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Abstract— With the advances of technology nodes,

a defective circuit pattern has occurred on a chip. Lo-

cal regions on a mask that may cause defects such as

opens/shorts are called hotspots, which induce yield

loss, so they should be eliminated in the design phases.

To detect hotspots, a conventional method extensively

relies on lithography simulation, which can achieve

good accuracy but may suffer from huge computa-

tional time. Recently, methods that introduce image

recognition techniques are proposed. In this paper, we

propose a hotspot detector based on probability dis-

tributions of layout features, where feature optimiza-

tion and classification are guided by the distributions.

Experimental results show that our proposed method

achieves 98% accuracy while False Positive Rate is less

than 1%, and its computation is 8 times faster than

conventional machine learning based methods on IC-

CAD2012 benchmark suite.

I. Introduction

Lithography transfers a pattern on a photomask to an
wafer. Photoresist coated on the wafer reacts with ex-
posure light which passes through the photomask, and a
circuit pattern is formed on the wafer.
In order to form a desired circuit pattern on an wafer,

various design for manufacturing (DFM) techniques such
as optical proximity correction (OPC) have been intro-
duced. With the advances of technology nodes, defects
such as opens/shorts may occur even after DFM tech-
niques are applied. Local regions on a mask that may
cause defects are called hotspots, which induce yield loss,
so they should be eliminated in the design phases [1].
Exposure lights with shorter wavelength have been de-

veloped to improve the fidelity of pattern on an wafer.
Although extreme ultra-violet (EUV) whose wavelength
is 13.5 nm is being introduced as exposure light, it is still
not mainstream in mass production because of huge man-
ufacturing cost, and DFM techniques still have much at-
tention.
Various hotspot detection methods have been intro-

duced to detect hotspots. A local area on a mask, called
clip, can be evaluated whether hotspot or not by lithog-
raphy simulation. A good hotspot detection accuracy can
be achieved by relying heavily on lithography simulation,

but it would suffer from huge computational time [2]. A
fast hotspot detector without accuracy loss is required to
reduce manufacturing cost in practice.
Recently, several hotspot detection methods that fil-

tered out non-hotspot clips without lithography simula-
tion are proposed [3–15]. In these methods, a number
of clips are filtered out in advance by classifiers, and the
number of lithography simulations required is reduced.
Fig. 1 shows a flow of such methods as well as a conven-
tional method where all clips are evaluated by lithogra-
phy simulation. Classifiers to filter out non-hotspot clips
are often designed based on pattern matching or machine
learning.
Pattern matching based methods [3, 4], which identify

hotspots through comparing the geometric shape of lay-
out patterns in a clip with that of the patterns in hotspot
libraries, typically achieve good accuracy for known lay-
out patterns, but not good for unknown ones.
Machine learning based methods [5–15], which con-

struct a two-class classifier model using training data,
determine hotspot/non-hotspot accurately even for un-
known layout patterns. In this approach, the selection
of layout features and learning algorithm affects accuracy
and efficiency.
As existing layout features, density-based layout fea-

ture (DBLF) [5], which uses the ratio of the area occu-
pied by wiring, histogram of oriented light propagation
(HOLP) [7], which approximately quantifies the diffrac-
tion based on DBLF, and new features [10] focusing on
the length between wires have been proposed.
As machine learning algorithms, support vector ma-

chine (SVM) [6], Boosting [7–10], Neural Network [11–15]
have been applied.
Although existing methods combine some techniques

such as clustering, multiple kernel learning (MKL) and
data augmentation to achieve high accuracy, there is still
room for improvement in terms of computational time and
accuracy.
In this paper, we propose a hotspot detector based on

the difference of the probability distributions of layout
features between hotspot and non-hotspot clips. Our pro-
posed detector consists of multiple weak classifiers and a
strong classifier which follows them. The input of each
weak classifier is a feature value derived from a clip, and
the output is a real value which estimates the possibility
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Fig. 1. Comparison of conventional and recent advanced methods.
In advanced methods, a number of clips are filtered out in advance
by classifiers, and the number of lithography simulations required
is reduced.

that the clip is a hotspot. If the sum of outputs exceeds
the threshold, a strong classifier regards it as hotspot.
Our key contributions are as follows:

• The feature optimization based on the probabil-
ity distributions of layout features, which provides
an efficient description of layout patterns in low-
dimension, leads to good performance in terms of
both accuracy and computational time.

• We propose a new hotspot detector, which consists of
multiple weak classifiers defined based on the above
feature optimization method.

