
Design of Asynchronous Circuits on Commercial FPGAs Using
Placement Constraints

Tatsuki Otake Hiroshi Saito
The University of Aizu, Japan The University of Aizu, Japan

m5231143@u-aizu.ac.jp hiroshis@u-aizu.ac.jp

Abstract— In this paper, we propose a design
method to implement asynchronous circuits with
bundled-data implementation on commercial Field
Programmable Gate Arrays (FPGAs) using placement
constraints. Using the proposed method, we can ob-
tain the asynchronous circuits whose performance is
close to and the energy consumption is smaller (21.3%
reduction on average) than the synchronous counter-
part with a fewer delay adjustment.

I. Introduction

Recently, Field Programmable Gate Arrays (FPGAs)
are well used in machine learning or Internet of Things
(IoT) applications. Commercial FPGAs used in these
fields suppose to implement synchronous circuits which
use global clock signals to control circuit components.
However, synchronous circuits face the following problems
along with the improvement of the semiconductor minia-
turization technology. The first problem is the increase
in power consumption. The power consumption in the
clock network will be increased when the clock signal is
distributed to a wide area with high frequency. The sec-
ond problem is electromagnetic interference. When more
and more circuit components are triggered by the clock
signal, the peak current is increased which results in the
increase of the electromagnetic interference.
One of the solutions is the use of asynchronous circuits.

Asynchronous circuits use local handshake signals to con-
trol circuit components instead of the global clock sig-
nal. Because of the absence of the global clock signal,
asynchronous circuits are low power consumption and low
electromagnetic interference.
[1], [2], [3], and [4] addressed a design method to imple-

ment asynchronous circuits on commercial FPGAs. These
researches mainly focused on the implementation of cir-
cuit modules which are specific to asynchronous circuits.
[5] proposed a design support tool set for Intel FPGAs
in which automate constraint generation, timing verifi-
cation, and delay adjustment which are specific to asyn-
chronous circuits. Using the design support tool set with
the design support environment provided by FPGA ven-
dors, we may design asynchronous circuits on commer-
cial FPGAs easily. However, none of these researches ad-
dressed the timing closure issue for the design of asyn-
chronous circuits on commercial FPGAs. In fact, the
placement of the logic in asynchronous circuits is changed
when asynchronous circuits are re-synthesized by delay
adjustment to satisfy timing constraints. This makes tim-

ing closure difficult with the expected performance.
In this paper, we propose a design method to implement

asynchronous circuits with bundled-data implementation
on commercial FPGAs using placement constraints. The
purpose of the placement constraints is to improve the
circuit performance while reducing the number of delay
adjustments. We investigate the effect of the number of
delay adjustments and the circuit performance by gen-
erating placement constraints which are available in the
design environment provided by an FPGA vendor.
The organization of this paper is organized as fol-

lows. In section 2, we describe asynchronous circuits with
bundled-data implementation and FPGAs. In section 3,
we describe the motivation to use placement constraints.
In section 4, we describe the generation of placement con-
straints. In section 5, we describe the experimental results
In section 6, we describe the conclusion and future work.

II. Background

A. Asynchronous Circuits with Bundled-data Imple-
mentation

Bundled-data implementation is one of the data encod-
ing methods in asynchronous circuits. Hereafter, we call
bundled-data implementation as BD circuit. In BD cir-
cuits, N-bit data are represented by N+2 signals. Ad-
ditional two signals correspond to a request signal (req)
and an acknowledge signal (ack). The data-path circuit
in BD circuits is the same as the one used in synchronous
circuits. The completion of data operations is guaranteed
by delay elements on the req signals. Therefore, the cir-
cuit performance of BD circuits depends on the delay of
the control circuit with delay elements.
Figure 1 shows the circuit model of BD circuits used in

this work. The left side of Figure 1 is the control circuit
and the right side is the data-path circuit. Control circuit
consists of control modules (ctrli 0 ≤ i ≤ n − 1). ctrli
controls the data operations in the state i of BD circuits
and one control module controls one state of circuit. ctrli
consists of D-latch (dli), C-element (ci), and Q-module
(qi) [6]. The data-path circuit consists of registers (regk),
multiplexers (muxl), and functional units (fu). Delay
elements in the control circuit (sdi, bdi, idi, and hdmuxi,l)
and the data-path circuit (hdk) are inserted to satisfy the
timing constraints of BD circuits.
The circuit model used in this work must satisfy four

kinds of timing constraints, setup constraints, hold con-
straints, branch constraints, and idle constraints [5]. In

