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Abstract — This paper studies a task scheduling problem 
which schedules a set of data-parallel tasks on multiple cores. 
Unlike most of previous literature where each task is 
assumed to run on a single core, this work allows individual 
tasks to run on multiple cores in a data-parallel fashion. 
Since the scheduling problem is NP-hard, a couple of 
heuristic algorithms which find near-optimal schedules in a 
short time were proposed so far. In some cases, however, 
exactly-optimal schedules are desired, for example, in order 
to evaluate heuristic algorithms. This paper proposes an 
exact algorithm to find optimal schedules in a reasonable 
time. The proposed algorithm is based on depth-first branch-
and-bound search. In the experiments, the proposed 
algorithm could successfully find optimal schedules for task-
sets of 50 tasks in a practical time. 
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I. INTRODUCTION 
Due to the wide deployment of multicore architecture 

not only in general-purpose processors but also in 
embedded processors, task scheduling has now become a 
more important problem than ever. Given a set of tasks 
with data dependency, a task scheduling problem decides 
when and on which core each task is executed in such a 
way that the overall schedule length is minimized, while 
meeting constraints on flow dependency among tasks and 
the number of available cores.  

In order to fully utilize the potential parallelism of 
multicore architectures, both task parallelism (i.e., inter-
task parallelism) and data parallelism (i.e., intra-task 
parallelism) need to be exploited [1][2]. Task parallel 
execution is achieved by executing multiple independent 
tasks on different cores simultaneously. On the other hand, 
data parallel execution is achieved by executing the same 
task with different data on multiple cores simultaneously. 
This paper addresses a task scheduling problem which 
takes into account both task- and data-parallelisms.  

In general, task scheduling problems belong to the 
class of NP-hard [3], and there exists no polynomial-time 
algorithm which always yields optimal solutions, unless P 
= NP. In the past, several heuristic algorithms were 
proposed for scheduling of data parallel tasks [4][5]. In 

some occasions, however, it is still desirable to obtain 
optimal schedules, for example, in order to evaluate 

heuristic algorithms. For a task scheduling problem which 
only considers task parallelism, several exact algorithms to 
find optimal schedules were developed [6][7][8]. These 
algorithms assume that individual tasks run on a single 
core. To the best of our knowledge, no algorithm was 
proposed for the task scheduling with both task- and data-
parallelisms. 

In this paper, we propose an exact algorithm for task 
scheduling with both task- and data-parallelisms. Unlike 
previous exact scheduling algorithms, this work allows 
individual tasks to run on multiple cores in a data-parallel 
fashion. The proposed algorithm is based on a branch-and-
bound strategy. A set of rules are proposed to efficiently 
prune branches. 

This paper is organized as follows. Section II formally 
describes a scheduling problem addressed in this paper, 
and Section III proposes a scheduling algorithm. 
Experiments are presented in Section IV. 

II. PROBLEM DEFINITION 
This section defines a task scheduling problem 

addressed in this paper.  

A. Problem Description 

 
(a) A task graph 

 

 
(b) An optimal schedule 

Figure 1. A scheduling example 
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This work assumes homogeneous multicore processors. 
An application is modeled as an acyclic directed graph 
(DAG), so called a task graph, where a node represents a 
task and a directed edge represents a flow dependency 
between two tasks. Figure 1 (a) shows an example of a 
task graph. In this graph, tasks labeled “S” and “E” are 
dummy tasks which do not perform any meaningful 
computation. Tasks S and E denote a start point and an exit 
point of the application, respectively. Two integer values 
are associated with each task. The first number denotes the 
degree of data parallelism of the task. In other words, the 
number denotes the number of cores which are necessary 
to run the task. We assume that the degree of data 
parallelism is decided by programmers, and how to decide 
it is out of scope of this paper. The latter number on each 
node denotes the execution time of the task. For example, 
task 1 runs on 4 cores, and it takes 10 time units to 
complete the task. 

Given a task graph, task scheduling decides when and 
on which core each task is executed in such a way that the 
overall schedule length is minimized, while meeting 
constraints on flow dependency among tasks and the 
number of available cores. Figure 1 (b) shows one of 
optimal schedules on four cores for the task graph in 
Figure 1 (a). 

B. ILP Formulation 
The task scheduling problem described above can be 

formulated as an integer linear programming (ILP) 
problem. 

Let ����� , ���	�� , and 
����ℎ�  denote the execution 
time, start time and finish time of task i, respectively. 
�	� 
denotes the data parallelism, meaning that task i must be 
mapped onto 
�	�  cores. 
�����,��  denotes a flow 
dependency between tasks i1 and i2. 
�����,�� is 1 if task 
i1 must precede task i2, otherwise 0. ��
�,�  denotes 
mapping of tasks on cores. ��
�,� is 1 if task i is mapped 
to core j, otherwise 0.  

Then, the task scheduling problem is formally defined 
as follows: Given �����, 
�	� and 
�����,��, decide ���	�� , 

����ℎ�and ��
�,� which minimize the objective function 
(1), while meeting the constraints (2), (3), (4) and (5). 