• Our proposed detector achieves 98% accuracy while
False Positive Rate is less than 1%, and its compu-
tation is 8 times faster than conventional machine
learning based methods under ICCAD2012 bench-
mark suites.

The rest of the paper is organized as follows. In Sec-
tion II, we define hotspot detection problem and describe
machine learning based hotspot detection. In Section III,
our proposed hotspot detector is described. Section IV
presents the experimental results. We conclude this pa-
per in Section V.

II. PRELIMINARIES

A. Hotspot detection problem

As mentioned in the introduction, with the develop-
ment of technology nodes, defects such as opens/shorts
may occur even after the process of DFM techniques.
Local regions, which may cause these defects, are called
hotspots, which induce yield loss, so they should be elim-
inated in the design phases.
The hotspot detection problem is to find hotspots from

a mask layout (Fig. 1). A focused area of a mask is called

Fig. 2. The basic idea of machine learning based hotspot
detection. Using known hotspot/non-hotspot clips given as
training dataset, the classifier is trained. It is applied to testing
clips extracted from a mask, and judge whether each clip is
hotspot or not.

a detection window. The detection window has the same
size as the known hotspot/non-hotspot clips, and scans
an entire mask to judge whether the area is hotspot or
not every time.

B. Machine learning based method

Our goal is to correctly judge whether given clips are
hotspot or not. In a machine learning based method
(Fig. 2), the objective is to construct an efficient two-class
classifier that can achieve high accuracy.
In a training phase, known hotspot/non-hotspot clips

are given as training dataset. Features are extracted from
each clip to represent the geometrical feature appropri-
ately. The effective features and machine learning algo-
rithms are combined to train the classifier.
In a testing phase, the trained classifier is applied to

each clip extracted from a mask by a detection window
scanning. It judges whether each clip is hotspot or not.

III. Proposed hotspot detector

We propose a hotspot detector based on the difference
of the probability distributions of layout features between
hotspot and non-hotspot clips. Our proposed detector,
which consists of multiple weak classifiers and a strong
classifier which follows them is shown in Fig. 4. In a
training phase, multiple weak classifiers are defined based
on feature optimization using given distributions of layout
features. The distributions can be easily computed using
training data. The input of each weak classifier is a fea-
ture value, and the output is a real value which estimates
the possibility that the testing clip is hotspot. The output
of a weak classifier is determined according to the differ-
ence between the probability of the feature value derived
from hotspot clips and that from non-hotspot clips. If the
sum of outputs exceeds the threshold, a strong classifier
regards the testing clip as hotspot.
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Fig. 3. The process of calculating layout features using CCAS.
Each sampling circle is encoded to compact representation.

Fig. 4. The configuration of the hotspot detector is shown. In this
example, the detector consists of three weak classifiers
corresponding to the determined circles. The output of each weak
classifier is determined according to the difference between the
probability of the feature value derived from hotspot clips and
that from non-hotspot clips. If the sum of outputs exceeds the
threshold, an input clip is regarded as hotspot.

To calculate layout features, concentric circle area sam-
pling (CCAS) [9, 16] is used. CCAS shows good results
in hotspot detection [9] and building regression models
to predict parameters in OPC [16]. CCAS is a sampling
method, which intends that the diffraction light spreads
concentrically. For a clip, circles concentrically are ar-
ranged from the center (Fig. 4). Each circle is uniformly
sampled p points, every point is a binary number 0 or 1,
where 1 represents that the corresponding point is con-
tained in a layout pattern and 0 represents that the point
contains no patterns. A bit sequence obtained from ith
circle is a feature value to represent the geometrical fea-
ture.
In this chapter, the probability distributions of layout

features, and the similarity of them are defined. Next, the
process of training the detector and applying it is shown
in detail.

A. Definition

Given hotspot clips c+m : m = 1, ...,M and the non-
hotspot clips c−n : n = 1, ..., N as training data. The
subscripts of parameters + and − represent hotspot and
non-hotspot, respectively. W+,W− are the set of train-
ing data weights which represent the clip that has the
higher weight should be classified preferentially. X+

i , X−
i

are the set of feature values obtained from the ith circle
derived from training data. D+

i , D
−
i are the set of proba-

bilities that each feature value appears, which means the

Fig. 5. The flow of training the detector is shown. The probability
distributions can be easily computed using training data(flow.1-2).
A weak classifier is defined based on feature optimization using
them(flow.3). It’s applied to training clips and classifies
them(flow.4-5). By increasing the weights of clips classified
incorrectly, distributions are reconstructed(flow.6-7). Flow.3-7 are
repeated to define multiple weak classifiers.

probability distributions of layout features. y ∈ {−1, 1}
is training data label, where 1 represents hotspot and −1
represents non-hotspot.

