
Acceleration of Radix-Heap based Dijkstra algorithm by Lazy Update

Tomohiro Takahashi Yasuhiro Takashima
Department of Information Systems Engineering

University of Kitakyushu

Kitakyushu, Fukuoka, 808-0135

tomohiro.takahashi@is.env.kitakyu-u.ac.jp takasima@kitakyu-u.ac.jp

Abstract— This paper proposes a fast Dijkstra algorithm with
radix-heap by lazy update which solves the single source short-
est path problem (SSSP). The conventional Dijkstra algorithm
chooses one vertex with the minimum tentative distance among
the unvisited vertices. For the problem, the relaxation of the num-
ber of selected vertices not only one but also multiple under the
guarantee of its optimality has been proposed, called lazy update.
In this paper, we utilize this lazy update method to the radix-heap
based Dijkstra which solves SSSP with the integer edge distances.
The experimental results confirm the efficiency of the proposed
method which executes 50 % faster than the conventional Dijk-
stra.

I. Introduction

In these decades, the problem size is still grown up as the

computer performance evolution. In fact, the speed-up of the

computer cannot catch up with the growing speed of the prob-

lem. Thus, the efficiency of the algorithm becomes much im-

portant.

In the large-sized problem, the graph theoretical problems

are the most popular ones. Especially, the shortest path prob-

lem is widely used in the world [1–3]. In the VLSI design, the

shortest path problem is also much important [4]. The impact

of the high efficiency to solve the problem must be large. This

paper focuses on the improvement of the algorithm solving it.

The shortest path problem includes the single source short-

est path problem (SSSP) which calculates the shortest path

length of each vertex from the source vertex in the given graph.

To solve SSSP, Dijkstra’s algorithm [5] has been proposed

if the graph does not have any negatively weighted edges.

The Dijkstra’s algorithm iteratively executes the following two

steps: 1) Update the tentative distances for all unvisited ver-

tices from the source vertex through only visited vertices; 2)

Select the vertex with the minimum tentative distance among

the unvisited vertices and change its status to visited. Its op-

timality is proven and its runtime complexity is O(|V |2) with

a naive implementation or O((|E| + |V |) log |V |) with a prior-

ity queue [6]. It means that O(|V | log |V |) if the given graph

is sparse, that is |E| = O(|V |). Furthermore, the radix-heap is

more suitable than the ordinary priority queue [8].

As mentioned above, the optimality of Dijkstra’s algorithm

is proven. It claims that the minimum distance of the selected

vertex cannot be changed subsequently. However, its optimal-

ity is retained even if not only one vertex but also all ver-

tices with the minimum tentative distance are selected. More-

over, when the vertices with (the minimum tentative distance)

+ (the minimum edge distance) are selected, it is also opti-

mal. We proposed the algorithm, called lazy update, which

utilizes the above considerations [7]. It reported the lazy up-

date achieves 1.2 times faster. But, it experiments a few bench-

marks only. Furthermore, we implemented it with priority-

queue only. However, for the acceleration of Dijkstra’s algo-

rithm, the radix-heap is also proposed [8]. We also need to

confirm the efficiency of Lazy-update with radix-heap.

The main contributions of this paper are as follows:

• We implement the radix-heap based Dijkstra with lazy up-

date and enhance it by the modification of data-structure

of radix-heap.

• The experimental results show that the radix-heap based

Dijkstra with lazy update improves 50 % to the conven-

tional Dijkstra implementation.

The rest of this paper is as follows: Section II describes the

single source shortest path problem and Dijkstra’s algorithm;

Section III introduces the proposed method; Section IV reports

the experimental results; and Section V concludes this paper.

II. Single Source Shortest Path Problem

A. Problem definition

The single source shortest path problem (SSSP) is the prob-

lem to find the shortest length of each vertex from the source

vertex. The detail is shown as follows:

Input: Graph G = (V, E) where each edge e ∈ E has

each non-negative distance, the source vertex s ∈ V

Output: The shortest path length of each vertex from

the source vertex

B. Dijkstra’s Algorithm

To solve SSSP, Dijkstra’s algorithm has been proposed [5].

The detail flow of Dijkstra’s algorithm [6] is shown in Fig.1.

In the description, the tentative distance corresponds to the dis-

tance from the source vertex through only the visited vertices.