SASIMI 2019 ProceedingsR4-8

- 286 -

reg1 reg2

mux1 mux2

fu1

reg3

qi sdi

idi

dli+1

qi+1 sdi+1

idi+1

dli+2

qi+2 sdi+2

idi+2 mux3

hd1

hd
mux1

ctrli

ctrli+1

ctrli+2

bd

c

start

ini
reqi

acki
outi

ini+1

outi+1

outi+2

reqi+2

acki+2

reqi+1

acki+1

selmux1

selreg1

ini+2

Fig. 1. The circuit model of BD circuits.

dli-1

qi-1

dli

qi sdi

reg1

ctrli-1

ctrli
fu

sdpi,p

scpi,p

sdi-1

reg2

dli-1

qi-1 sdi-1

idi-1 ctrli-1

dli

qi

idi ctrli

dli+1

qi+1

idi+1 ctrli+1

ibpi

ifpi

sdi

sdi+1

(b)(a)

Fig. 2. Paths for timing constraints: (a) the paths for setup
constraints and (b) the paths for idle constraints.

this work, we generate placement constraints to optimize
the performance of BD circuits. Since the generation is
related to setup constraints and idle constraints, we de-
scribe these constraints in the followings.
Input data written to registers must be stable before the

register write timing. This constraint is called the setup
constraint. Figure 2(a) shows the control-path and the
data-path related to the setup constraints. The dashed
line in Fig. 2(a) shows the control-path scpi,p from the
output of sdi−1 to the destination resister through dli
and qi. The solid line shows the data-path sdpi,p from
the output of sdi−1 to the destination register through
data-path resources. Suppose that we represent the min-
imum delay of scpi,p as tminscpi,p , the maximum delay of
sdpi,p as tmaxsdpi,p

, the margin for tmaxsdpi,p
as tsdpmi,p

,
and the setup time of the destination register as tsetupi,p

.
The setup constraint can be represented by the following
inequality.

tminscpi,p
> tmaxsdpi,p

+ tsdpmi,p
+ tsetupi,p

(1)

If the setup constraint is not satisfied, we need to adjust
sdi.
The control signals of ctrli must be reset before the

next control. To preserve this condition, the reset of the
control signal from the previous control module must ar-
rive at ctrli before the reset of the control signal from

I/O

C
B

CB

I/O

LB

LB

SB

SB

SB

I/O

I/O

SB

SB

SB

I/O

LB

LB

I/O

SB

SB

SB

I/O

I/OCB

CB

CB

CB

CB

C
B

C
B

C
B

C
B

C
B

FF
A
B
C
D

D
en

Q

aclr

LUT

Logic Element

Fig. 3. An example of FPGAs.

the last control module. This constraint is called the idle
constraint. Figure 2(b) shows the forward path and the
backward path related to the idle constraints. The dashed
line in Fig. 2(b) shows the backward path ibpi from the
output of sdi+1 in the last control module ctrli+1 to dli in
ctrli. The solid line shows the forward path ifpi from the
output of sdi+1 to dli in ctrli through the previous control
module ctrli−1. Suppose that we represent the minimum
delay of ibpi as tminibpi

, the maximum delay of ifpi as
tmaxifpi , and the margin for tmaxifpi as tifpmi . The idle
constraint can be represented by the following inequality.

tminibpi
> tmaxifpi

+ tifpmi
(2)

If the idle constraint is not satisfied, we need to adjust
idi+1.