• Parameters of hotspot clip

– W+ = {w+
1 , w

+
2 , ....., w

+
m, ....., w+

M}
– X+

i = {x+
1 , ..., x

+
m, ..., x+

M}
– D+

i = {pi(k|y = 1)|0 ≤ k ≤ 2p − 1)}

• Parameters of non-hotspot clip

– W− = {w−1 , w−2 , ....., w−n , ....., w−N}
– X−

i = {x−1 , ..., x−n , ..., x−N}
– D−i = {pi(l|y = −1)|0 ≤ l ≤ 2p − 1)}

A.1. Probability distribution of feature vectors

An example of calculating D+
i is shown in Fig. 6. The

procedure is shown below.

1: procedure Calculate possibility distribution

2: for m = 1 to M do
3: if x+

m = k then
4: pi(k|y = 1) + = w+

m

5: end if
6: end for
7: for n = 1 to N do
8: if x−n = l then
9: pi(l|y = −1) + = w−n

10: end if
11: end for
12: Normalize D+

i and D−i
13: end procedure
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Fig. 6. The flow of calculating the probability distribution.

A.2. Similarity of the two distributions

Batacharya distance Zi is used as a measure of how similar
D+

i , D
−
i are. The larger Zi is, the more similar the shapes

of the two distributions are. So, as Zi is smaller, it can be
judged as a feature that clearly classifies into hotspot and
non-hotspot. This is defined by the following formula.

Zi =

2p−1∑

k=0

√
pi(k|y = 1)pi(k|y = −1) (1)

B. Training a detector

As machine learning algorithms, Adaboost [17] [18] is
used which is one of the machine learning algorithms and
expected to be efficient. The proposed detector consists
of multiple weak classifiers and a strong classifier which
follows them. In this section, how to train the detector, in
other words, how to select circles and define a weak clas-
sifier is stated. The flow to select circles is followed by the
procedure below. Let R be the number of densely sam-
pled circles, and the detector consists of T weak classifies,
where T is set by users.

1: procedure Training classifiers

2: for t = 1 to T do
3: for i = 1 to R do
4: Create D+

i , D
−
i

5: end for
6: Find rt, it is i when Zi is minimum
7: Define a weak classifier WC(rt)
8: Update all weights of training samples
9: end for

10: end procedure

rt is a radius when Zi is minimum in round t. WCt is
a weak classifier, where the input is a feature value x′

obtained from the circle with the radius of rt, and the
output wct(x

′) is defined as following formula.

wct(x
′) = ln

p(x′|y = 1)

p(x′|y = −1) (2)

wct(x
′) is the log likelihood ratio. The higher the value,

the more likely the testing clip is a hotspot. Fig. 7 shows
examples of D+

i , D
−
i and a distribution of wct(x

′).
In updating all weights step, the weights of training

clips are updated. By increasing the weights of clips which

Fig. 7. Examples of D+
i , D−i and a distribution of wct(x′) are

shown. A weak classifier WCt has a lookup table according to a
distribution of wct(x′).

cannot be classified correctly, they are classified preferen-
tially by the weak classifier selected in next round. This
step follows the formula below.

w+
m = w+

m exp(−ymh(x+
m)) (3)

w−n = w−n exp(−ynh(x−n )) (4)

Here, let ym, yn ∈ {−1, 1} be training data lebels, and let
h(.) ∈ {−1, 1} be a result of classification.

C. Hotspot detection using our proposed detector

Let wcall be the sum of outputs of weak classifiers se-
lected in the training step. If wcall is larger than the
threshold, the detector regards the testing clip as hotspot.
On the other hand, if wcall is smaller, it is regarded as
non-hotspot. wcall is formulated by the formula below.

wcall =

T∑

t=1

wct(x
′) (5)

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

TABLE I
ICCAD2012 benchmark statics

Case1 Case2 Case3 Case4 Case5

Techonology 32nm 28nm 28nm 28nm 28nm
Training HS 99 174 909 95 26
Training NHS 340 5285 4643 4452 2716
Testing HS 226 498 1808 177 41
Testing NHS 319 4146 3541 3386 2111

