
Configurable Processor Hardware Developing Environment for RISC-V
with Vector Extension

Ryo Taketani Yoshinori Takeuchi

Department of Information Systems Engineering Department of Electric and Electronic Engineering
Graduate School of Infomation Science and Technology School of Science and Engineering

Suita, Osaka 565-0871 Higashi-Osaka, Osaka 577-8502
r-taketn@ist.osaka-u.ac.jp takeuchi@ele.kindai.ac.jp

Abstract— This study proposes a processor hard-

ware development environment that can easily change

the architecture configuration suitable of specific pro-

cessing for RISC-V. RISC-V is getting more atten-

tion as an open Instruction Set Architecture (ISA)

nowadays. RISC-V has vector extension specified for

parallel computing that takes power savings and high

executed cycle performance into consideration. On

the other hand, in the age of the Internet of Things

(IoT) in recent years, the number of types of devices

equipped with microprocessor has increased. In other

words, each IoT device demands processors special-

ized for each application. Therefore, expectations for

configurable processors are increasing. This paper

challenged to construct a HW development environ-

ment for a RISC-V based configurable processor with

vector extension. In addition, validation of the gener-

ated processor was performed to evaluate the perfor-

mance of the HW, and design man-hours were com-

pared with the conventional method for instruction

expansion.

I. Introduction

In recent years, microprocessors tend to be mounted on
various devices in Internet of Things (IoT) era. Each IoT
device has demanded application-specific processing due
to low-volume, high-mix production of them. Thus, con-
figurable processors which easily modify its Instruction
Set Architecture (ISA) are receiving increased expecta-
tions all over the world.
On the other hand, RISC-V ISA [1] has achieved re-

markable progress nowadays. RISC-V is simple and
highly expandable ISA have been proposed by University
of California, Berkeley. Furthermore, many of RISC-V
software (SW) development tools are free and open such
as binary utilities, compiler, operating system, and ISA
simulator. These SW tools are unified into one github
repository riscv-tools [2]. Therefore, we can easily ex-
tend ISA of these SW tools by adding instruction opcodes,
operands, and behavior descriptions. Moreover, many of
RISC-V hardware (HW) environment are also free and

open such as Rocket-Chip [3], Boom [4], VexRiscv [5],
and so on. However, in contrast to SW environment, de-
signers need to rewrite Hardware Description Language
(HDL) directly for extend ISA of these HW tools. HDLs
are low abstraction level description and difficult for de-
velopers except for HW professionals. Moreover, RISC-V
has vector extension called “V” extension. Vector archi-
tecture includes parallel computing unit similar to SIMD
(Single Instruction Multiple Data) computing unit. SIMD
computer executes operation on multiple data in paral-
lel by dividing one register. On the other hand, Vector
computer holds vector registers for parallel operation sep-
arately from the general purpose register. In addition
that, RISC-V vector architecture has additional conve-
nient functions such as register type conversion, predi-
cation, and so on. RISC-V vector extension is important
when processors for embedded devices demand power sav-
ings and high performance.

From the above background, this study challenges to
construct RISC-V based HW development environment
for configurable processor. For constructing HW of config-
urable processor, this study uses ASIP Meister [6]. ASIP
Meister is an interactive tool for developing application-
specific processor. ASIP Meister generates the proces-
sor HDL automatically from design parameters and micro
operation descriptions defined by developers. A method
that can extend the instruction set with behavior level
descriptions on ASIP Meister has been proposed [7]. By
using ASIP Meister, designers can easily extend ISA with
a much smaller amount of description than using conven-
tional environments. Implementing RISC-V vector exten-
sion on ASIP Meister contributes to improve the perfor-
mance of the processor and enable designers to adjust the
number of instructions freely. This paper shows that chal-
lenging to construct of the HW processor based RISC-V
ISA including vector extension, confirms the efficiency of
the processor such as area, delay, the number of execution
cycles, design man-hour when extending ISA, and checks
the validation as the processor has RISC-V ISA.

The organization of this paper is as follows. Section I
I explains the features of RISC-V ISA and ASIP Meis-
ter. Section III describes specification of the processor

SASIMI 2019 ProceedingsR1-7

- 33 -

proposed by this study. Section IV shows and discusses
the experimental results. Finally, section V concludes this
paper.

