
Energy-efficient ECG Signals Outlier Detection Hardware
using a Sparse Robust Deep Autoencoder

Naoto Soga Shimpei Sato Hiroki Nakahara

Tokyo Institute of Technology Tokyo Institute of Technology Tokyo Institute of Technology
Tokyo Japan Tokyo Japan Tokyo Japan

soga@reconf.ict.e.titech.ac.jp satos@ict.e.titech.ac.jp Nakahara@ict.e.titech.ac.jp

Abstract— In recent years, portable electrocardio-

graphs have begun to spread, which enable us to

record electrocardiogram (ECG) signals in everyday

life. A portable ECG analysis device is needed so

that abnormal ECG waves can be detected anywhere.

Machine learning techniques, including deep learning,

are used in a lot of research to analyze ECG signals

since they show more superb performance than con-

ventional methods. However, deep learning models of-

ten have too many parameters to implement on mobile

hardware. In this research, we propose a method to

implement an ECG outlier detector using deep learn-

ing techniques in a small builtin device. As a way

of detecting outliers, autoencoder, which is based on

neural networks, was used. As a learning method,

Robust Deep Autoencoder, which can learn unsuper-

visedly, was adopted. A sparseness technique was

applied to the autoencoder, and the trained autoen-

coder was implemented on a low-end FPGA. Com-

pared with ARM Cortex M3 embedded processor,

the proposed hardware result in 159 times better for

energy-efficiency improvement.

I. Introduction

An electrocardiogram (ECG) is the record of the elec-
trical activity of the heartbeat. It is widely used to
detect heart diseases. Recently, portable electrocardio-
graphs, like Holter electrocardiography, are used in order
to record ECG signals even when patients are not in hospi-
tals. To support analyzing enormous ECG data obtained
from these devices, software that can automatically an-
alyze ECG signals are used. Recently, machine learning
techniques are proposed to analyze ECG automatically.
Many of them use a deep convolutional neural network,
which is showing high performance in image processing.
In this case, because the calculation load increase, the
situations these researches suppose are mainly limited as
follows.

1). Analyze ECG data after measured by portable
devices[10].

2). Portable devices send data to servers that can auto-
matically analyze ECG signals[11].

In the case 1), for ECG signals are analyzed after they are
recorded, patients can’t know whether abnormal signals
are detected while the recording. In the case 2), when
connectivity of communication is not ensured, like when
the patients are in the car, it is impossible to alert them
on the spot that heart diseases develop. In this paper, we
propose the small and energy-efficient hardware that can
automatically analysis ECG signal on mobile devices so
that abnormal waves can be detected at all times.

For the mobile hardware, one way to implement the
ECG outlier detector is to use a general-purpose embed-
ded processor. However, it may have unnecessary modules
and consume much area and power on a portable device.
Also, a general-purpose embedded processor is often over
spec for real-time ECG signals processing, which needs to
process only from 70 to 90 beats per minutes in general.
To minimize the power consumption of the ECG outlier
detector embedded on portable hardware, implementing
an application-specific circuit is the best way.

As an outlier detection method, we used an autoen-
coder, one of the neural network models. When we im-
plement the autoencoder on small hardware, it is prob-
lematic to store a large number of weight parameters on
them. Since the DRAM accesses are energy-costly[9], it is
appropriate to store all the parameters in on-chip memory.
To reduce the volume of weight parameters small enough
to store in on-chip memory, we applied a sparseness tech-
nique to the autoencoder. Also, in the paper, we propose
an architecture for the sparseness weight autoencoder on
an FPGA.

