
A Branch-and-Bound Algorithm for Scheduling of
Data-Parallel Tasks

Yang Liu, Lin Meng, Ittetsu Taniguchi, Hiroyuki Tomiyama
Department of Electronic and Computer Engineering Ritsumeikan University

1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan

Abstract — This paper studies a task scheduling problem
which schedules a set of data-parallel tasks on multiple cores.
Unlike most of previous literature where each task is
assumed to run on a single core, this work allows individual
tasks to run on multiple cores in a data-parallel fashion.
Since the scheduling problem is NP-hard, a couple of
heuristic algorithms which find near-optimal schedules in a
short time were proposed so far. In some cases, however,
exactly-optimal schedules are desired, for example, in order
to evaluate heuristic algorithms. This paper proposes an
exact algorithm to find optimal schedules in a reasonable
time. The proposed algorithm is based on depth-first branch-
and-bound search. In the experiments, the proposed
algorithm could successfully find optimal schedules for task-
sets of 50 tasks in a practical time.

Keywords — task scheduling; multicore; data parallelism;
branch-and-bound

I. INTRODUCTION
Due to the wide deployment of multicore architecture

not only in general-purpose processors but also in
embedded processors, task scheduling has now become a
more important problem than ever. Given a set of tasks
with data dependency, a task scheduling problem decides
when and on which core each task is executed in such a
way that the overall schedule length is minimized, while
meeting constraints on flow dependency among tasks and
the number of available cores.

In order to fully utilize the potential parallelism of
multicore architectures, both task parallelism (i.e., inter-
task parallelism) and data parallelism (i.e., intra-task
parallelism) need to be exploited [1][2]. Task parallel
execution is achieved by executing multiple independent
tasks on different cores simultaneously. On the other hand,
data parallel execution is achieved by executing the same
task with different data on multiple cores simultaneously.
This paper addresses a task scheduling problem which
takes into account both task- and data-parallelisms.

In general, task scheduling problems belong to the
class of NP-hard [3], and there exists no polynomial-time
algorithm which always yields optimal solutions, unless P
= NP. In the past, several heuristic algorithms were
proposed for scheduling of data parallel tasks [4][5]. In

some occasions, however, it is still desirable to obtain
optimal schedules, for example, in order to evaluate

heuristic algorithms. For a task scheduling problem which
only considers task parallelism, several exact algorithms to
find optimal schedules were developed [6][7][8]. These
algorithms assume that individual tasks run on a single
core. To the best of our knowledge, no algorithm was
proposed for the task scheduling with both task- and data-
parallelisms.

In this paper, we propose an exact algorithm for task
scheduling with both task- and data-parallelisms. Unlike
previous exact scheduling algorithms, this work allows
individual tasks to run on multiple cores in a data-parallel
fashion. The proposed algorithm is based on a branch-and-
bound strategy. A set of rules are proposed to efficiently
prune branches.

This paper is organized as follows. Section II formally
describes a scheduling problem addressed in this paper,
and Section III proposes a scheduling algorithm.
Experiments are presented in Section IV.

II. PROBLEM DEFINITION
This section defines a task scheduling problem

addressed in this paper.

A. Problem Description

(a) A task graph

(b) An optimal schedule

Figure 1. A scheduling example

SASIMI 2016 ProceedingsR2-4

- 96 -

This work assumes homogeneous multicore processors.
An application is modeled as an acyclic directed graph
(DAG), so called a task graph, where a node represents a
task and a directed edge represents a flow dependency
between two tasks. Figure 1 (a) shows an example of a
task graph. In this graph, tasks labeled “S” and “E” are
dummy tasks which do not perform any meaningful
computation. Tasks S and E denote a start point and an exit
point of the application, respectively. Two integer values
are associated with each task. The first number denotes the
degree of data parallelism of the task. In other words, the
number denotes the number of cores which are necessary
to run the task. We assume that the degree of data
parallelism is decided by programmers, and how to decide
it is out of scope of this paper. The latter number on each
node denotes the execution time of the task. For example,
task 1 runs on 4 cores, and it takes 10 time units to
complete the task.

Given a task graph, task scheduling decides when and
on which core each task is executed in such a way that the
overall schedule length is minimized, while meeting
constraints on flow dependency among tasks and the
number of available cores. Figure 1 (b) shows one of
optimal schedules on four cores for the task graph in
Figure 1 (a).

B. ILP Formulation
The task scheduling problem described above can be

formulated as an integer linear programming (ILP)
problem.

Let ����� , ���	�� , and
����ℎ� denote the execution
time, start time and finish time of task i, respectively. �	�
denotes the data parallelism, meaning that task i must be
mapped onto �	� cores.
�����,�� denotes a flow
dependency between tasks i1 and i2.
�����,�� is 1 if task
i1 must precede task i2, otherwise 0. ���,� denotes
mapping of tasks on cores. ���,� is 1 if task i is mapped
to core j, otherwise 0.