B. FPGA

FPGA is a reconfigurable device where designers can
change circuit structure at any time. This flexibility
allows designers to change the functional specification
freely. In addition, the design cost of FPGAs is low com-
pared to application specific integrated circuits. There-
fore, FPGAs are getting to be widely used in IoT and
machine learning applications.
Figure 3 shows the general structure of FPGAs. The

FPGAs consist of input-output blocks (I/Os), logic blocks
(LBs) which construct the logic, switch blocks (SBs)
which connect the logic block and connection blocks
(CBs). An LB consists of multiple Logic Elements (LEs).
The LEs consist of Look Up Tables (LUTs) to implement
a combinational logic and Flip Flops (FFs) to store data.
In addition to these basic components, recent FPGAs in-
clude multipliers, block memories, and hard macros such
as an ARM processor.

III. Motivation

We face the following two problems when we design BD
circuits on commercial FPGAs.
The first problem is that it takes a long time to satisfy

all timing constraints. This is because the placement is
changed when we re-synthesize BD circuits after the delay
adjustment to solve timing violations. Figure 4 (a) and
(b) show the placement before and after a re-synthesis.

- 287 -

(a) (b)

Fig. 4. Change of the placement：(a) before re-synthesis and (b)
after re-synthesis.

(a) (b)

Fig. 5. Placement in ctrli：(a) without a placement constraint,
(b) with a placement constraint.

Because the delays in BD circuits are also changed by
the change of the placement, new timing violations may
happen even though some violations are fixed by the delay
adjustment.
The second problem is the degradation of the circuit

performance of BD circuits. The cause of this problem
is the placement of the logics in the same resource to
the different locations. For example, in Fig. 5 (a), the
logics in ctrli are placed in different logic blocks. As a
result, the circuit performance is decreased because the
wire delay between the logics become long.
Above two problems may be mitigated to apply place-

ment constraints for each logic in BD circuits. For exam-
ple, if the logics which are included in ctrli are placed in
the adjacent logic block like Fig. 5 (b), the wire delay
between logics will be reduced. This is the motivation
of the proposed method which generates placement con-
straints to implement BD circuits on commercial FPGAs
while optimizing the performance with the reduction of
the number of delay adjustments.

IV. Proposed Method

In this work, we assume to implement BD circuits on
Intel FPGAs. Therefore, first, we generate placement con-
straints for the BD circuits. Then, we propose a design
flow to design the BD circuits on the Intel FPGAs.

A. Generation of Placement Constraints

The purpose of placement constraints is to improve the
circuit performance of the BD circuits while reducing the

number of delay adjustments. In the Intel FPGAs, de-
signers can use Design Partition (DP), Logic Lock (LL),
and Location Assignment (LA) as placement constraints.
In this work, we focus on DP and LL only. We use DP
to reduce the number of delay adjustments and LL to
improve the circuit performance.
In general, a floorplan method is used to generate place-

ment constraints. However, the quality of the floorplan
method depends on the accuracy of the delay estimation.
On the other hand, since the data-path circuit of BD cir-
cuits are almost the same as synchronous circuits, we can
rely on the placement by the commercial FPGA design
support tool. From this observation, we only consider a
floorplan method of the control circuit based on the con-
nections of control modules.

A.1. Design Partition

Design Partition (DP) [7] is one of the functions supported
in the Intel Quartus Prime. Using the DP, we can as-
sign the keeping level of placement and routing before
and after re-synthesis. Therefore, we can expect that the
placement of the circuit components in the BD circuits
is preserved before and after re-synthesis. This results in
the reduction of the number of delay adjustments.
In this work, we generate a DP for each top-level mod-

ule, ctrli, and delay element. By generating the DP sep-
arately, we can restrict logic optimization such as gate
sharing. A DP for each ctrli is to avoid the logic opti-
mization for the logics in ctrli except delay elements.
On the other hand, we do not generate a DP for each

