
Convolutional Neural Network Layer Reordering for Acceleration

Vijay Daultani Subhajit Chaudhury Kazuhisa Ishizaka

System Platform Labs Value Co-creation Center System Platform Labs
NEC Central Research Labs NEC Central Research Labs NEC Central Research Labs

Kawasaki, Kanagawa 211-8666 Kawasaki, Kanagawa 211-8666 Kawasaki, Kanagawa 211-8666
v-daultani@ax.jp.nec.com s-chaudhury@ap.jp.nec.com k-ishizaka@ay.jp.nec.com

Abstract— We propose a new optimization

technique to speed up performance of convolu-

tional neural networks(CNN). One of the chal-

lenges for CNN is large execution time. Many

CNN models are found to have a repeatable layer

pattern, i.e. convolutional, activation and pooling

layer in that order. We show that, for a class of

functions, performed in activation layer and pool-

ing layer, it is possible to reconfigure CNN, to

reduce the number of operations performed in a

network, without changing output of the network.

Experimental results demonstrate that using the

proposed reordering, we can reduce the total time

for VGG by almost 5% on CPU and time for ac-

tivation layer, by almost 75% for CPU, and by a

range of 20% to 67% for GPU, for 2x2 max pool-

ing kernel.

1 Introduction

In computer vision many problems are solved using
machine learning. Deep learning, especially CNN, in
the recent past has achieved state of the art results
[1] for many such problems. Due to CNN’s increasing
wide range of applications and its very high execution
time, researchers are finding several ways to make
CNN faster. Such contributions have been made both
at hardware and software levels.
Hardware vendors are investing a lot of resources,

in research of how to make their hardware platform
to suit deep learning. Many deep learning libraries

for CPU’s, GPU’s and FPGA’s have evolved in re-
cent past. Influence of deep learning on designing
hardware has been so significant that many hardware
architectures are custom built just for deep learning.
TPU (Tensor Processing Unit) from Google, Fathom
Neural Compute Stick from Movidius are perfect ex-
ample of the same.

Many hardware accelerated libraries of primitives
for deep learning are available for various hardware
architectures. cuDNN [2] is one such library for
GPU’s. These libraries consists of highly tuned im-
plementations of several basic routines of deep neural
networks.

Although, acceleration of deep learning have been
chased from both, hardware and software ends, but
very few efforts, to change the configuration of deep
neural networks for getting acceleration have been
made. To the best of our knowledge this is the
first work that shows how reconfiguration, i.e. layer
reordering of activation and pooling layer of CNN
model can accelerate and reduce its execution time
without changing output of network.

In this paper we propose a method for obtaining
speed up by reconfiguring the constituents of con-
ventional convolutional neural networks. First in sec-
tion 2 we explain the traditional convolutional neural
networks and motivation for the proposed reorder-
ing of CNN model. In section 3 we present our idea
of CNN model reordering. In section 4, we demon-
strate mathematically how the proposed reordering
can produce speed-up. In section 5 we describe the

SASIMI 2016 ProceedingsR1-15

- 71 -



evaluation environment for experiments and demon-
strate the superiority of the proposed reordering in
execution time. Finally, in section 6 we summarize
and conclude the paper.

2 Background

Figure 1 shows a typical convolutional neural net-
work configuration, i.e. how different components are
stacked over each other to form a convolutional neu-
ral network.

2.1 Components

Conventional convolutional neural network is made
up of the following network elements. The input layer
holds the incoming image as input to pass it on to the
next layers.
The convolutional layer consists of stacks of filters

which are convolved with the input from the previous
layer. Each of the filters produce a feature map by
convolution and each feature map forms a channel of
the convolutional layer output.
After producing each feature map, they are passed

through a non-linearity layer(also called activation
layer), which aids in the visual recognition task.
Common non-linearity layers are sigmoid, tanh and
Rectified linear unit(ReLU). Out of these ReLU ac-
tivation has gained popularity in recent times.
To reduce the number of parameters and to provide

translational invariance property to the visual recog-
nition task, the activation maps are down-sampled
by proper-down sampling ratio. Usually the down-
sampling ratio is chosen to be 2, however other down-
sampling ratios can also be chosen. Popular down-
sampling heuristics include max-pooling, where the
maximum value from a neighborhood is picked, and
average pooling where the average value is picked, as
the representative value in the down-sampled version.
The higher level decision about visual recognition

is taken by dense layers(or fully connected layers)
which are equivalent to fully connected hidden lay-
ers in artificial neural networks.
Depending upon if CNN is used to solve the clas-

sification problem or a regression problem, output
of a traditional CNN model can be a soft-max non-

linearity or a mean square error non-linearity respec-
tively.