The proposed design flow is shown in Fig.1. First, an
autoencoder is trained by ECG data with Robust Deep
Autoencoder (RDA). At this time, it is not necessary
to prepare target labels beforehand, and outlier values
may be included, since RDA can train the autoencoder
unsupervised. Next, a sparseness technique is applied
to trained autoencoder. Repeat the process of training
and applying a sparseness technique while the number of
weight parameters reaches the target value. When the
pruning process complete, convert the floating-point pa-

SASIMI 2019 ProceedingsR1-1

- 2 -

Fig. 1. Proposed design flow

rameters into fixed point one. At the same time, approx-
imate the activate function to the extent that the outlier
detection performance does not deteriorate. Finally, ob-
tained weight parameters are converted into Compressed
Row Storage format (CRS), which is one of the ways to
store a sparse matrix. Then, implement the autoencoder
on an FPGA.
Our main contributions are as follows:

• We proposed the design flow to implement the outlier
detector using an autoencoder on a low-end FPGA.
To shorten the preparing time of ECG data used in
training an autoencoder, Robust Deep Autoencoder,
one of the unsupervised learning techniques, was ap-
plied. Also, to minimize the volume of weight param-
eters, a sparseness technique was applied and all the
parameters are converted to fixed point values. We
show that even if the parameters were reduced and
they are calculated in fixed point values, the outlier
detection performance degradation is only 0.84%. By
reducing the volume of the weight parameters, it was
able to store all the parameters in on-chip memory.

• To the best of our knowledge, this work is the first im-
plementation of the outlier detector using the sparse-
ness weight autoencoder on an FPGA. We designed
the architecture based on CRS format, which is the
well-known data structure of a sparse matrix, to
make the hardware size as small as possible and save
power consumptions.

• We implemented the autoencoder on the Digilent Inc.
ZedBoard and compared with the CPU for a built-in
device. The result showed that FPGA implementa-
tion of outlier detector is 17.8 times faster and 159
times better energy-efficiency.

II. Related Works

Many of the previous researches of ECG automatic
analysis using deep learning techniques is focused on di-
agnosis classification[10][11]. Though they show very high
classification accuracies, they use large CNN models, or
apply many preprocessing methods, which both result in
high computation cost and is not suited for this research’s
goal. There are researches focusing on ECG anomaly
detection[6][3]. There are also attempts to implement

ECG outlier detector on FPGA[8]. In this research, we
use unsupervised learning technique to train the autoen-
coder, while most researches use supervised one. We eval-
uate how the performance of outlier detector on FPGA
changes when the sparseness technique and bit precision
modification are applied to the autoecoder and calcula-
tion cost is reduced.
Note that this research is mainly focused on the meth-

ods to efficiently implement the autoencoder outlier de-
tector on FPGA. How to preprocess signals and extract
features to achieve high accuracy rate are not discussed.

III. Robust Deep Autoencoder (RDA)

Outlier detection is the process of detecting extremely
deviated data from dataset whose data are almost nor-
mal. As a method of outlier detection, an autoencoder is
well known. It is one of the neural network models which
uses input data as teacher data to the output. When an
autoencoder is trained by only normal data, it can’t recon-
struct data correctly. We can detect outliers by whether
the autoencoder can reconstruct data correctly or not. In
this case, we have to precisely extract only normal data
from dataset, since autoencoder cannot be trained well
when there are abnormal data in a training dataset. In
order to solve this problem, Robust Deep Autoencoder
(RDA)[12] is proposed. RDA is the unsupervised training
method that can train autoencoder with data including
anomalies.

A. Autoencoder

An autoencoder consists of an encoder, which convert
inputs into low-level matrix, and a decoder, which recon-
structs the inputs. Let E be an encoder, D be a decoder,
X be inputs. Then, outputs X can be expressed as fol-
lows:

X = D(E(X)).

An autoencoder is trained to minimize the difference be-
tween X and X. This process is equivalent to solve the
optimization problem as follows:

min
D,E

‖X −D(E(X))‖2,

where ‖ · ‖2 is the l2 norm. In this research, the fully-
connected neural network is used in the autoencoder.

- 3 -

Fig. 2. Training process of RDA

B. Robust Principal Component Analysis

Robust Principal Component Analysis (RPCA) is a
generalization of Principal Component Analysis (PCA),
which reduces sensitivity to outliers. As shown in
Expr.(1), the main idea is to split input data X into the
main component L and a sparse matrix S which includes
anomalies.