data-path resource. This is because to allow the logic
optimization for data-path resources as much as possible.
Instead, we generate a DP for the top-level module to
control the keeping level of placement and routing before
and after re-synthesis.
In the proposed method, we generate two TCL scripts

related to the DP. The first one is used for the initial
synthesis. In the first TCL script, all DPs are set to “Post-
Synthesis” which keeps the logic structure before and after
re-synthesis. The second one is used with adjusted delay
elements. In the second TCL script, DPs except for delay
elements are set to “Post-Fit” which keeps the placement
and routing before and after re-synthesis. We do not set
“Post-Fit” to the delay elements because the number of
cells used in the delay elements is changed after a delay
adjustment. It takes a long time for synthesis if the DPs
for the delay elements are also set to “Post-Fit”, because
the location for the addition of new cells in the delay
elements is strictly restricted.
Figure 6 shows an example of the DP commands. Fig-

ure 7 shows the placement of before and after re-synthesis
when we use DP. The location of the circuit components
except delay elements is unchanged.

A.2. Logic Lock

Logic Lock (LL) is one of the placement constraints sup-
ported in the Quartus Prime. Using LLs, designers can
assign the coordinate of the region for the placement of
resources.

- 288 -

1. set_global_assignment -name LL_RESERVED ON or OFF -section_id “instance name"
2. set_global_assignment -name LL_MEMBER_OF " instance name " -to " instance name "

-section_id " instance name "
3. set_global_assignment -name LL_WIDTH width size -section_id " instance name "
4. set_global_assignment -name LL_HEIGHT height size -section_id " instance name "
5. set_global_assignment -name LL_AUTO_SIZE OFF -section_id " instance name "

1. set_global_assignment -name PARTITION_NETLIST_TYPE POST_SYNTH or POST_FIT
-section_id “instance name"

2. set_global_assignment -name PARTITION_FITTER_PRESERVATION_LEVEL
PLACEMENT_AND_ROUTING -section_id “instance name"

Fig. 6. Example of DP commands.

(a) (b)

Fig. 7. Placement with DPs: (a) before re-synthesis and (b) after
re-synthesis.

In this work, we generate an LL for each top-level mod-
ule, ctrli, and register. By generating the LLs, we avoid
placing the logics of these resources to different locations.
Especially, since the performance of BD circuits depends
on the delay of the control circuit, the generation of the LL
for each ctrli results in the prevention of long wires inside
ctrli. Moreover, different from synchronous circuits where
minimization of delays between registers is the main con-
cern for optimization, not only the paths between registers
but also the paths between sdi and registers also affect the
performance of the BD circuits. Therefore, by generating
the LL for each register, we reduce the delay variation
between sdi and registers. Note that hdk which is a delay
element for the hold violation of regk is included to the
LL of regk to avoid long wires between hdk and regk.
We manually decide the coordinate of the LLs for ctrli.

This is because the delay of the control circuit decides the
performance of BD circuits. We decide the coordinate of
the LLs as follows. Suppose that the region size of the LLs
is already decided from the estimated circuit area. For all
other LLs, we just generate a region (i.e., rectangle) from
the estimated circuit area and ask the Quartus Prime to
decide the coordinate automatically.

• Make a control finite state machine (FSM) for the
target BD circuit

• Add additional directed arcs to the FSM in which
represent the signal transitions from the last state to
other states for the initialization of the control signals
(this corresponds to idle constraints)

• Select state i whose incoming and outgoing arcs is
the maximum and allocate the base coordinate (e.g.,
center coordinate) to the LL of ctrli

• Repeat until the coordinate of the LLs for all ctrli is
determined

– Select state i which has the most incoming and
outgoing arcs for the already allocated states

0

1

2

3

4
(a) (b)

Fig. 8. The decision of the coordinate for ctrli: (a) a control FSM
and (b) the placement result.

