (12-1-2=9). As a result,
the first three segments can contain delta values in the range
0 to 2.56 (28�0.01). We then use a brute-force approach to
find the optimal segment combination with the best
compression ratio by adjusting the offset field length of the
first three segments. Take pdg2008-meteo-5 as an example.
The first segment uses a 4-bit offset, and the base1 is 0. The
second segment uses a 5-bit offset, and the base2 is 16 (0 +
24). The third segment uses a 6-bit offset, and the base3 is 48
(16 + 26). The fourth segment uses an 11-bit offset to store the
absolution temperature values, and the base4 is 112 (48 + 26).
Figures 6 and 7 list step-by-step compression and
decompression for SSD encoding and decoding, respectively.

Input Process Code

T T – T' delta - basei = offset Sign Index Offset

-10.08 -10.08 1008 – 0 = 1008 1 11 01111110000

-10.26 -0.18 18 – 16 = 2 1 01 00010

-10.10 0.16 16 – 16 = 0 0 01 00000

-10.00 0.1 10 – 0 = 10 0 00 1010

-9.72 0.28 28 – 16 = 12 0 01 01100
Fig. 6. Step-by-step compression.

Code Process Output

Sign Index Offset basei + offset = delta T

1 11 01111110000 � -10.08

1 01 00010 16 + 2 = 18 -10.26

0 01 00000 0 +16 = 16 -10.10

0 00 1010 0 +10 = 10 -10.00

0 01 01100 16 + 12 = 28 -9.72
Fig. 7. Step-by-Step decompression.

TABLE II shows the compression results for
pdg2008-meteo-5. Although the fourth segment increases
0.95% data volume, this segment only contains 6% of all data.
The advantages of saving more bits in the other segments
after compression outweigh this disadvantage. For example,
the first segment contains 40% of all data, and saves 16.66%
data volume. Unlike conventional Delta encoding, which
represents the deltas by a fixed offset field, our SSD encoding
dynamically represents the deltas by different length bits
according to the occurrence frequency. Therefore, SSD
encoding increases the flexibility of compressing delta and
improves the compression performance.

TABLE II
The Compression Results for Pdg2008-meteo-5

Segment Offset Quantity Compressed
size (Bits)

Compression
ratio (%)

1 4-bit 561 (40.0%) 3,927 16.66
2 5-bit 493 (35.1%) 3,944 11.71
3 6-bit 269 (19.2%) 2,421 4.79
4 11-bit 80 (5.7%) 1,120 -0.95

Overall 1,403 11,412 32.21

IV. Experimental Results

To implement the SSD algorithm and to compare with
other state-of-the-art compression techniques, LZW, Huffman
encoding and Delta encoding, we calculate compression
ratios for different datasets and estimate the required
hardware resource for compression.

We use distinct regional temperature datasets with
various weather conditions. SensorScope datasets [8] have a
precision of 0.01, so the raw datatype is a 12-bit signed
integer. Daily temperature for one year in Taipei [9], Tokyo
[10] and New York [11] have precision of 0.1, so the raw
datatype is defined as a 10-bit signed integer. Datasets for the
experiment are listed in TABLE III.

The performance of a compressed algorithm can be
defined by compression ratio as shown below:Compression Ratio

= #($����%&����� '!*� � +��%&����� '!*�)$����%&����� '!*� - × 100%
Fig. 8 shows the compression results for the above data

compressed using LZW, Huffman encoding, Delta encoding

- 7 -

and SSD encoding. From Fig. 8, LZW performs poorly for
temperature because LZW compresses data by using the
dictionary that is inefficient for numerical data. Huffman
encoding performs better than LZW. The arithmetic average
compression ratio is 20% due to highly repetitive values,
which are suitable for Huffman encoding.

As compared to LZW and Huffman encoding, Delta
encoding gives higher compression results. This is because
Delta encoding analyzes and models numerical data before
compressing data. For compressing deltas, the compression
ratios of SSD encoding are approximately 7% more than
Delta encoding. The highest compression ratio is 58% for
daily temperature in New York. Unlike Delta encoding, SSD
encoding is not limited by the fixed length representation of
deltas. Therefore, SSD encoding improves Delta encoding by
the use of symmetric segment method for deltas.

Fig. 8. Compression ratio comparisons.

TABLE IV compares required hardware resource of
LZW, Huffman encoding, Delta encoding and SSD
encoding. The width of data sample is 12bits. The LZW
dictionary storage capacity is 6K. As a result, the resource
utilization and power consumption of memory is much
higher than the others. Huffman encoding use 4-bit buffer,
and the data sample is divided into 3 parts. The Huffman
tree stores codes and the length of each code. Huffman
encoding compresses data by accessing a symbol value in
a Huffman table, so comparators and adders are not used,
which is very energy-efficient.