II. Background

This section explains basic knowledge of this study such
as RISC-V ISA specification, automatic generation of pro-
cessor.

A. RISC-V

This section explains about RISC-V overview, ISA
specification adopted on this paper, and ecosystems.

A.1. ISA Overview

RISC-V is composed of basic ISA called “I” and extended
ISAs. ISA “I” has basic integer instructions such as math-
ematical operations, logical operations, load, store, and
jump operations. Extended ISAs consist of multiplica-
tion and division ISA “M”, atomic operation ISA “A”,
floating operation “F”, compressed ISA “C”, vector ISA
“V”, and so on. “I” ISA is essential and users can add
desired extended ISAs. Moreover, RISC-V has custom
instruction fields for users to add instruction freely. In
summary, RISC-V has a much simpler ISA and has higher
extensibility than conventional ISAs.

A.2. Target Instruction Set

RISC-V has 32-bit and 64-bit and 128-bit addressing
mode instruction sets. This study focuses on 32-bit ad-
dressing mode instruction called RV32. This paper tar-
gets RV32IMV that has basic integer ISA “I” , multipli-
cation and division extension “M”, and vector extension
“V”. RV32V is vector architecture focusing on data level
parallelism.

Figure 1 shows the structure of register files RV32V has.
Maximum feature of RV32V is a register file dedicated to
vector operations apart from the basic general-purpose
register for integer operations. From this, size and data
type of each vector register is configurable suitable for im-
plementation forms by using vl and vtype registers un-
like the SIMD (Single Instruction Multiple Data) operator
which decides the encoding of instructions. RV32V has

x31

x0

…

General-purpose
register file for
integer operations

v31[0]

v0[0]

…

v31[1]

v0[1]

…

…

…

v31[vl-1]

v0[vl-1]

…

Additional register
file for vector
operations

vl31

vl0

…

Registers for determining
the number of factor of
each vector register

vtype31

vtype0

…

Registers for determining
the data type of each
vector register

Fig. 1. Structure of register files of RV32V

other important features such as configurable vector reg-
isters, predications, and stride and indexed loads/stores.
Specification of RV32V is explained in more detail in Sec-
tion III.

A.3. Conventional ecosystems and HW tools

One github repository riscv-tools is free and avalable to
anyone, and has almost RISC-V SW tools such as com-
pilers, ISA simulator, and operating system. riscv-tools
are easy to extend ISA by defining instruction opcodes,
operands, and behavior descriptions.

As well, many RISC-V HW implementations are pro-
posed such as Rocket-Chip, Boom, VexRiscv, and so on.
However, all of these HW implementations are separated
from riscv-tools. For extending ISA of conventional RISC-
V HWs, you need to modify HDL directly. ISA extension
by editing HDL requires many places to rewrite in pro-
grams, for examples of instruction definitions, function
blocks, state machines. For that reason, instruction ex-
tension for RISC-V HW has problems that require high
expertness on HDL and huge man-hours for code analysis
and rewrites.

Hence, the purpose of this paper is to implement a
RISC-V based HW processor whose ISA can be extended
with much less amount and simpler description than con-
ventional RISC-V HWs. For achieving this purpose, this
study implements and evaluates RISC-V based HW pro-
cessor using ASIP Meister.

B. ASIP Meister

ASIP Meister is an interactive tool for generating
HDL more easily. This section explains processor design
method using ASIP Meister.

B.1. Processor design flow

Processor design flow on ASIP Meister is composed of 8
steps as follows.

Definition of Architecture spec. defines the number
of pipeline stages and so on.

Resource Declaration defines HW resources for using
your processors such as ALU, storage, and so on.
ASIP Meister uses parameterized resource models
called Flexible Hardware Model (FHM). FHM are
HW resources whose parameters can be changed.
You need to construct new FHM which be adapted
to your processor.

Definition of storage spec. sets the specification of
register, register file, and memories.

Definition of IO interfaces sets entities and IO port
of processor.