set_global_assignment-name LL_AUTO_SIZE OFF -section_iddiffeqa
set_global_assignment-name LL_WIDTH 10 -section_id diffeqa
set_global_assignment-name LL_HEIGHT 10 -section_iddiffeqa
set_global_assignment-name LL_RESERVED OFF -section_iddiffeqa
set_global_assignment-name LL_MEMBER_OF diffeqa -section_iddiffeqa
set_global_assignment-name LL_ORIGIN X87_Y57 -section_iddiffeqa
set_global_assignment-name LL_STATE LOCKED -section_iddiffeqa

set_global_assignment -name LL_AUTO_SIZE OFF -section_id "ctrl0:ctrl0"
set_global_assignment -name LL_WIDTH 1 -section_id "ctrl0:ctrl0"
set_global_assignment -name LL_HEIGHT 2 -section_id "ctrl0:ctrl0"
set_global_assignment -name LL_RESERVED ON -section_id "ctrl0:ctrl0"
set_instance_assignment -name LL_MEMBER_OF "ctrl0:ctrl0" -to "ctrl:ctrl|ctrl0:ctrl0" -section_id "ctrl0:ctrl0"
set_global_assignment -name LL_PARENT diffeqa -section_id "ctrl0:ctrl0"
set_global_assignment-name LL_ORIGIN X92_Y62 -section_id"ctrl0:ctrl0"
set_global_assignment-name LL_STATE LOCKED -section_id"ctrl0:ctrl0"

Fig. 9. A TCL script which includes the commands for LLs.

– Allocate the coordinate of the LL for ctrli such
that the sum of the hamming distance for the co-
ordinate of the already allocated states becomes
the smallest

The coordinate of ctrli is decided by the above proce-
dure such that ctrli which has a connection is placed to
the adjacent location. We assume that the base coordi-
nate is the center of the LL for the top-level module. This
results in that the wire delay between ctrli and register is
balanced in all connections.
Figure 8(a) shows a control FSM for a BD circuit.

Figure 8(b) shows the placement result with the LLs
whose coordinate is decided by the above procedure. Fig-
ure 9 shows a part of a TCL script which includes the
commands for the LLs of the ctrl0. LL WIDTH and
LL HEIGHT show the width size and height size of the
LL region. LL RESERV ED means that other resources
can be placed to the LL (OFF) or not (ON). LL origin
means that the coodinate of region.

B. Design Flow

Figure 10 shows the proposed design flow. The pro-
posed design flow is based on [5]. It is extended to
synthesize BD circuits using DPs and LLs. This pro-
posed design flow assumes that designers synthesize the
BD circuits more than 3 times. Note that CONSTGEN,
MAXCONSTGEN, DELAYGEN, REPTIMING, TIM-
INGCHECKER, and DELAYADJUST are design support
tools proposed by [5]. These tools automate delay con-
straint generation, timing verification, and delay adjust-
ment specific to the BD circuits.
In the proposed design flow, designers need to prepare

the RTL model of BD circuits using Verilog Hardware De-
scription Language (HDL). In addition to the RTL model

- 289 -

Configuration file

CONSTGEN DELAYGEN REPTIMING

MAXCONSTGEN

TIMINGCHECKER

DELAYADJUST

Change DP setting

Satisfy timing
constraint?

Initial synthesis�STA

Initial adjustment?Second synthesis� STA

STA file

Ctrinfo file Pathinfo file Parameter file
(Latency or cycle time constraint)

Tool options Initial delay file STA commands

Constraints file

STA file

Delay file

No

No

Yes

Yes

Finish

Re-synthesis� STA

Asynchronous RTL model

PLACEGEN

Setting the LL file

Fig. 10. The proposed design flow.