Figure 1: A typical CNN architecture showing the
layers discussed in the section 2.1

2.2 Motivation

Most common form of convolutional neural networks
tends to follow a pattern. These pattern can be rep-
resented by using a regular expression, like this

INPUT -> [[CONV -> ACT]*N -> POOL?]*M ->

[FC -> ACT]*K -> FC -> OUTPUT

where INPUT represents input layer, CONV repre-
sents convolutional layer, ACT represents activation
layer, and FC represents fully connected layer. More-
over N, M, K are integer variables depicting the num-
ber of convolutional, total number of units and num-
ber of dense layers respectively and * in the regular
expression before this variable represents that pat-
tern before * can exists zero or more times. In the
above regular expression, following part,

[[CONV -> ACT]*N -> POOL?]*M

is of special interest to us. It means that convolu-
tional layer is always followed by activation layer, and
any such occurrence may be followed by a pooling
layer. Such pattern where convolutional layer fol-
lowed by activation layer followed by pooling layer
occurs, it can be reconfigured for acceleration, with-
out changing output of the network. Mathematical
justification for the speed up in computation is pro-
vided in section 4.

- 72 -



3 Proposed Reordering

We propose that interchanging the position of activa-
tion and pooling layer can reduce the number of com-
putations performed in these layers. These reduction
of computations will lead to reduction in execution
time of activation layer.

Figure 2: (a) Conventional CNN architecture show-
ing output from convolutional layer, activation layer
and pooling layer, in that order. (b) Proposed CNN
architecture showing output from convolutional layer,
pooling layer and activation layer, in that order.

The proposed technique is illustrated in figure 2
with ReLU(max) activation and 2 × 2 max pool-
ing. As shown in the figure, we interchange the
ordering of the activation and the pooling layer in
the CNN architecture. In traditional setting i.e.
prior art in figure 2 in activation(ReLU) layer, bi-
nary max operation is performed for each element,
like max(value of element, 0) from the output of
convolutional layer. Since in the shown example
there are sixteen elements in the output of the con-
volutional layer, which leads to sixteen max opera-
tions for activation layer. Output of activation layer
is then given as input to pooling layer. Since in
this example we have considered 2 × 2 max pool-
ing with stride of 2, there is no overlap between
pooling operations. Four quaternary max operations
i.e. max(0,6,9,4), max(1,0,0,10), max(3,0,0,0), and
max(0,0,0,0)are performed in the pooling layer. Each
quaternary max operation is broken into three bi-

nary max operations at instruction level. For exam-
ple, quaternary max operation max(0,6,9,4) is broken
into three binary max operations i.e. m1=max(0,6),
m2=max(m1,9), m3=max(m2,4), where m3 is output
of quaternary max operation. In total in prior art it
leads to sixteen binary max operation for activation
and twelve binary max operations for pooling, which
leads to total twenty-eight binary max operations.

After reconfiguring the network, 2 × 2 max pool-
ing is performed on the output of convolutional layer
before activation operation in contrast to prior art.
Which leads to four quaternary max operations i.e.
max(-9,6,9,4), max(1,-1,-8,10), max(3,-8,-7,-2) and
max(-1,-5,-7,-9). Each quaternary max operation is
broken into three binary max operations leading to
twelve binary max operations. Activation layer per-
forms element wise binary max operation on output
of pooling layer. Four binary max operations i.e.
max(9,0), max(10,0), max(3,0), and max(-1,0). In
total for proposed network configuration twelve bi-
nary max operations for max pooling and four binary
max operations are performed, which leads to a to-
tal of sixteen binary max operations, in contrast to
twenty-eight binary max operations in prior art.