Then, the task scheduling problem is formally defined
as follows: Given �����, �	� and
�����,��, decide ���	�� ,

����ℎ�and ���,� which minimize the objective function
(1), while meeting the constraints (2), (3), (4) and (5).

Minimize: Max(
����ℎ�) (1)

Subject to:

∀� ∑ ���,�� = �	� (2)

∀�
����ℎ� = ���	�� + ����� (3)

∀�1, �2, � ����,� + ����,� ≤ 1

 ∨
����ℎ�� ≤ ���	���

 ∨
����ℎ�� ≤ ���	��� (4)

∀�1, �2
�����,�� = 1 →
����ℎ�� ≤ ���	��� (5)

Optimal scheduling results can be obtained by solving
the ILP formulas, but it is not practical for large task sets.
In the next section, we propose an efficient branch-and-
bound algorithm to find the optimal schedules.

III. THE PROPOSED ALGORITHM
This section proposes a branch-and-bound algorithm

for the scheduling problem defined in the previous section.
The proposed algorithm basically explores all possible
solutions by a depth-first search, and prunes non-optimal
solution spaces during the search.

A. Depth-First Search
Our algorithm uses a branching tree to systematically

enumerate all possible schedules. For example, Figure 2
shows a branching tree for the task graph in Figure 1 (a).
In the tree, each node represents a task, and a branch
between two nodes denotes that the parent task is
scheduled no later than the child task. A path from the root
to a leaf denotes a schedule. For example, a path (S → 1 →

2 → 3 → 5 → 4 → E) in Figure 2 denotes the schedule
shown in Figure 1 (b) 1.

Our algorithm travels the branching tree from the root
to leaves in a depth-first order. However, traveling all
nodes in the branching tree has time complexity of O(�!),
which is not practical for large task graphs. The rest of this
section present four rules to prune unnecessary branches.

B. Pruning Partial Schedules with Same Tasks
Let us consider the branching tree in Figure 2. Assume

that our algorithm already visited partial schedule (1 → 2)
and now we have reached (2 → 1) . Note that the two
partial schedules contain the same tasks with different
orders. If we compare the two partial schedules, we can
figure out that (2 → 1) cannot be better than (1 → 2), and
thus, we can prune further branches under (2 → 1).

How to compare the two partial schedules is as follows.

Figure 3 (a) and (b) show time charts of partial
schedules (1 → 2) and (2 → 1), respectively. In Figure 3
(a), one of the four cores is available at time 10, and then,
task 3 is schedulable. Here, a task is schedulable if both of
the following two conditions hold:

1 Paths (S → 1 → 2 → 3 → 4 → 5 → E), (S → 1 → 3 → 2 → 5 → 4 →

E) and (S → 1 → 3 → 2 → 4 → 5 → E) also result in the same schedule
as shown in Figure 1 (b).

Figure 2. A branching tree

- 97 -

� All flow dependencies are solved.

� The number of available cores is enough to run the task.

Similarly, tasks 3, 4 and 5 are schedulable at time 30 in
Figure 3 (a). In Figure 3 (b), tasks 3, 4 and 5 are
schedulable at time 30. Before time 30, no task is
schedulable since no core is available.

Now, we see that, at any time point, a set of
schedulable tasks in partial schedule (2 → 1) is a subset
of that in partial schedule (1 → 2). For example, at time
10, a set of schedulable tasks in partial schedule (2 → 1)
is empty, which is a subset of {3}. Then, it is guaranteed
that no schedule under partial schedule (2 → 1) is better
than the best schedule under (1 → 2) , and therefore,
branches under (2 → 1) can be pruned.

In our algorithm, when we visit a new partial schedule,
in other words, when we visit a new node in the branching
tree, we look-up previously-visited partial schedules with
same tasks, and compare their schedulable task sets. If the
schedulable task set of one partial schedule is always a
subset of the other, we prune the former partial schedule.

C. Scheduling Exclusive Task First
Let us consider the task graph in Figure 1 again.

Initially, either task 1 or 2 is schedulable at time 0. In this
case, scheduling task 1 first leads to an optimal schedule in
the following reason.

Since task 1 requires all of four cores, this task cannot
be executed in parallel with any other tasks. We refer to a
task as an exclusive task if the task cannot run in parallel
with any other tasks which are not yet scheduled. Task 1 is
an exclusive task. On the other hand, task 2 is not
exclusive since task 2 can run in parallel with task 3.