of the BD circuits, designers need to prepare four files,
configuration file, ctrlinfo file, pathinfo file, and param-
eter file. They represent the circuit information such as
control finite state machine, paths related to timing con-
straints, etc and the parameters such as the delay of a cell
used for delay elements. Through CONSTGEN, DELAY-
GEN, and REPTIMING, we generate a set of synthesis
options, a set of the initial delay elements, and a set of
Static Timing Analysis (STA) commands. Moreover, we
prepare a DP for each top-level module, ctrli, and delay
element with “Post-Synthesis”.
The purpose of the initial synthesis is to obtain the pa-

rameters such as circuit area (i.e., the number of LEs) and
delay to generate constraints. Using MAXCONSTGEN
with a given latency constraint and the obtained delay
parameters, we generate the maximum delay constraints
(set max delay) for each path and the clock constraints
(create clock) for each acki signal. In addition, we gen-
erate an LL for each top-level module, ctrli, and register
with the obtained circuit area parameters. PLACEGEN
in Figure10 represents the generation of LLs.
The second synthesis is performed using the prepared

constraints. In the second synthesis, the logics of the re-
sources with the LLs are placed to adjacent LABs.
After the second synthesis, we verify timing constraints

such as setup constraints using TIMINGCHECKER and
generate delay elements in Verilog HDL using DELAYAD-
JUST. In addition, we set the DPs to “Post-Fit” except
delay elements to preserve the placement and routing in
the second synthesis. Re-synthesis, timing verification,
and delay adjustment are repeatedly performed until all
timing constraints are satisfied.

V. Experiments

We designed three asynchronous circuits, DIFFerential
EQuation solver (DIFFEQ), Ellipse Wave Filter (EWF),
and Inverse Discrete Cosine Transform (IDCT) using the
proposed method. Then, we evaluated the number of de-
lay adjustments and the quality of the designed circuits.
In this experiment, we used the Intel Cyclone IV FPGA

(EP4CE115F29C7). We also used the Intel Quartus

TABLE I
The designed BD circuits.

name DP LL Coordinate
no no No No -
dp no Yes No -

dp llt,ca,r Yes top module, ctrli, reg Auto
dp llt,cf,r Yes top module, ctrli, reg Fix top module

and ctrli

TABLE II
The number of delay adjustments.

name DIFFEQ EWF IDCT
no no n/a 8 n/a
dp no 2 3 1

dp llt,ca,r 3 3 6
dp llt,cf,r 3 5 6

Prime Standard Edition 18.1 for synthesis and static tim-
ing analysis, and the ModelSim Intel Starter Edition 10.5b
for simulation. We implemented the generation of DPs,
the generation of LLs (PLACEGEN), and the design sup-
port tool set in [5] using Python3.
As a reference, we initially designed the synchronous

circuits (Sync) with the shortest clock cycle. The clock
cycle times of DIFFEQ, EWF, and IDCT were 11 ns, 13
ns, and 13 ns. We generated the maximum delay con-
straints for the paths and the local clock constraints for
acki in the BD circuits based on the latency constraint
which was the product of the clock cycle time and the
number of states in the synchronous circuits.
To clarify the effect of DPs and LLs, we designed four

BD circuits for DIFFEQ, EWF, and IDCT. The circuit
names with their conditions are described in Table I.
dp llt,ca,r means that LLs with a region are generated for
each top-level module, ctrli, and register. The coordi-
nate of the region was decided by Quartus Prime auto-
matically. dp llt,cf,r, on the other hand, means that the
coordinate of the top-level module and ctrli was decided
by the procedure described in section IV.A.2. All other
conditions were the same as dp llt,ca,r.
Table II shows the number of delay adjustments. ”n/a”

means that the BD circuits without timing violations were
not obtained although we adjusted 10 times. Using DPs,
we could obtain the BD circuits which satisfy all timing
constraints within 6 delay adjustments. This means that
the use of DPs was useful to reduce the number of delay
adjustments because DPs preserve the logic, placement,
and/or routing of the previous synthesis.
Figure 11 to Figure 14 show the circuit area, execution

time, dynamic power consumption, and energy consump-
tion in the designed circuits. The circuit area shows the
number of LEs reported by Quartus Prime. The execu-
tion time was obtained by simulating the designed cir-
cuits with an arbitrary test sequence using ModelSim.
The dynamic power consumption was obtained by Power-
Play Power Analyzer by assigning a Value Change Dump
(VCD) file generated by the simulation. The energy con-
sumption was the product of the execution time and dy-
namic power consumption.