Proposed technique of swapping activation layer
and pooling layer with a condition that ”non-
decreasing function for activation layer and
max function for pooling layer”, was shown to
reduce the number of computations in the above ex-
ample. In the next section, we shown, our algorithm
is mathematically correct, and does not change out-
put of the network.

4 Mathematical Justification

Consider a particular convolutional, activation and
pooling layer from the entire CNN model in its tra-
ditional setting. Without loss of generality, let us
assume that x, y and z are the output from convo-
lutional layer, activation layer and the pooling layer
respectively. Let us represent activation layer opera-
tion by the function f : R �−→ R which operates on
each output value of the convolutional layer to pro-
duce the same size output. For pooling layer, let us
consider K−pooling, such that a K ×K area in the
activation map will be represented by one value after

- 73 -



pooling. In figure 2, the value ofK is 2. Representing
pooling layer operation by the function g : RK2 �−→ R

which operates on a vector of K2 elements to produce
one output(for max-pooling the maximum of K2 val-
ues are chosen and for average-pooling, the average
of K2 values are chosen as output).
In traditional setting the final output is given as

the following composition of function,

z = g(f(x1), f(x2), ..., f(xk2)) (1)

where the inputs x1, x2, ..., xk2 represent the output
of the convolutional layer in the K ×K sub-grid and
f(x1), f(x2), ..., f(xk2) represent the output from the
activation layer.
In the proposed method, we change the order of the

composition of functions and the new composition is
given as,

z = f(g(x1, x2, ..., xk2)) (2)

where first we compute the pooling operation and
then perform activation on the pooled output. Next
we show for which classes of functions the above as-
sumption holds true.
We fix the pooling operation as max-pooling as it

is the most popular form of pooling and other forms
of pooling are very rarely used. For the max-pooling
case, the function g : RK2 �−→ R, is given as

g(x1, x2, ..., xk) = max(x1, x2, ..., xk) (3)

In such a case, for non decreasing activation func-
tions, where f(x1) ≥ f(x2) if x1 ≥ x2, we can suc-
cessfully write the following relationship,

max(f(x1), f(x2), ..., f(xk2)) = f(max(x1, x2, ..., xk2))
(4)

Consequently we found that most of the activation
function used practise are non-decreasing functions
for eg. tanh, sigmoid and the most popular ReLU.
Thus the output of the network remains absolutely
unchanged by interchanging the pooling and activa-
tion layers. Thus our proposed improvements can be
used to improve time performance for practical visual
recognition systems as shown in section 5.
Now we describe the improvement in timing perfor-

mance by our proposed method. For K ×K pooling

Layer relu1 relu2 relu3 relu4 relu5

Theoretical
speedup

4 4 4 4 4

Actual speedup
VGG 16

CPU 3.9 4.0 4.0 4.0 4.0
GPU 3.0 3.1 2.0 1.7 1.2

Actual speedup
VGG 19

CPU 3.9 4.0 4.0 4.0 4.0
GPU 3.1 2.5 1.6 1.4 1.2

Table 1: Speedup comparison for VGG 16 and VGG
19 on CPU and GPU

operation, in traditional CNN architecture, activa-
tion was performed over K2 values, whereas in the
proposed architecture the activation function is per-
formed only on 1 output value from the max-pooling
operation. Thus we obtain a speed-up of 1

K2 for each
activation layer unit with no change in the network
output. As we increase the size of the max-pooling
operation, the speed-up obtained will increase.

5 Experiments

In this section, we first describe the CNN models on
which we tested our method and discuss the quan-
titative results for timing performance for each. We
tested the proposed method on both practical visual
recognition CNN models and also on our own cus-
tom built CNN architecture and show that we obtain
a significant speed up in the activation layer perfor-
mance on both CPU and GPU.

5.1 Implementation details

Our idea was evaluated with three different CNN
models, VGG-16 layer model [3], VGG-19 layer model
[3], and one customized CNN model. Customized
CNN model was a simple 4 layer network, namely in-
put, convolutional, activation (sigmoid), and a pool-
ing(max) layer. Significance of custom CNN model is
to verify that, proposed idea of non decreasing func-
tion(in this model sigmoid) for activation function is
valid. Each model was inspected for pattern of con-
volutional, activation, pooling layer in that order and
each such occurrence was replaced by convolutional,
pooling, activation layer in that order. The evalua-
tion setup consists of running 1000 iterations, in the

- 74 -



Figure 3: Time comparison graph

(a) (b)

Figure 4: (a) Prediction score for each class for Figure 4b (b) Image from [4] used for testing prediction
accuracy.