X = L+ S (1)

RPCA is considered as an optimization problem as fol-
lows:

min
L,S

ρ(L) + λ · count nonzero(S), (2)

s.t. ‖X − L− S‖2F = 0,

where ρ(L) is the rank of L, count nonzero(S) is the num-
ber of nonzero values of S, and ‖ · ‖F is the Frobenius
norm.
Optimization of Expr.(2) is NP-Hard problem, since

it is a non-convex optimization. To solve this, convex
relaxations are applied as follows:

min
L,S

‖L‖∗ + λ‖S‖1, (3)

s.t. ‖X − L− S‖2F = 0,

where ‖ · ‖1 is the l1 norm, ‖ · ‖∗ is the nuclear norm.

C. Robust Deep Autoencoder

In RDA, the nuclear norm in Expr.(3) is replaced with
an autoencoder. When an autoencoder is trained by
RDA, anomalies S are removed from inputs X, and re-
mained data LD are learned by an autoencoder, as shown
in Fig.2.
Let W be weight parameters in the neural network,

be and bd be the biases, and logit(·) be the activation
function. We define the encoder E and the decoder D are
defined as follows:

Eθ(x) = Ew,b(x) = logit(Wx+ bE), (4)

Dθ(x) = Dw,b(x) = logit(WTEW,b(x) + bD). (5)

From above expressions, RDA is considered as the op-
timization problem shown as follows:

min
θ
‖LD −Dθ(Eθ(LD))‖2 + λ‖S‖1, (6)

s.t. X − LD − S = 0.

Fig. 3. Examples of ECG signals

The nuclear norm can be regarded as a linear mapping
to a low dimension matrix, whereas an autoencoder as a
non-linear mapping[12].

Expr.(6) removes anomalies of each element in input
data. To remove outliers in inputs, replace the l1 norm
with the l2,1 norm, then we have:

‖S‖2,1 =
N∑
j=1

√√√√ N∑
i=1

|sij |2

Finally, RDA removing outliers is regarded as the op-
timization problem shown in (7)

min
θ,S

‖LD −Dθ(Eθ(LD))‖2 + λ‖S‖2,1, (7)

s.t. X − LD − S = 0

It removes outliers from input data, and train an au-
toencoder with only principal data, that is, normal data.

D. ECG Data

As a training data used in RDA, a dataset made from
MIT-BIH Arrhythmia Database[7] was used. MIT-BIH
Arrhythmia Dataset contains ECG recordings, positions
data of R-waves, and diagnosis annotations for each beat.
The baseline oscillation was removed from raw data by
using the polynomial approximation[2]. Then, the data
was cut from the R wave to the next R wave as one cy-
cle, the length was resized to 360, and normalization was
performed so that the data had a value of 0 to 1. Among
many channels ECG has, lead II was used in this research.

As outliers, premature ventricular contraction (PVCs)
was used. The outlier data was collected from the ECG
signals which have PVCs (106.dat). Only PVC data were
cut from the data. Note that diagnosis annotations were
added to each R waves. Therefore, in the case the data
between the R wave to the next R wave was defined as
a cycle, there are three patterns of outliers; normal-PVC,
PVC-normal, PVC-PVC (Fig.3). The normal beats data
were collected from different three ECG data (100.dat,
103.dat, 115.dat). Only normal beats were cut from the
data. Thus, outlier and normal data collected from four
different data were combined and made a data set which
has 6073 normal beats, and 332 outliers.

- 4 -

Fig. 4. Compressed Row Strage (CRS)

IV. Lightweight Autoencoder

In order to minimize the number of weight parame-
ters, the sparseness technique was applied. The sparse-
ness technique eliminates the unnecessary weight to re-
duce the number of weight parameters. Typically, unnec-
essary weight is close to 0, and they are handled as 0.
When the neural network is implemented on hardware,
the volume of memories should be reduced, since there is
no need to store the ”zero” parameters. The sparseness
technique is defined as Expr.(8). Let w be the weight pa-
rameters, Th be the threshold value, wsp be the weight
parameters after pruning, and | · | be the absolute value.
Then we have,

wsp =

{
0 (|w| ≤ Th)

w (|w| > Th).
(8)

In this research, the weight parameters in a trained au-
toencoder whose absolute values are below the threshold
value are replaced with 0. After that, the autoencoder is
retrained. This process is repeated for several times[4].
When trained repeatedly, neural networks may be over-
fitted. To avoid this, the number of iterations and the
learning rate were gradually reduced, and the F1 score
was kept as high as possible. While training using RDA,
the matrix S (Fig. 2, and Expr.(7)) should be stored.
When the training is executed repeatedly, the matrix S
in the previous training is succeeded to the next training.