Minimize:    Max(
����ℎ�)    (1) 

Subject to: 

∀�     ∑ ��
�,�� = 
�	�     (2) 

∀�     
����ℎ� = ���	�� + �����    (3) 

∀�1, �2, �          ��
��,� + ��
��,� ≤ 1  

 ∨ 
����ℎ�� ≤ ���	��� 

 ∨ 
����ℎ�� ≤ ���	���   (4) 

∀�1, �2    
�����,�� = 1 → 
����ℎ�� ≤ ���	���  (5) 

Optimal scheduling results can be obtained by solving 
the ILP formulas, but it is not practical for large task sets. 
In the next section, we propose an efficient branch-and-
bound algorithm to find the optimal schedules. 

III. THE PROPOSED ALGORITHM 
This section proposes a branch-and-bound algorithm 

for the scheduling problem defined in the previous section. 
The proposed algorithm basically explores all possible 
solutions by a depth-first search, and prunes non-optimal 
solution spaces during the search. 

A. Depth-First Search 
Our algorithm uses a branching tree to systematically 

enumerate all possible schedules. For example, Figure 2 
shows a branching tree for the task graph in Figure 1 (a). 
In the tree, each node represents a task, and a branch 
between two nodes denotes that the parent task is 
scheduled no later than the child task. A path from the root 
to a leaf denotes a schedule. For example, a path (S → 1 →

2 → 3 → 5 → 4 → E)  in Figure 2 denotes the schedule 
shown in Figure 1 (b) 1.  

Our algorithm travels the branching tree from the root 
to leaves in a depth-first order. However, traveling all 
nodes in the branching tree has time complexity of O(�!), 
which is not practical for large task graphs. The rest of this 
section present four rules to prune unnecessary branches. 

B. Pruning Partial Schedules with Same Tasks 
Let us consider the branching tree in Figure 2. Assume 

that our algorithm already visited partial schedule (1 → 2) 
and now we have reached (2 → 1) . Note that the two 
partial schedules contain the same tasks with different 
orders. If we compare the two partial schedules, we can 
figure out that (2 → 1) cannot be better than (1 → 2), and 
thus, we can prune further branches under (2 → 1). 

How to compare the two partial schedules is as follows. 

Figure 3 (a) and (b) show time charts of partial 
schedules (1 → 2) and (2 → 1), respectively. In Figure 3 
(a), one of the four cores is available at time 10, and then, 
task 3 is schedulable. Here, a task is schedulable if both of 
the following two conditions hold: 

                                                           
1  Paths (S → 1 → 2 → 3 → 4 → 5 → E), (S → 1 → 3 → 2 → 5 → 4 →

E) and (S → 1 → 3 → 2 → 4 → 5 → E) also result in the same schedule 
as shown in Figure 1 (b). 

 
Figure 2. A branching tree 
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� All flow dependencies are solved. 

� The number of available cores is enough to run the task. 

Similarly, tasks 3, 4 and 5 are schedulable at time 30 in 
Figure 3 (a). In Figure 3 (b), tasks 3, 4 and 5 are 
schedulable at time 30. Before time 30, no task is 
schedulable since no core is available. 

Now, we see that, at any time point, a set of 
schedulable tasks in partial schedule  (2 → 1) is a subset 
of that in partial schedule  (1 → 2). For example, at time 
10, a set of schedulable tasks in partial schedule  (2 → 1) 
is empty, which is a subset of {3}. Then, it is guaranteed 
that no schedule under partial schedule (2 → 1) is better 
than the best schedule under (1 → 2) , and therefore, 
branches under (2 → 1) can be pruned. 

In our algorithm, when we visit a new partial schedule, 
in other words, when we visit a new node in the branching 
tree, we look-up previously-visited partial schedules with 
same tasks, and compare their schedulable task sets. If the 
schedulable task set of one partial schedule is always a 
subset of the other, we prune the former partial schedule. 

C. Scheduling Exclusive Task First 
Let us consider the task graph in Figure 1 again. 

Initially, either task 1 or 2 is schedulable at time 0. In this 
case, scheduling task 1 first leads to an optimal schedule in 
the following reason. 

Since task 1 requires all of four cores, this task cannot 
be executed in parallel with any other tasks. We refer to a 
task as an exclusive task if the task cannot run in parallel 
with any other tasks which are not yet scheduled. Task 1 is 
an exclusive task. On the other hand, task 2 is not 
exclusive since task 2 can run in parallel with task 3. 

Delaying execution of exclusive tasks which can be 
scheduled at the earliest cannot minimize the schedule 
length. Our algorithm schedules exclusive tasks as early as 
possible. When visiting a node, and if one of the branches 
goes to an exclusive task with the earliest start time, 
branches to the other tasks are pruned. 

D. Reducing Meaningless Idle Time 
Let us consider partial schedule (1 → 2) in the 

branching tree shown in Figure 2. There are three branches 
from task 2, going to tasks 3, 4 and 5. If we look at the 
time chart in Figure 3 (a), it is obvious that the branch to 
task 3 is the best among the three. The earliest start time of 
task 4 and that of task 5 are both time 30 because of the 
flow dependencies. On the other hand, the earliest finish 
time of task 3 is time 20, which is earlier than the earliest 
start time of the other tasks. Therefore, delaying execution 
of task 3 produces meaningless idle time. 