Delta and SSD encodings perform addition and
subtraction operations for input data. The memory
requirement to store the base values is much less than

LZW and Huffman encoding. The SSD encoding utilizes
more memory and performs 2 more arithmetic operations
as compared to the Delta encoding.

TABLE III
Datasets for Compression

Name File Information
Dataset Region Quantity Spec File Size

pdg2008-meteo
(Precision is 0.01)

1 3,665 12 bits 43,980
5 1,403 12 bits 16,836

10 3,657 12 bits 43,884
15 4,662 12 bits 55,944
16 3,072 12 bits 36,864

Daily temperature
for one year

(Precision is 0.1)

Taipei 365 10 bits 3,650
Tokyo 365 10 bits 3,650

NY 365 10 bits 3,650

TABLE IV
Hardware Resources

Algorithm
Sources LZW Huffman

encoding
Delta

encoding
SSD

encoding

memory 2048 * 24
bits 16 *19 bits 2 * 12

bits
4 * 12

bits
comparator 12 bits � 12 bits 12 bits
Maximum
number of

comparisons
2048 � 1 3

adder � � 12 bits 12 bits
buffer 12 bits 4 bits 12 bits 12 bits

V. Summary and Conclusions

We have proposed a lossless data encoding algorithm for
sensor nodes to optimize data-transmission energy in WSN.
We also make a comparison with other typical data
compression techniques for WSN applications. The results
indicate that our approach achieves better compression
performance. The proposed Symmetric Segmented Delta
encoding (SSD encoding) technique alleviates the problem of
Delta encoding by making a simple distinction of deltas.
Taking sensor data compression hardware cost, compression
ratio, and overall energy consumption into account, we would
suggest SSD encoding algorithm for environmental sensing
data. We are now working on the heuristics to determine the
size of offset fields to avoid brute-force computations.

References

[1] Pottie, G. and Kaiser, W., “Wireless Integrated Net- work
Sensors,” Communications of the ACM, Vol. 43, pp.
51-58 (2000).

[2] Ian F.Akyildiz, Weilian Su, Yogesh Sankarasubramaniam,
Erdal Cayirci, “A Survey on Sensor Networks,” IEEE
Communications Magazine, pp. 102-114, August 2002.

pdg200
8-

meteo-
15

pdg200
8-

meteo-
10

pdg200
8-

meteo-
1

pdg200
8-

meteo-
16

pdg200
8-

meteo-
5

Daily
temper
ature in

NY

Daily
temper
ature in
Taipei

Daily
temper
ature in
Tokyo

LZW 11% 12% 11% 11% 10% 19% 21% 11%
Huffman coding 17% 21% 20% 18% 18% 20% 20% 21%
Delta coding 36% 35% 32% 30% 26% 50% 23% 23%
SSD coding 43% 41% 38% 36% 33% 58% 32% 30%

0%

10%

20%

30%

40%

50%

60%

70%

C
om

pr
es

si
on

 R
at

io
 (%

)

- 8 -

[3] Naoto Kimura, Shahram Latifi, “A Survey on Data
Compression in Wireless Sensor Networks,” Proceedings
of the International Conference on Information
Technology: Coding and Computing (ITCC’05), Vol. 2,
pp. 1-6, April 2005.

[4] Khalid Sayood, Introduction to Data Compression
(4th ed.), Newnes, 2012.

[5] Christopher M. Sadler, Margaret Martonosi, “Data
Compression Algorithms for Energy-Constrained
Devices in Delay Tolerant Networks,” in Proceeding of
the 4th International Conference on Embedded Network
Sensor Systems, pp. 265-278, 2006.

[6] Asral Bahari Jambek, Nor Alina Khairi, “Performance
Compression of Huffman and Lempel-Ziv Welch Data
Compression for Wireless Sensor Node Application,”
American Journal of Applied Science 11 (1), pp. 119-126,
2014.

[7] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli and
O. Couach et al., “SensorScope: Application-Specific
Sensor Network for Environmental Monitoring,” ACM
Transactions on Sensor Networks, vol. 6, num. 2, pp.
1-32, 2010.

[8] Sensorscope:
Downloads, http://lcav.epfl.ch/cms/lang/en/pid/86035.

[9] CWB Observation Data Inquire
System, http://e-service.cwb.gov.tw/HistoryDataQuery/in
dex.jsp

[10] Japan Meteorological Agency Data
Search, http://www.data.jma.go.jp/obd/stats/etrn/index.ph
p

[11] National Oceanic and Atmospheric Administration Data
Tools: 1981-2010
Normals, http://www.ncdc.noaa.gov/cdo-web/datatools/n
ormals

- 9 -