SASIMI 2019 ProceedingsR2-16

- 152 -

step 1: Mark all vertices unvisited.

step 2: Set the length of the source vertex to 0 and

mark it visited. For the other vertices, the

tentative distances are set to∞.

step 3: Update the tentative distances of the unvis-

ited vertex through the visited vertices.

step 4: Select the unvisited vertex with the mini-

mum tentative distance and mark it visited.

step 5: If all vertices are marked visited, then finish

this algorithm. Otherwise, return step 3.

Fig. 1. Dijkstra’s algorithm

C. Priority Queue Based Acceleration of Dijkstra’s Algo-

rithm

To accelerate Dijkstra’s algorithm, the priority queue based

methods are widely used. In step 4 in Fig.1, the time complex-

ity of the selection of the minimum distance vertex is O(|V |),
if a naive implementation is employed. Then, by replacing

it to the priority queue, its complexity may decrease. Usu-

ally, the priority queue is based on the binary heap. Thus,

the time complexity is O(log |V |) for each selection with the

modification of heap-tree. But, to utilize the priority queue,

changing step 4 is not enough. Step 3 also must be changed.

This modification effects that the time complexity of step 3 is

O(|E| log |V |) for whole execution. Thus, whole time complex-

ity is O((|E| + |V |) log |V |).

D. Radix-Heap

There is another way of implementation of priority queue,

called Radix-heap [8]. Radix-heap uses the most significant

bit (MSB) of the binary representation of numbers. Its charac-

terizations are 1) bucket based data-structure where the size of

the bucket is the bit-width of the values, 2) each element x is

classified into the (MSB(lastˆx)+1-th bucket, and 3) monotone

priority queue: the inserted value must be equal to or more than

last. In the above description, several notations are as follows:

• The function MSB(x) returns the MSB value of x if x! = 0.

If x == 0, then return -1;

• The variable last is the last extracting value, that is, the

minimum value among the stored values in the buckets.

• ˆ corresponds to the bit-operation xor.

There are the basic operations, push and pop, for the radix-

heap. The detail of each operation is as follows, where the

array of the buckets is b[i]:

• push(x): The element x is placed into b[(MSB(lastˆx))+1].

• pop: The minimum element is extracted. If b[0] is not

empty, the elements in b[0] correspond to the minimum

element. Then, output one element from them. Other-

wise, search the first non-empty bucket among b[1], b[2],

.... If such a bucket is found, then the minimum element

is searched in the bucket and modify last to the searched

value. Finally, re-distribute all elements in the bucket into

b[(MSB(lastˆx)) + 1] and output one element form b[0].

To explain this data structure, a simple example is shown as

follows, where the bit-width of the values is 4. The process of

the example is:

1. An initial input data, {(1, a), (4, b), (6, c), (1, d)};
2. three times pop;

3. {(5, e)} is added; and

4. pop and finish.

In this example, the element (n, x) corresponds to the value

(n) and the name (x) of element, respectively. After the pro-

cess 1, the data structure is shown in Fig. 2 where last =
0. For the first pop in the process 2, search the minimum

non-empty bucket and find b[1] since b[0] is empty. Next,

find the minimum element in the bucket b[1] and, as a re-

sult, last = 1. Then, re-distribute all elements in b[1] into

b[(MSB(lastˆx)) + 1], shown in Fig. 3. For two pop’s, output

(1, d) and (1, a), and b[0] is empty again (shown in Fig. 4).

Then, search the minimum non-empty bucket again and find

b[3]. In b[3], the minimum element is 4, that is, last = 4.

Thus, the result of re-distribution is shown in Fig 5. After the

last pop in the process 2, the data structure is shown in Fig 6.

The result of the process 3 is shown in Fig. 7. For the pro-

cess 4, last is modified since b[0] is empty (shown in Fig. 8).

Finally, when all processes are finished, the data structure is

shown in Fig. 9.

b (last = 0)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)

Fig. 2. After Process 1: initial status

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)

Fig. 3. During Process 2: find the

minimum non-empty bucket and

re-distribute the elements in the

bucket

Note that b[0] holds the elements with the minimum value, if

not empty. The time complexity of push operation is O(1). On

the other hand, the time complexity of pop operation is O(B),

where B is the bit-width of the value.