- 34 -

(a) Definition Opcodes , Operands, Formats of Instruction

MSB LSB Field Type Field Attr Value
31 25 opcode binary 0000000
24 20 operand name rs2
19 15 operand name rs1
14 12 opcode binary 000
11 7 operand name rd
6 0 opcode binary 1010111

Inst. type
R
I
S
U
B
J

ABSO rd, rs1, rs2Format

(b) Micro Operation Description for each Pipeline Stages

Stages Micro operation description
VARIABLE wire [31:0] source0;

wire [31:0] source1;
wire [31:0] result;

IF FETCH()

ID wire[31:0] temp0;
wire[31:0] temp1;
temp0 = GPR.read0(rs1);
temp1 = GPR.read1(rs2);
source0 = FWU1.forward(rs1,temp0);
source1 = FWU2.forward(rs2,temp1);

EXE wire [3:0] flag;
wire [31:0] temp2;
wire[31:0] reverse;
<temp2, flag> = ALU.sub(source0, source1);
reverse = ~temp2;
result = (temp2[31]) ? temp2 : reverse;
null = FWU1.forward1(rd.result);
null = FWU2.forward1(rd,result);

MEM

WB null = GPR.write0(rd, result);
null = FWU1.forward3(rd.result);
null = FWU2.forward3(rd,result);

Fig. 2. Instruction extension method using ASIP Meister

Instruction Definition defines instruction set and in-
struction type, opcode, and operands of each instruc-
tions. Figure 2 (a) shows an example of necessary
description on this method. In this step, appropriate
instruction type and values of opcode and operand
are set.

Assembler generation ASIP Meister attaches meta as-
sembler. ASIP Meister generate assembler descrip-
tion for meta assembler. This assembler is used for
the experiment of this paper.

Definition of micro operation definition describes
the micro operation description of all instructions
for each pipeline stages. Micro operation description
needs to be described by processor description
language [8]. Figure 2 (b) shows the example of
necessary micro operation description for defining
ADD instruction that adds two register values on
this method. Focusing on description source0

= GPR.read0(rs1) in Fig. 2(b), “GPR” is HW
resource of register file, “read0” is function GPR
has, and “rs0” is one of operands that means the
first source register. Like this example, description
referring to defined HW resources and functions of
them are written.

Generation HDL For these information, the synthesize

model written by HDL are generated.

For extending instruction set, designers write instruc-
tion definitions and micro operation descriptions. This
study uses ASIP Meister for constructing a RISC-V based
processor.

III. Implementation

This section explains the implementation of processor.

A. Implemented Processor Overview

Figure 3 shows the construction of processor imple-
mented in this paper. The number of pipeline stages
is 5 stages composed of IF (Instruction Fetch), ID (In-
struction Decode), EXE (Execution), MEM (Memory ac-
cess), and WB(Write Back). In IF stage, instructions are
fetched. In ID stage, instructions are decoded through
reading operands of instructions and general purpose reg-
ister files. In EXE stage, calculations are executed using
ALU, multiplier, shifter, and comparator. In MEM stage,
memory reads/writes are executed through accessing a
data memory. In WB stage, register writes are executed.
Instruction register, instruction memory, and program

counter are not different from basic integer processor be-
cause instructions are issued one by one in this proces-
sor too. Register file can be treated as both one register
(32bit) and vector (32bit*4) and arithmetic units can ex-
ecute calculations in 4-way parallels. Predication register
file was constructed to implement predication function of
RISC-V “V” extension. Unfortunately, data memory can-
not be accessed in 4-way parallel currently because only

Write port

Output
Of read

Read
port

Write port

Output
Of read

Read
port

Read
port

Write port

Fig. 3. Processor overview

- 35 -

one data bus between data memory in CPU and data
memory interface unit can be set in ASIP Meister. In con-
clusion, This processor can execute register reads/writes
and calculations in 4-way parallel.