V. Hardware Implimentation

A. Sparse Weight Representation and Computation

Weight parameters of the autoencoder which the
sparseness technique is applied considered as a sparse ma-
trix whose elements are almost zero. In this research,
Compressed Row Storage (CRS)[5] was used. In the CRS,
as shown in Fig.4, sparse matrix data is stored in three
arrays. values is the value of the non-zero elements in a
sparse matrix, columnIndex is the entry for each of non-
zero elements, and rowPtr stores the index of the first
element in the row. The indexes of rows and columns of
non-zero elements correspond to the index of the input
and the output of the autoencoder. For example, if the
index of a weight parameter is (i, j), the index of the input
node is ”i”, and the output node is ”j”.
In this research, the weight parameter W used in the

encoder is transposed and used in the decoder, as shown
in the Expr.(4) and (5). When transposing the matrix,

Fig. 5. Architecture overview

the (i, j) component (W)ij of the original matrix W be-
comes (WT)ji which replaced the indexes i and j in the
transposed row WT .
The calculation procedure of the encoder implemented

on an FPGA is shown in Fig.1. Let N1 be the number
of input nodes, N2 be the number of output nodes, and
Ndata be the number of non-zero elements of weight pa-
rameters.
Practically, the calculation of Algorithm1 is repeated

by the number of the encoder layers. The output out is
stored in the buffer and used as the output to the next
layer. In the decoder, the weight parameter used in the
encoder is transposed. This can be realized by swapping
the input and output of the node, practically, swapping
input index and output index.
The architecture of an autoencoder used in this re-

search is shown in Fig.5. Parameters weight, rowPtr,
columnIndex, and bias are stored in memories.

B. Prototype Implemetation by an FPGA

When weight parameters and biases are implemented
with floating points, floating point addition and multi-
plication will be executed. These floating-point calcula-
tions are time-consuming computation and greatly affect
the calculation execution speed. Also, hardware resource
consumptions, such as DSP blocks, may increase. In this
research, all parameters are converted into a fixed point
and implemented on an FPGA.
The sigmoid function also may consume a lot of hard-

ware resources, since it has divisions and index calcula-
tions. It is approximated as the expression follows:

y =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 (x ≤ −4)
0.05x+ 0.2 (−4 < x ≤ −2)
0.2x+ 0.5 (−2 < x ≤ 2)

0.05x+ 0.8 (2 < x ≤ 4)

1 (4 < x).

VI. Experimental Results

A. Evaluation Method

The F1 score is used for the evaluation of the outlier
detection. It is the harmonic mean of the recall and the

- 5 -

Algorithm 1 The algorithm for the encoder

INPUT:X ∈ RN1, data ∈ RNdata,
bias ∈ RN2, rowPtr ∈ RN1+1, columnIndex ∈ RNdata

1.Initialize the value of out with bias
for i in 0 to N2 do

out[i]← bias[i]
end for
2.Compute the indexes of the input and output node, and
execute the multiplication
for i in 0 to N2 do

for j in rowPtr[i] to rowPtr[i+1] do
input index← columnIndex[j]
output index← i
w ← data[j]
x← X[input index]
out[output index]
← out[output index] + w × x

end for
end for
3.Calculate the activation function and output the result
for i in 0 to N2 do

out[i]← logit(out[i])

end for

precision. Note that in this research, positive data is ”out-
lier”, since the ability to detect outliers is evaluated. To
evaluate the result data, cross-validation is used.

B. Training using RDA

The layer sizes of the autoencoder are 360,200,and 100.
From the used ECG dataset, input and output size are set
to 360. The initial values of weight parameters are set by
random numbers following the normal distribution, and
biases are set by random numbers following the uniform
distribution. The hyperparameter λ(shown in Expr.(7))
in RDA is set to the value which shows the highest F1
score when detecting outliers while training. Also, the
sparseness technique was applied while training the au-
toencoder using RDA.