- 290 -

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

DIFFEQ EWF IDCT

Logic Element [LE]
Combinational with no register
Register only
Combinational with a register

63% 62%

25% 66% 66%

31% 29%
54% 55%

32%

n/a n/a

Fig. 11. Circuit area.

0

500

1000

1500

2000

2500

3000

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

DIFFEQ EWF IDCT

Execution Time [ns]

2%

8% 3%

3% -1% 2%

19%

6% 6%

n/a n/a

8%

Fig. 12. Execution time.

The experimental result showed the efficiency of the
use of LLs. On average, for the synchronous circuits (i.e.,
baseline), the energy consumption was reduced 25.0% in
the cases of dp llt,ca,r and 21.3% in the cases of dp llt,cf,r.
dp llt,ca,r was the best for the dynamic power consump-
tion while dp llt,cf,r was the closest performance to the
synchronous circuits. In fact, fixing the coordinate of the
regions for ctrli could reduce the wire delay between acki
and registers and the time for the idle phase. On the
other hand, the use of DPs and LLs required more LEs
because logic optimization such as resource sharing was
restricted.

VI. Conclusion

In this paper, we proposed a design method to imple-
ment asynchronous circuits on commercial FPGAs using
placement constraints. The use of the proposed method
resulted in the reduction of the number of delay adjust-
ments and the better circuit quality in terms of energy
consumption and performance.

In our future work, we are going to consider a more
effective floorplan method for the control circuit to im-
prove performance. In addition, we extend the proposed
method to deal with pipelined asynchronous circuits.

0

10

20

30

40

50

60

70

80

90

100

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

DIFFEQ EWF IDCT

Dynamic Power Consumption [mW]
Embedded multiplier block
Embedded multiplier output
Combinational cell
clock
Register cell

-23% -31% -20%
-26% -24% -31% -34%

-18% -18% -16%

n/a n/a

Fig. 13. Dynamic power consumption.

0

50

100

150

200

250

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

Sync no_no dp_no dp_
ll t,ca,r

dp_
ll t,cf,r

DIFFEQ EWF IDCT

Energy Consumption [nJ]

-15% -31% -20%
-24% -22% -31% -33%

-3%

-13% -11%

n/a n/a

Fig. 14. Energy consumption.

Acknowledgements

This work is partially supported by Grant-in-Aid for
Scientific Research from Japan Society for the promotion
of science (#18K11221).

References

[1] Q. T. Ho et al., ”Implementing Asynchronous Circuits on LUT
Based on FPGAs”, Proc. FDL, pp. 36-46, 2002.

[2] M. Tranchero, and L. M. Reyneri, ”Exploiting synchronous
placement for asynchronous circuits onto commercial FPGAs”,
Proc. Field Programmable Logic and Applications, pp.622-625,
2009.

[3] R. Mocho et al., ”Asynchronous Circuit Design on Reconfig-
urable Devices”, Proc. SBCCI, pp. 20-25, 2006.

[4] L. Reyneri, and M. Tranchero, ”Implementation of Self-Timed
Circuits onto FPGAs Using Commercial Tools”, Proc. EU-
ROMICRO, pp.373-380, 2008.

[5] K. Takizawa et al., ”A Design Support Tool Set for Asyn-
chronous Circuits with Bundled-data Implementation on FP-
GAs”, Proc. FPL, pp.232-235, 2014.

[6] F. U. Rosenberger et al., ”Q-modules: internally clocked delay-
insensitive modules”, IEEE Transactions on Computers, vol.37,
no.9, pp.1005-1018, 1988.

[7] Intel, ”Quartus Prime Standard Edition Handbook Volume1:
Design and Synthesis”, 2017.

- 291 -