B. Implementation instruction sets

This study challenges to implement RV32IMV that 32-
bit addressing mode instruction sets which are composed
of basic integer, multiple, and 4-way vector instructions.
Table I shows all implemented integer and multiple in-

struction sets. rs1 and rs2 mean source scalar registers.
rd means a destination scalar register. imm means an im-
mediate. Mem means a data memory. pc means a program
counter. (i) means that the second source rs2 replaces
the immediate imm. (u) means that operands in instruc-
tions are read as unsigned values. Table. II shows all
vector instruction sets. vs1 and vs2 mean source vector
registers. vd means a destination vector register.
Vector extension of this study inherits RV32IM instruc-

tions such as integer addition, subtraction, logical opera-
tions, multiplication, and shift operations. This study ex-
cludes other instructions of vector extension such as float-
ing point and atomic operations. RV32V instructions are
classified into the type of two source registers by suffixes
.vs|.vv|.sv. In the case of .vs, two registers are vector
and scalar. Scalar is the first factor of vector registers. In
the case of .vv, vector and vector. There is .sv type in
asymmetric operations such as subtraction and shifts.
Load/store instructions of RV32V have three types such

as sequential, stride, and indexed. First scalar source reg-
ister of all load/store instructions is the base address. In
sequential load, if first register value is 1024, 4 sequential
data from 1024 address are loaded. Second source regis-
ter of stride loads is scalar to which is address interval to
refer. Data at address per stride value from base address

Inst. name Behavior
add(i) rd = rs1 + rs2

mul rd = (rs1 * rs2)[31:0]

mulh(u) rd = (rs1 * rs2)[63:32]

and(i) rd = rs1 and rs2

or(i) rd = rs1 or rs2

xor(i) rd = rs1 xor rs2

sub(i) rd = rs1 - rs2

sll(i) rd = rs1 << rs2

sra(i) rd = rs1 >>> rs2

srl(i) rd = rs1 >> rs2

slt(i)(u) rd=(rs1<imm)

l(b|h|w)(u) rd = Mem[rs1]

s(b|h|w)(u) Mem[rs1] = vs1

beq if(rs1==rs2) pc=pc+imm

bne if(rs1!=rs2) pc=pc+imm

blt(u) if(rs1<rs2) pc=pc+imm

bge(u) if(rs1>=rs2) pc=pc+imm

jal pc=pc+imm

jalr pc=rs1

lui rd=imm[31:12],12’b0

auipc rd=pc+imm[31:12],12’b0

TABLE I
Implemented Instruction Set(“I” and “M”)

Inst. name Behavior
vadd(.vv|.vs) vd = vs1 + vs2

vmul(.vv|.vs) vd = vs1 * vs2

vand(.vv|.vs) vd = vs1 and vs2

vor(.vv|.vs) vd = vs1 or vs2

vxor(.vv|.vs) vd = vs1 xor vs2

vsub(.vv|.vs|.sv) vd = vs1 - vs2

vll(.vv|.vs|.sv) vd = vs1 << vs2

vsra(.vv|.vs|.sv) vd = vs1 >> vs2

vsrl(.vv|.vs|.sv) vd = vs1 >> vs2

vld(s|x) vd = Mem[rs1]

vst(s|x) Mem[rs1] = vs1

vpeq(.vv|.vs) vd = vs1 == vs2

vpne(.vv|.vs) vd = vs1 != vs2

vplt(.vv|.vs) vd = vs1 < vs2

vpge(.vv|.vs) vd = vs1 >= vs2

vpand vd = vs1 and vs2

vpandn vd = vs1 nand vs2

vpor vd = vs1 or vs2

vpxor vd = vs1 xor vs2

vpn vd = not vs1

vpswap vd = vs1, vs1 = vd

vmov.vv rd = imm[31:12]&12b0

vextract.vs rd = rs1 or (rs2|imm)

vmerge.vv vd = (vp1)vs2[vs1]

vselect.vv vd = vs1[vs2]

vsetdcfg vtype = imm

TABLE II
Implemented Instruction Set(Vector Extension)