C. Implementation on an FPGA

The autoencoder trained by RDA is used to detect ECG
outlier data. The mean square error (MSE) of inputs and
outputs is calculated, and if the value exceeds the certain
threshold, the data is judged as an outlier. This threshold
is set to the value of the smallest MSE among ECG wave
data which is judged as an outlier while training.

D. Environment Setup

The RDA was implemented with Chainer Deep learn-
ing Framework 4.0.0[1]. Then, the autoencoder trained
by RDA was implemented on Xilinx ZedBoard Zynq-7000
Development Boardby using Xilinx SDSoC 2018.2. The
timing constraint is set to 100MHz. Also, Arduino DUE
was used for comparison. The autoencoder with sparse-
ness weight and fixed-point parameters are implemented

TABLE I
Comparison of recognition accuracy

not pruned pruned

precision 0.958 0.950
recall 0.958 0.952

F1 score 0.957 0.949

TABLE II
The number of weight parameters

not pruned pruned

layer 1 72000 4450
layer 2 20000 578
total 92000 5028
ratio 1.00 0.05

with software and executed on ARM CortexM3 CPU,
which is mounted on Arduino DUE board.

E. Comparison of Sparseness with
Non-Sparseness (Dense) Autoencoder

Table I shows precisions, recalls, and F1 scores of the
predictions by autoencoders. Autoencoders the sparse-
ness technique was applied to and not were compared.
Table II shows the comparison of the number of weight
parameters. As for a dense weight autoencoder, it has
92000 parameters, and the F1 score was 0.957. When the
sparseness technique was applied, 94% of the number of
weight parameters were eliminated. In this case, the F1
score was 0.949, which is only 0.84% below the score of
the dense autoencoder.

F. Comparison of F1 Scores for Different Parameters

Table III compares precisions, recalls, and F1 scores
of the predictions of implemented autoencoder. The F1
score didn’t change when parameters are stored with the
32-bit floating point, 16-bit floating point, and fixed-point
numbers. When the parameters are stored with fixed-
point numbers, the bit precision of calculations in the
prediction process is set to 16-bit float to keep the F1
score. In the case implemented with fixed-point numbers,
the volume of weight parameters was reduced compared
to floating-point ones, since the bit width of parameters
can be changed for each memory.

G. Hardware Resource consumption

Table IV shows the hardware resource consumption
when the autoencoder is implemented on an FPGA. Re-
ducing the number of weight parameters by applying
the sparseness technique, the consumption of BRAM
was greatly reduced, and all the parameters of autoen-
coder was able to be stored in on-chip memory (BRAM).
By converting parameters into fixed-point numbers, the
BRAM consumptions were more reduced. From now on,

- 6 -

TABLE III
The way of storing weight parameters.(”fixed point” is

arbitrary precision for each layer)

Sparseness Dense
Bit precision 32bit float 16bit float fixed point 32bit float

Ratio of 0.05 1.00
weight parameters

Precision 0.950 0.950 0.950 0.958
Recall 0.952 0.952 0.952 0.957

F1 score 0.949 0.949 0.949 0.957
Non-zero 20.1 10.1 7.78 368.0

parameters[kbyte]
Ratio 0.0546 0.0274 0.0211 1.0000

TABLE IV
Hardware consumption (() donates the utilization ratio.

”speed” is the number of wave forms (R wave to R wave)

that can be processed per second)

16bit float fixed point

BRAM 19.5(13.93%) 17(12.14%)
DSP 10 (4.55%) 8 (3.64%)
FF 9245(8.69%) 9225(8.67%)
LUT 5863(11.02%) 6375(11.98%)

Speed [waves/s] 1274 2745

the parameters of the autoencoder is implemented with
fixed point one.