III. Lazy Update Application to Radix-heap based

Dijkstra’s algorithm

[7] proposed the lazy update method. Lazy update is to

select multiple vertices in step 3 of Dijkstra’s algorithm. To

guarantee the optimality, the selection of all vertices with the

- 153 -

0

1

2

3 (4, b) (6, c)

b (last = 1)

Fig. 4. During Process 2: two pop’s

are finished

0

1

2

3

(4, b)

(6, c)

b (last = 4)

Fig. 5. During Process 2: re-distribute

the elements in bucket[3]

0

1

2

3

(6, c)

b (last = 4)

Fig. 6. After Process 2: the last pop is

finished

0

1

2

3

(6, c)

b (last = 4)

(5, e)

Fig. 7. After Process 3: element (5, e)

is added

0

1

2

3

(6, c)

b (last = 5)

(5, e)

Fig. 8. During Process 4: find the

minimum non-empty bucket and

re-distribute the elements in the

bucket

0

1

2

3

(6, c)

b (last = 5)

Fig. 9. Final Result

minimum tentative distance is simple enhancement. But, to

widen the selection range to (the minimum tentative distance)

+ (the minimum length of the edges) also achieves the optimal

solution. In this paper, we try above two selection schemes.

One is a naive implementation, the other is a utilization of the

data-structure of radix-heap. The naive implementation is sim-

ilar way mentioned in Section II. The second implementation

is based on the data-structure of radix-heap. As mention in

Section II, the bucket b[0] must hold the minimum value’s el-

ements. Thus, for the pop operation, all elements in b[0] can

be extracted simultaneously instead of only one element. We

utilize this observation.

We show the flow of both methods. Fig. 10 shows an ex-

ample of the data-structure of radix-heap, again. For this situ-

ation, the naive implementation runs as shown in Fig. 11. On

the other hand, the simultaneous extraction runs as shown in

Fig. 12.

For both implementations, we must consider holding the

monotone priority queue, that is, once some value is extracted,

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)

Fig. 10. An example of data-structure of radix-heap

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)output

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

output

Fig. 11. Naive implementation

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)output

Fig. 12. Simultaneous Extraction method

then the smaller value cannot be inserted. For example, for

the case shown in Fig., we assume that pop operation with

the limit value being 2 is executed. After the extraction of all

elements valued 1, re-distribution must be done since b[0] is

empty (shown in Fig. 14). As a result, we cannot push the data

valued 3 since last is equal to 4.

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)

Fig. 13. Considering monotone

priority queue

0

1

2

3

(4, b)

(6, c)

b (last = 4)

Fig. 14. Re-distribution result

To solve this issue, we insert a sentinel data with the limit

value. As a result, it ensures that the last extracted value is

equal to the limit value. Thus, it does not need to consider

that the monotone priority queue must be held. For the case

- 154 -

shown in Fig. with pop operation with the limit value being 2,

a sentinel data valued 2 is pushed (Fig. 15). Then, the situation

after the extraction is shown in Fig. 16. For this case, we can

push the data valued 3.

b (last = 1)

0

1

2

3

(1, a)

(4, b) (6, c)

(1, d)

(2, ε)

Fig. 15. Insertion of Sentinel Data

b (last = 2)

0

1

2

3 (4, b) (6, c)

(2, ε)

Fig. 16. After the Extraction

IV. Experiment Results

To confirm the efficiency of the proposed method, we imple-

ment the several following methods: Dijkstra’s algorithm with

ordinary priority queue (H), Dijkstra’s algorithm with radix-

heap (R), Dijkstra’s algorithm with lazy update and ordinary

priority queue (LH), and Dijkstra’s algorithm with lazy update

and radix-heap(LR). Furthermore, the implementation of LR

has two types, a naive method (LRN) and a simultaneous ex-

traction (LRS). For lazy update, the limit value varies the min-

imum tentative distance version (*0) and (the minimum tenta-

tive distance) + (the minimum edge distance) (*1). Thus, the

variation of implementation is eight.

Input graph is constructed by random, where the probabil-

ity of edge is given. In the experiments, the probability set is

{0.2, 0.02, 0.002, 0.0002}, denoted as p. The number of ver-

tices is spread across [10000, 500000]. The weight of edge

is decided by random under the uniform distribution under

[1, 2000].