We implement our proposed detector in C++ program-
ming languages, and test it on a machine with four core
4.2GHz CPUs and 32GB memory. The performance of
the proposed detector is evaluated on ICCAD2012 bench-
mark suite [19], which is divided into five cases consisting
of known hotspot/non-hotspot clips. TABLE I shows the
benchmark details.
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TABLE II
Comparison of the proposed method and existing machine learning based methods

SPIE’15 [8] ICCAD’16 [9]
Ours

(#WCs=10)
Ours

(#WCs=50)

CPU(s) FP Recall CPU(s) FP Recall CPU(s) FP Recall CPU(s) FP Recall
Case1 7 0 100.0% 7 0 100.0% 0.5 0 98.7% 2.0 0 98.7%
Case2 351 0 98.6% 51 0 99.4% 6.7 19 97.0% 31.0 138 96.6%
Case3 297 0 97.2% 66 3 97.5% 10.0 2 98.6% 47.8 0 98.6%
Case4 170 1 87.0% 35 0 97.7% 3.4 11 96.1% 16.5 57 89.8%
Case5 69 0 92.9% 24 0 95.1% 2.1 0 100.0% 10.1 0 100.0%

Average 178.8 0 95.1% 36.6 0 97.9% 4.5 6 98.1% 21.5 39 96.7%

TABLE III
Confusion Matrix

Hotspot Non-Hotspot
Predicted as
Hotspot

TP
(True Positive)

FP
(False Positive)

Predicted as
Non-Hotspot

FN
(False Negative)

TN
(True Negative)

B. Comparison with other methods

To evaluate the effectiveness of the proposed detector,
we first compare the hotspot detection results with two
great hotspot detectors [8] [9] in TABLE II. SPIE’15 [8]
uses DBLF and Adaboost algorithm. ICCAD’16 [9] uses
CCAS and Smooth Boosting algorithm.
The evaluation indicators are “CPU(s)”,“FP” and

“Recall” corresponding to runtime of model evaluation
in second, false positive number and recall rate. Recall
is the most important indicators, which represents how
many hotspot clips can be detected without missing. If
the mask is applied to chip manufacturing with hotspots
remaining, it causes yield loss. Recall is described below
referring to TABLE III

Recall =
TP

TP + FN
(6)

FP is the number of non-hotspot clips detected as hotspot
incorrectly. A big FP causes an increase in the number
of lithography simulation iterations. The key is to reduce
FP while achieving high Recall.
In this experiment, two existing detectors and two pro-

posed detectors, where one consists of 10 weak classifiers
and the other consists of 50 weak classifiers are evaluated.
We can see from TABLE II that our detector with 10 weak
classifiers achieves similar Recall and its computation is
8 times faster comparing with the detector proposed in
ICCAD’16 [9]. In Case5, 100% Recall can be achieved.
However, in other cases, Recall is the latter half of 90%.
Although insufficient, we obtain a good recognition accu-
racy in its way.
Comparing the detector with 10 weak classifies and the

other with 50, the former has a better result in terms of

Fig. 8. ROC curve in case1 to case5. Recall and FPR are in the
relationship of trade-off. The closer the curve is to the upper left,
the better result it shows. In case2, if you lower the threshold until
100% Recall is achieved, FPR will increase to 28%.

all evaluation indicators. We want to propose a better
detector by analyzing deeply, such as examining which
circles the detectors use.

C. Evaluation of Recall

This section shows how much false positive rate (FPR)
does we compromise to achieve 100% Recall. FPR repre-
sents how many non-hotspot clips are detected as hotspot
incorrectly. It is described below referring to TABLE III

FPR =
FP

FP + TN
(7)

Recall and FPR are in the relationship of trade-off.
Fig. 8 shows receiver operating characteristic (ROC)
curves which graph the transition of Recall and FPR while
changing the threshold. In case1, 100% Recall cannot be
achieved. In case2, if you lower the threshold until 100%
Recall is achieved, FPR will increase to 28%. In case3 and
case4, FPR will increase to 82% and 24%. We need to
analyze layout clips which cannot be classified correctly.
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V. CONCLUSION

In this paper, we propose the hotspot detector based on
the difference of the probability distributions of feature
vectors, where feature optimization and classification are
guided by the distribution. Experimental results show
that our proposed method achieves 98% accuracy while
False Positive Rate is less than 1%, and its computation
is 8 times faster than conventional machine learning based
methods on ICCAD2012 benchmark suite.
Our future works include further experiments to ana-

lyze layout clips which cannot be classified correctly, and
which circles the detectors use. In addition, it will be re-
quired to create more reliable benchmarks to ICCAD2012
benchmark suite.
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