H. Power Consumption

Table V shows the power consumption and the total
power consumption of the FPGA and the CPU. The au-
toencoder with sparseness weight and fixed-point param-
eters are implemented. Here, total power consumption is
the power consumption multiplied by the execution time
shown in TableV. The autoencoder implemented on an
FPGA can operate with 11% power consumption com-
pared to ARM Cortex M3 CPU. In addition, the total
power consumption is 0.63% of that of CPU (159 times
better as for the energy consumption), since the FPGA
can execute the prediction much faster than CPU, and it
has limited processing units for the autoencoder.

VII. Conclusion

In this research, an autoencoder is trained unsupervised
by using Robust Deep Autoencoder. The sparseness tech-
nique was also applied and the number of weight param-
eters was reduced. The volume of weight parameters was
reduced by 97.9% while suppressing the decrease of the
F1 score to only 0.84%. The trained autoencoder was im-
plemented on Xillinx ZedBoard Zynq-7000 Development
Board. By using CRS format, adjusting bit precisions,
and approximating the activate function, the hardware re-
source consumption was small enough to be implemented
on the low-end FPGA. Also, compared to the CPU im-
plementation, the autoencoder implemented on an FPGA
can operate with 11% power consumption. Since the ar-

TABLE V
Power consumption

FPGA CPU

Power consumption[W] 0.072 0.65
Execution time[ms] 467 8330

Total power consumption[J] 0.034 5.400

chitecture has minimum processing units possible to per-
form the outlier detection using an autoencoder, the pro-
posed sparseness hardware is 159 times better as for its
energy consumption, compared to the CPU implemen-
tation. It can be said that it was able to design with
high power efficiency and suitable for mounting on mo-
bile hardware.

Acknowledgements

This research is supported in part by the Grants in
Aid for Scientistic Research of JSPS, and the New En-
ergy and Industrial Technology Development Organiza-
tion (NEDO). Also, thanks to the Xilinx University Pro-
gram (XUP), Intel University Program, and the NVIDIA
Corp. s support.

References

[1] Chainer v4.0.0. https://docs.chainer.org/en/v4.0.0/.

[2] Peak analysis. https://jp.mathworks.com/help/signal/
examples/peak-analysis.html?lang=en.

[3] A. Gharaviri, M. Teshnehlab, and H. A. Moghaddam. Pvc arrhyth-
mia detection using neural networks. In 2007 5th International
Symposium on Image and Signal Processing and Analysis, pages
234–237, Sep. 2007.

[4] Song Han, Jeff Pool, John Tran, and William Dally. Learning both
weights and connections for efficient neural network. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages
1135–1143. Curran Associates, Inc., 2015.

[5] Ryan Kastner, Janarbek Matai, and Stephen Neuendorffer. Parallel
programming for fpgas. CoRR, abs/1805.03648, 2018.

[6] Hela Lassoued and Ketata Raouf. Artificial neural network classi-
fier for heartbeat arrhythmia detection. 03 2017.

[7] MIT-BIH arrhythmia database. https://physionet.org/
physiobank/database/mitdb/.

[8] D. J. M. Moss, Z. Zhang, N. J. Fraser, and P. H. W. Leong.
An fpga-based spectral anomaly detection system. In 2014 Inter-
national Conference on Field-Programmable Technology (FPT),
pages 175–182, Dec 2014.

[9] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel S. Emer,
Stephen W. Keckler, and William J. Dally. SCNN: an accelera-
tor for compressed-sparse convolutional neural networks. CoRR,
abs/1708.04485, 2017.

[10] Pranav Rajpurkar, Awni Y. Hannun, Masoumeh Haghpanahi,
Codie Bourn, and Andrew Y. Ng. Cardiologist-level arrhyth-
mia detection with convolutional neural networks. CoRR,
abs/1707.01836, 2017.

[11] A. Walinjkar and J. Woods. Personalized wearable systems for
real-time ecg classification and healthcare interoperability: Real-
time ecg classification and fhir interoperability. In 2017 Internet
Technologies and Applications (ITA), pages 9–14, Sept 2017.

[12] Chong Zhou and Randy C. Paffenroth. Anomaly detection with
robust deep autoencoders. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 665–674, New York, NY, USA, 2017.
ACM.

- 7 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