Delaying execution of exclusive tasks which can be
scheduled at the earliest cannot minimize the schedule
length. Our algorithm schedules exclusive tasks as early as
possible. When visiting a node, and if one of the branches
goes to an exclusive task with the earliest start time,
branches to the other tasks are pruned.

D. Reducing Meaningless Idle Time
Let us consider partial schedule (1 → 2) in the

branching tree shown in Figure 2. There are three branches
from task 2, going to tasks 3, 4 and 5. If we look at the
time chart in Figure 3 (a), it is obvious that the branch to
task 3 is the best among the three. The earliest start time of
task 4 and that of task 5 are both time 30 because of the
flow dependencies. On the other hand, the earliest finish
time of task 3 is time 20, which is earlier than the earliest
start time of the other tasks. Therefore, delaying execution
of task 3 produces meaningless idle time.

During traveling a branching tree, if the earliest finish
time of a child task is earlier than or equal to the earliest
start time of the other children, only the former task is
visited and the other branches are pruned.

E. Pruning based on Lower Bound
Similar to typical branch-and-bound algorithms, our

algorithm keeps a temporarily-optimal schedule and
updates it when a better schedule is found. When
branching to a child, our algorithm calculates the lower
bound of schedule length. If the lower bound is longer than
the length of the temporarily-optimal schedule, the branch
is pruned.

When our algorithm visits a new node in the branching
tree, we use two simple formulas as follows, in order to
check the lower bound of the schedule under the node.

∑ ���� + ∑ �� × ����� ≥ " × �#$ (6)

∑ ���� − ∑ �� × ����% ≥ �&� (7)

In the formulas, ��� denotes the available time of core
j. For example, in Figure 3 (a), ��� is 30 for 0 ≤ � ≤ 2,
and ��' = 10 . * is a set of tasks which are not yet
scheduled. �� and �� denote the degree of data parallelism
and execution time of task i, respectively. " is the number
of cores, and �#$ is the length of the temporarily-optimal
schedule. If formula (6) holds, the schedule length under
this node cannot be shorter than �#$, and therefore further
branches are pruned.

In formula (7), - denotes a set of tasks which have
already been scheduled. �&� represents the total idle time
in the temporarily-optimal schedule, and is defined as
follows.

�&� = " × �#$ − ∑ �� × ����.// 6.787 (8)

Formula (7) checks if the total idle time of the current
partial schedule is larger than �&� or not. If yes, further
branches under the partial schedule are pruned.

F. Selection of Branch
So far, four rules to prune branches are described.

Another important issue in the depth-first branch-and-
bound search is how to select a task to go first when
multiple child tasks exist.

(a) Partial schedule (1 → 2)

(b) Partial schedule (2 → 1)

Figure 3. Partial schedules with same tasks

- 98 -

Out of the children, our algorithm selects the child task
which has the earliest start time. In case there exist
multiple tasks with the same start time, we select a task
based on the PCS strategy which was presented in [4].

IV. EXPERIMENTS
We implemented our proposed scheduling algorithm in

C++, and conducted two sets of experiments to test the
effectiveness of the proposed algorithm.

In the first experiments, we use 20 sets of 10 tasks,
derived from Standard Task Graph (STG) [9]. An integer
linear programming (ILP) technique (see Section II) was
used as a counterpart to our algorithm. Although the ILP
technique is guaranteed to yield optimal schedules, it takes
a long time which is often unacceptable. In order to solve
the ILP problems, IBM ILOG CPLEX 12.5 was used. The
experiments were conducted on dual Xeon processors (E5-
2650, 2.00Hz) with 128GB memory.

Table 1 shows scheduling results for 20 task graphs
with 10 tasks on 4 cores. ILP and B&B denotes the ILP
technique using CPLEX and our branch-and-bound
algorithm, respectively. The results in the table show that
our algorithm yields the same schedule length as the ILP
techniques in any case. Although we have not
mathematically proved the correctness of our algorithm yet,
our algorithm always found the optimal schedule as long
as we tested.

As shown in Table 1, in any cases of 10 tasks, our
branch-and-bound algorithm found optimal schedules
within a second. On the other hand, the runtime of CPLEX
significantly varied depending on the task graph. In the
worst case, it took more than 60 fours for CPLEX to find
the optimal schedule for 10 tasks.

In the next set of experiments, we compared our
branch-and-bound algorithms with two existing heuristic
ones. One is the PCS algorithm [4] and the other is the
dual-mode algorithm [5]. We used 20 sets of 50 tasks from
[9]. With the three algorithms, the task sets are scheduled
on 4 cores. The results are shown in Table 2.