The experimental environment is as follows: priority queue

is STL library; radix-heap is open source library [8]; CPU is

Intel Core 3.2 GHz; Memory size is 32 GB; OS is macOS Mo-

jave.

TABLE I, II, III, and IV show the experimental results of

p = 0.2, p = 0.02, p = 0.002, and p = 0.0002, respectively,

where each line corresponds to the run-time and the ratio to

the run-time of Dijkstra’s algorithm with radix-heap and # v.s

line corresponds to the number of vertices. Each element cor-

responds to the average of the run-time among five trials where

its unit is msec. For p = 0.2, the result with 200000 vertices or

more is not presented since the experiment cannot be finished

due to the lack of memory. On the other hand, the lack of data

with 10000 vertices for p = 0.0002 since too short run-time.

From the experimental results, several observations are

clear.

• Lazy update improves the run-time.

• As a comparison between the ordinary priority queue and

the radix-heap, the method with radix-heap is faster than

that with the ordinary priority queue.

• For the limit value, the case 1, that is, (the minimum ten-

tative distance) + (the minimum edge distance), is faster.

• For the implementation of LR, a simultaneous extraction

achieves the better solutions.

For p = 0.0002, Dijkstra’s algorithm with lazy update and

radix-heap which employs a simultaneous extraction until the

sum of the minimum tentative distance and the minimum edge

distance (LRS1) is 13% faster than Dijkstra’s algorithm with

radix-heap and 50% faster than Dijkstra’s algorithm with or-

dinary priority queue. Thus, we confirm that the proposed

method is efficient.

V. Concluding Remarks

In this paper, we discussed the acceleration of Dijkstra’s al-

gorithm by lazy update. In the discussion, we confirmed the

efficiency of lazy update even with ordinary priority queue or

radix-heap. Especially, we enhanced the radix-heap by the uti-

lization of data-structure. Experimental results show that 50%

run-time improvement from the ordinary implementation or

13% run-time improvement from the radix-heap based algo-

rithm. Thus, the proposed method is efficient.

For the future works, we need to achieve more acceleration.

Especially, the consideration of parallel implementation must

be done. The dynamic consideration of the minimum edge

distance may also be promising.

References

[1] GoogleTechTalks,“Fast Route Planning,” https://www.youtube.

com/watch?v=-0ErpE8tQbw.

[2] D. Z. Chen, “Developing algorithms and software for geometric path

planning problems,” ACM Computing Surveys, Vol. 28, Article No. 18,

1996.

[3] I. Abraham, A. Fiat, A. Goldberg, and R. Werneck, “Highway Dimen-

sion, Shortest Paths, and Provably Efficient Algorithms,” ACM-SIAM
Symposium on Discrete Algorithms (SODA10)), pp.782–793, 2010.

[4] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, “Handbook of Algorithms

for Physical Design Automation”, CRC Press, 2009.

[5] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”

Numerische Mathematik, 1, pp.269–271, 1959.

[6] “Dijkstra’s algorithm,”, https://en.wikipedia.org/wiki/

Dijkstra\%27s_algorithm.

[7] T. Takahashi and Y. Takashima, “Fast approximate algorithm for the sin-

gle source shortest path with Lazy update,” NGCAS 2018, pp.94–97,

2018.

[8] T. Akiba, “Radix-Heap,” https://github.com/iwiwi/radix-heap.

- 155 -

TABLE I

Experimental result of p = 0.2

v.s H ratio R LH0 ratio LH1 ratio LRN0 ratio LRN1 ratio LRS0 ratio LRS1 ratio

10000 65.0 1.031 63.0 62.6 0.994 61.0 0.968 60.8 0.965 60.0 0.952 60.4 0.959 58.6 0.930

20000 284.2 0.934 304.2 273.0 0.897 265.0 0.871 262.6 0.863 267.0 0.878 265.6 0.873 272.0 0.894

30000 627.4 0.935 671.2 563.2 0.839 557.2 0.830 562.0 0.837 547.0 0.815 547.8 0.816 536.0 0.799

40000 1035.4 0.918 1127.6 922.0 0.818 924.6 0.820 932.8 0.827 944.6 0.838 934.4 0.829 916.2 0.813