During traveling a branching tree, if the earliest finish 
time of a child task is earlier than or equal to the earliest 
start time of the other children, only the former task is 
visited and the other branches are pruned. 

E. Pruning based on Lower Bound 
Similar to typical branch-and-bound algorithms, our 

algorithm keeps a temporarily-optimal schedule and 
updates it when a better schedule is found. When 
branching to a child, our algorithm calculates the lower 
bound of schedule length. If the lower bound is longer than 
the length of the temporarily-optimal schedule, the branch 
is pruned.  

When our algorithm visits a new node in the branching 
tree, we use two simple formulas as follows, in order to 
check the lower bound of the schedule under the node. 

∑ ���� + ∑ �� × ����� ≥ " × �#$   (6) 

∑ ���� − ∑ �� × ����% ≥ �&�    (7) 

In the formulas, ��� denotes the available time of core 
j. For example, in Figure 3 (a), ���  is 30 for 0 ≤ � ≤ 2, 
and ��' = 10 . *  is a set of tasks which are not yet 
scheduled. ��  and ��  denote the degree of data parallelism 
and execution time of task i, respectively.  " is the number 
of cores, and �#$ is the length of the temporarily-optimal 
schedule. If formula (6) holds, the schedule length under 
this node cannot be shorter than �#$, and therefore further 
branches are pruned. 

In formula (7), -  denotes a set of tasks which have 
already been scheduled. �&� represents the total idle time 
in the temporarily-optimal schedule, and is defined as 
follows. 

�&� = " × �#$ − ∑ �� × ����.// 6.787    (8) 

Formula (7) checks if the total idle time of the current 
partial schedule is larger than �&�  or not. If yes, further 
branches under the partial schedule are pruned. 

F. Selection of Branch 
So far, four rules to prune branches are described. 

Another important issue in the depth-first branch-and-
bound search is how to select a task to go first when 
multiple child tasks exist. 

 
(a) Partial schedule (1 → 2) 

 

 
(b) Partial schedule (2 → 1) 

Figure 3. Partial schedules with same tasks 
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Out of the children, our algorithm selects the child task 
which has the earliest start time. In case there exist 
multiple tasks with the same start time, we select a task 
based on the PCS strategy which was presented in [4]. 

IV. EXPERIMENTS 
We implemented our proposed scheduling algorithm in 

C++, and conducted two sets of experiments to test the 
effectiveness of the proposed algorithm.  

In the first experiments, we use 20 sets of 10 tasks, 
derived from Standard Task Graph (STG) [9]. An integer 
linear programming (ILP) technique (see Section II) was 
used as a counterpart to our algorithm. Although the ILP 
technique is guaranteed to yield optimal schedules, it takes 
a long time which is often unacceptable. In order to solve 
the ILP problems, IBM ILOG CPLEX 12.5 was used. The 
experiments were conducted on dual Xeon processors (E5-
2650, 2.00Hz) with 128GB memory.   

Table 1 shows scheduling results for 20 task graphs 
with 10 tasks on 4 cores. ILP and B&B denotes the ILP 
technique using CPLEX and our branch-and-bound 
algorithm, respectively. The results in the table show that 
our algorithm yields the same schedule length as the ILP 
techniques in any case. Although we have not 
mathematically proved the correctness of our algorithm yet, 
our algorithm always found the optimal schedule as long 
as we tested. 

As shown in Table 1, in any cases of 10 tasks, our 
branch-and-bound algorithm found optimal schedules 
within a second. On the other hand, the runtime of CPLEX 
significantly varied depending on the task graph. In the 
worst case, it took more than 60 fours for CPLEX to find 
the optimal schedule for 10 tasks. 

In the next set of experiments, we compared our 
branch-and-bound algorithms with two existing heuristic 
ones. One is the PCS algorithm [4] and the other is the 
dual-mode algorithm [5]. We used 20 sets of 50 tasks from 
[9]. With the three algorithms, the task sets are scheduled 
on 4 cores. The results are shown in Table 2. 

The results show that our algorithm always found the 
best schedule among the three algorithms. The runtimes of 
the PCS and dual-mode algorithms were always less than 1 
second. On the other hand, the runtime of our branch-and-
bound algorithm significantly varied depending on the task 
graph. In the worst case, it took more than 24 fours for our 
algorithm to find the optimal schedule for 50 tasks. 
However, it should be noted that, for 16 task graphs out of 
20, the runtime of our algorithm is less than 1 minute. 

V. CONCLUSIONS 
In this paper, we proposed a branch-and-bound 

algorithm for a task scheduling problem which takes into 
account both task-parallelism and data-parallelism. We 
presented four rules to prune non-optimal branches. The 

experiments show that our algorithm could find best 
schedules in a practical time. 

In future, we plan to formally prove the correctness of 
our algorithm. Also, we will conduct more extensive 
experiments to demonstrate the effectiveness of our 
algorithm more solidly. 
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