The results show that our algorithm always found the
best schedule among the three algorithms. The runtimes of
the PCS and dual-mode algorithms were always less than 1
second. On the other hand, the runtime of our branch-and-
bound algorithm significantly varied depending on the task
graph. In the worst case, it took more than 24 fours for our
algorithm to find the optimal schedule for 50 tasks.
However, it should be noted that, for 16 task graphs out of
20, the runtime of our algorithm is less than 1 minute.

V. CONCLUSIONS
In this paper, we proposed a branch-and-bound

algorithm for a task scheduling problem which takes into
account both task-parallelism and data-parallelism. We
presented four rules to prune non-optimal branches. The

experiments show that our algorithm could find best
schedules in a practical time.

In future, we plan to formally prove the correctness of
our algorithm. Also, we will conduct more extensive
experiments to demonstrate the effectiveness of our
algorithm more solidly.

ACKNOWLEDGMENT
This work is in part supported by KAKENHI

15H02680.

REFERENCES
[1] S. B. Hassen, H. E. Bal, and C. J. H. Jacobs, “A task and data-

parallel programming language based on shared objects,” ACM
Trans. on Programming Languages and Systems., vol. 20, no. 6,
1998.

[2] S. Ramaswamy, S. Sapatnekar, and P. Banerjee, “A framework for
exploiting task and data parallelism on distributed memory
multicomputers,” IEEE Trans. on Parallel and Distributed Systems.,
vol. 8, no. 11, 1997.

Table 1. Results for task graphs with 10 tasks on 4 cores

Task
graph ID

Schedule Length Runtime (sec)

ILP B&B ILP B&B

rand0000 32 32 6,823 <1

rand0001 43 43 21,788 <1

rand0002 26 26 60,012 <1

rand0003 30 30 71,678 <1

rand0004 36 36 2,588 <1

rand0005 75 75 40,054 <1

rand0006 70 70 46,245 <1

rand0007 94 94 50,019 <1

rand0008 121 121 6,115 <1

rand0009 79 79 58,830 <1

rand0010 23 23 55,539 <1

rand0011 33 33 55,068 <1

rand0012 33 33 15,171 <1

rand0013 31 31 42,571 <1

rand0014 53 53 44,250 <1

rand0015 81 81 <1 <1

rand0016 77 77 <1 <1

rand0017 100 100 41,675 <1

rand0018 72 72 <1 <1

rand0019 70 70 220,650 <1

- 99 -

[3] E. G. Coffman, Computer and Job-shop Scheduling Theory, Wiley,
1976.

[4] Y. Liu, L.Meng, I. Taniguchi, and H. Tomiyama, “Novel list
scheduling strategies for task graphs with data parallelism,"
International Journal on Networking and Computing, vol. 4, no. 2,
2014.

[5] Y. Liu, L. Meng, I. Taniguchi and H. Tomiyama, “A dual-mode
scheduling algorithm for task graphs with data parallelism,” Asia
Pacific Conference on Circuits and Systems, 2014.

[6] H. Kasahara and S. Narita, “Practical multiprocessor scheduling
algorithms for efficient parallel processing,” IEEE Trans. on
Computers, vol. C-33, no. 11, 1984.

[7] S. Fujita, “A branch-and-bound algorithm for solving the
multiprocessor scheduling problem with improved lower bounding
techniques,” IEEE Trans. on Computers, vol. 60, no. 7, 2011.

[8] O. Sinnen, A. V. Kozlov, and A. Z. S. Shahul, “Optimal scheduling
of task graphs on parallel systems,” International Conference on
Parallel and Distributed Computing, Applications and
Technologies, 2008

[9] http://www.kasahara.elec.waseda.ac.jp/schedule/
(Last accessed: June 2016)

Table 2. Results for task graphs with 50 tasks on 4 cores

Task

graph ID

Schedule Length Runtime (sec)

PCS Dual-
mode B&B PCS Dual-

mode B&B

rand0000 168 167 155 <1 <1 8

rand0001 220 211 202 <1 <1 <1

rand0002 173 170 162 <1 <1 <1

rand0003 194 194 181 <1 <1 114

rand0004 167 167 166 <1 <1 <1

rand0005 439 426 397 <1 <1 <1

rand0006 275 270 258 <1 <1 6

rand0007 357 354 339 <1 <1 88,100

rand0008 409 407 387 <1 <1 <1

rand0009 327 356 314 <1 <1 3

rand0010 131 131 128 <1 <1 50

rand0011 181 176 170 <1 <1 <1

rand0012 197 192 179 <1 <1 2

rand0013 186 192 178 <1 <1 7

rand0014 171 167 159 <1 <1 462

rand0015 376 373 345 <1 <1 <1

rand0016 318 319 292 <1 <1 <1

rand0017 377 378 359 <1 <1 6,800

rand0018 403 396 363 <1 <1 <1

rand0019 342 330 323 <1 <1 <1

- 100 -