50000 1594.4 0.899 1773.4 1427.2 0.805 1357.0 0.765 1477.2 0.833 1390.8 0.784 1462.0 0.824 1372.2 0.774

60000 2244.8 0.896 2504.0 2086.8 0.833 2134.6 0.852 2060.2 0.823 2121.6 0.847 2056.2 0.821 2074.0 0.828

70000 3073.4 0.889 3456.4 2474.6 0.716 2272.8 0.658 2466.6 0.714 2334.8 0.676 2490.2 0.720 2324.2 0.672

80000 4102.6 0.888 4620.8 3626.2 0.785 2823.4 0.611 3631.6 0.786 2837.2 0.614 3545.4 0.767 2769.6 0.599

90000 5280.0 0.901 5859.6 4732.0 0.808 3792.0 0.647 4774.0 0.815 3853.0 0.658 4729.0 0.807 3783.6 0.646

100000 6065.2 0.829 7315.8 5302.2 0.725 5172.6 0.707 5381.8 0.736 5308.0 0.726 5361.8 0.733 5304.2 0.725

Aver. — 0.913 — — 0.839 — 0.779 — 0.828 — 0.787 — 0.817 — 0.771

TABLE II

Experimental result of p = 0.02

v.s H ratio R LH0 ratio LH1 ratio LRN0 ratio LRN1 ratio LRS0 ratio LRS1 ratio

10000 12.8 1.306 9.8 12.2 1.245 11.6 1.184 9.6 0.980 9.8 1.000 10.0 1.020 9.4 0.959

20000 42.4 1.225 34.6 41.2 1.191 41.2 1.191 34.6 1.000 33.8 0.977 36.6 1.058 41.4 1.197

30000 91.4 1.163 78.6 84.6 1.076 84.8 1.079 76.2 0.969 76.2 0.969 76.6 0.975 74.6 0.949

40000 153.4 1.136 135.0 146.6 1.086 143.8 1.065 131.6 0.975 130.8 0.969 130.0 0.963 129.6 0.960

50000 229.4 1.120 204.8 225.4 1.101 222.0 1.084 204.0 0.996 218.0 1.064 203.4 0.993 200.2 0.977

60000 316.6 1.091 290.2 308.6 1.063 307.8 1.061 284.8 0.981 284.0 0.979 287.4 0.990 283.4 0.977

70000 429.8 1.094 392.8 409.6 1.043 402.4 1.024 383.8 0.977 380.0 0.967 384.4 0.979 385.0 0.980

80000 530.4 1.056 502.2 528.8 1.053 517.2 1.030 500.4 0.996 485.2 0.966 494.0 0.984 480.6 0.957

90000 669.4 1.002 668.2 678.4 1.015 669.6 1.002 662.8 0.992 624.0 0.934 617.8 0.925 611.8 0.916

100000 786.0 1.042 754.0 764.0 1.013 752.7 0.998 731.0 0.969 723.0 0.959 727.3 0.965 716.0 0.950

200000 3005.0 1.012 2968.3 2748.0 0.926 2753.0 0.927 2729.7 0.920 2723.7 0.918 2698.3 0.909 2695.0 0.908

300000 6916.3 1.032 6699.0 5887.7 0.879 5884.7 0.878 5910.3 0.882 5909.3 0.882 5867.3 0.876 5866.3 0.876

400000 37792.3 0.852 44376.0 47908.3 1.080 49339.7 1.112 45538.3 1.026 50365.3 1.135 42476.3 0.957 49279.3 1.110

Aver. — 1.087 — — 1.059 — 1.049 — 0.974 — 0.978 — 0.969 — 0.978

TABLE III

Experimental result of p = 0.002

v.s H ratio R LH0 ratio LH1 ratio LRN0 ratio LRN1 ratio LRS0 ratio LRS1 ratio

10000 4.6 1.533 3.0 4.0 1.333 4.0 1.333 2.2 0.733 2.2 0.733 2.0 0.667 2.2 0.733

20000 13.0 1.413 9.2 12.4 1.348 12.2 1.326 8.0 0.870 8.2 0.891 7.6 0.826 7.4 0.804

30000 24.2 1.513 16.0 24.2 1.513 24.2 1.513 16.2 1.013 15.8 0.988 15.8 0.988 15.2 0.950