- 75 -



testing phase of above mentioned 6 different models
(VGG-16, VGG-19, customized model and 3 recon-
figured models for each original model). Each model
was executed for 1000 iterations, in testing phase,
once on single Intel Xeon CPU E5-2660 v3 and once
on single NVIDIA GTX Titan GPU. Deep learning
framework used was caffe [5], with Red hat OS. Intel
MKL, and NVIDIA cuDNN were used for CPU and
GPU respectively.

5.2 Quantitative analysis

Since our method does not change the number of
computations for convolutional and pooling layer, it
was confirmed from the results that there was no
change in the execution time for either of the lay-
ers. Hence in figure 3, we compare average execution
time(1000 iterations) for activation layer, before and
after network reordering. Figure 3 shows that time
for activation layer, can be reduced almost by 75%
for both VGG16 and VGG19 on CPU. This is in ac-
cordance to our mathematical justification in section
4. For GPU, the time reduction ranges from 19.56%
to 67% for VGG16 and 17% to 68% for VGG19. For
VGG16 and VGG19, we found that the total forward
pass execution time on CPU, was reduced by almost
5% by our proposed reordering.
In future as more and more hardware architectures

are going towards optimising convolution operation,
the execution time for convolution operation will re-
duce further, and ratio of activation and pooling op-
erations will increase further. In such a scenario our
proposed reordering will have more significant total
time reduction. Table 1 shows the speed up in CPU
and GPU by the proposed algorithm. We investi-
gated GPU performance with batch-size of 1, 2, 4,
8, 16 images and found that with increasing batch-
size the gap between practical and theoretical speed-
updecreases. This experimental results illustrate that
our method is hardware independent.
Figure 4a shows accuracy predicted by VGG-16

layer on a CPU when a random image of figure 4b
[4] was given as input. It can be seen in figure 4a
that, both original CNN model and our reconfigured
model generates exact same prediction scores for ev-
ery output class. We have also verified this using
100 random images, that the output of reconfigured

model matches to that of the original model.

6 Summary and Conclusions

We presented a hardware independent technique
to accelerate CNN, by reconfiguring the network.
Which we demonstrated by executing CNN models
on both CPU and GPU. Such a technique can be
easily applied to any hardware architecture. This
technique is of importance because it can be applied
for both training and testing phases. Since the pro-
posed technique does not change the output of CNN
model, it can be easily applied to any CNN used for
non-visual inputs, given pattern of convolutional, ac-
tivation, and pooling in that order exists in the net-
work. Since many hardware architectures are being
designed dedicated to deep learning, such computa-
tions reduction technique can also help to reduce the
hardware logic used for deep learning.

References

[1] Alex Krizhevsky, IIya Sutskever, Geoffrey E. Hin-
ton, “ Imagenet classification with deep convolu-
tional neural networks,” in Advances in Neural
Information Processing Systems 25, 2012.

[2] Sharan Chetlur, Cliff Woolley, Philippe Vanderm-
ersch, Jonathan Cohen, John Tran, Bryan Catan-
zaro, Evan Shelhamer, “ cuDNN: Efficient Prim-
itives for Deep Learning,” CoRR, 2014

[3] Karen Simonyan, Andrew Zisserman, “ Very
Deep Convolutional Networks for Large-Scale Im-
age Recognition,” CoRR, 2014

[4] D. Martin, C. Fowlkes, D. Tal, J. Malik, “ A
Database of Human Segmented Natural Images
and its Application to Evaluating Segmentation
Algorithms and Measuring Ecological Statistics,”
Proc. 8th Int’l Conf. Computer Vision, 2001

[5] DJia, Yangqing and Shelhamer, Evan and Don-
ahue, Jeff and Karayev, Sergey and Long,
Jonathan and Girshick, Ross and Guadarrama,
Sergio and Darrell, Trevor, “ Caffe: Convolu-
tional Architecture for Fast Feature Embedding,”
arXiv preprint arXiv:1408.5093, 2014

- 76 -