40000 37.2 1.420 26.2 37.0 1.412 36.0 1.374 25.0 0.954 25.0 0.954 24.2 0.924 24.0 0.916

50000 53.0 1.432 37.0 53.4 1.443 52.2 1.410 36.4 0.984 35.8 0.968 35.0 0.946 35.0 0.946

60000 66.8 1.386 48.2 65.0 1.349 72.4 1.502 47.2 0.979 47.0 0.975 47.2 0.979 47.2 0.979

70000 87.2 1.402 62.2 86.2 1.386 87.4 1.405 62.4 1.003 61.2 0.984 62.0 0.997 61.2 0.984

80000 109.4 1.347 81.2 110.2 1.357 110.2 1.357 79.4 0.978 79.0 0.973 79.2 0.975 77.8 0.958

90000 131.6 1.285 102.4 131.8 1.287 130.4 1.273 99.2 0.969 97.6 0.953 98.0 0.957 97.2 0.949

100000 171.0 1.289 132.7 162.0 1.221 162.7 1.226 121.3 0.915 120.0 0.905 124.0 0.935 121.3 0.915

200000 520.3 1.188 438.0 518.7 1.184 520.7 1.189 429.0 0.979 426.3 0.973 422.0 0.963 423.7 0.967

300000 1107.0 1.194 927.0 1062.7 1.146 1051.0 1.134 906.3 0.978 922.0 0.995 921.0 0.994 914.0 0.986

400000 1855.0 1.156 1604.0 1785.7 1.113 1769.7 1.103 1580.7 0.985 1563.3 0.975 1554.7 0.969 1547.3 0.965

500000 2849.0 1.133 2515.7 2718.7 1.081 2722.3 1.082 2467.0 0.981 2452.3 0.975 2445.3 0.972 2441.0 0.970

Aver. — 1.335 — — 1.298 — 1.302 — 0.951 — 0.946 — 0.935 — 0.930

- 156 -

TABLE IV

Experimental result of p = 0.0002

v.s H ratio R LH0 ratio LH1 ratio LRN0 ratio LRN1 ratio LRS0 ratio LRS1 ratio

20000 5.2 2.363 2.2 4.4 2.000 3.4 1.545 2.0 0.909 2.0 0.909 2.0 0.909 2.0 0.909

30000 10.2 1.889 5.4 8.8 1.630 7.8 1.444 4.0 0.741 3.8 0.704 3.2 0.593 3.0 0.556

40000 17.4 1.740 10.0 14.4 1.440 13.6 1.360 7.6 0.760 7.2 0.720 6.6 0.660 6.8 0.680

50000 23.6 1.761 13.4 21.0 1.567 20.6 1.537 13.2 0.985 13.2 0.985 11.6 0.866 11.4 0.851

60000 31.8 1.710 18.6 29.6 1.591 28.0 1.505 17.4 0.935 16.6 0.892 15.8 0.849 15.0 0.806

70000 40.4 1.656 24.4 38.8 1.590 37.8 1.549 23.0 0.943 23.0 0.943 21.4 0.877 21.0 0.861

80000 50.2 1.651 30.4 47.8 1.572 47.4 1.559 28.2 0.928 29.2 0.961 27.2 0.895 26.8 0.882

90000 59.0 1.715 34.4 58.2 1.692 56.0 1.628 34.4 1.000 34.8 1.012 33.0 0.959 32.6 0.948

100000 65.3 1.633 40.0 66.0 1.650 64.3 1.608 38.7 0.967 39.7 0.992 37.3 0.933 38.0 0.950

200000 178.7 1.629 109.7 178.3 1.626 185.7 1.693 108.3 0.988 105.7 0.964 109.7 1.000 107.7 0.982

300000 335.7 1.645 204.0 340.0 1.667 338.7 1.660 201.0 0.985 202.0 0.990 195.3 0.958 196.0 0.961

400000 510.3 1.554 328.3 515.3 1.570 515.3 1.570 316. 0.962 317.7 0.968 310.3 0.945 307.3 0.936

500000 706.3 1.530 461.7 716.7 1.552 718.7 1.557 450.7 0.976 451.3 0.978 452.0 0.979 451.3 0.978

Aver. — 1.729 — — 1.627 — 1.555 — 0.929 — 0.924 — 0.879 — 0.869

- 157 -