Fig. 4. Predication example

Fig. 5. Configurable register type

are loaded. For example, when base address value is 1024
and stride is 12, 4 data at 1024, 1036, 1048, 1060 addresses
are loaded. Finally, in indexed load, second source regis-
ter is vector index the address to refer. Data at address
value base address adds second register are loaded. For
example, when base address value is 1024 and indexes are
12, 8, 0, and 4, 4 data at 1036, 1032, 1024, 1028 addresses
are loaded.
Unfortunately, these loads/stores cannot be executed

in parallel now. We will consider to construct an unit for
accessing memories in parallel.
RV32V supports a predication function. Figure 4 shows

an example of the predication usage. There are 8 predica-
tion 1-bit vector registers have 4 scalars in this processor.
Initial values of all predication registers are “1”. Source
registers of predication instructions are vector registers.
Like Fig. 4, only factors in predication register that the
conditional equations hold in vector registers are set “1”.
In vector and vector operations, only factors corresponded
predication register is “1” are executed each operation.
RV32V has 32 operation vector registers and there are

vector length registers vl for each operation register and
maximum vector length register mvl. Data type and
length associates with vector registers in programs dy-
namically.
Data type of each vector register is configurable by

vsetdcfg instruction and system registers vtype. Fig-
ure 5 shows function of configurable register type. vtype
exists the same number as vector registers. Right table in
Fig. 5 shows vtype encodings for register bit width. By
executing vsetdcfg instruction, we can change bit width
at every vector register.
vselect is an instruction can collect elements in first

- 36 -

source vector register at the location designated by the
second source vector register and generate new vector reg-
ister. vmerge is an instruction that collects the element
from the first source register if the predication register is
“1”, and collects from the second register if “0”. vextract
is an instruction that loads the first source vector register
from the address designated by the second scalar regis-
ter. vmov.vv is an instruction that moves values in one
vector register. From the above, there are unique instruc-
tions that take advantage of vector registers. This paper
challenged to construct above instructions by implement
appropriate HW resources FHM and micro operation de-
scription for ASIP Meister.

IV. Evaluation

This section explains evaluation methods and results.
We evaluated the basic RV32IM implementation.

A. Evaluation contents

This paper conducted 3 evaluations as follows. First,
evaluate man-hours when adding unique instructions in a
way to compare the amount of required modified descrip-
tion between HDL and ASIP Meister. Next, design qual-
ity of processor is evaluated by using 45nm open cell li-
brary and Design Compiler. Finally, processor ISA imple-
mentation is checked in a way to execute sufficient number
of assembly test programs.

B. Evaluation of man-hours

We conducted ABSSUB and SWAP instructions in ad-
dition to basic ISA. When ABSSUB instruction executes,
the absolute value of the difference of two source registers
is stored to destination register. When SWAP instruction
executes, data is loaded after endian is swapped.
First, we counted the line number of the required

change descriptions when we added above instructions
by using ASIP Meister. Similarly, we counted the line
number of the required change description in Hardware
Description Language (HDL).
Table III shows the compared result of required change

descriptions. When ABSSUB instruction is added, the
number of change description is reduced by 93.5%. When
SWAP, the number is reduced by 94.5%. From the
above result, design man-hours for adding instructions are
greatly reduced.

C. Validation of generated processor

We confirmed the correct behavior of the implemented
processor. Figure 6 shows the environment for this evalu-
ation. Test programs consist of about 400 assembly pro-
grams that execute the same instruction in succession or
all instructions randomly. Used general purpose registers
are also set randomly. These test programs are executed

Fig. 6. Environment for evaluation of processor

in both RISC-V software riscv-tools and the implemented
hardware. After programs are executed, we checked that
values of all general purpose registers in software simula-
tor and implemented hardware are same. As evaluation
result, we confirmed that all test programs are passed
without errors.

D. Evaluation of design quality

We evaluated the area and delay time of processors
for benchmark by doing logical synthesis using Design
Compiler by Synopsys and 45nm open cell library. We
set delay time constraint to 200MHz (5ns/clock) and
400MHz (2.5ns/clock). We also evaluated VexRiscv [5]
that implement RV32IM as well as processor of this paper
because VexRiscv is one of implementations of RV32IM
from HDL. Table IV shows the evaluation result of area
and delay time of processor. Result shows that designed
processor is 1.3 times in area and 1.4 time in delay time as
VexRiscv respectively. Constructing processors on ASIP
Meister may increase the number of multiplexers depend-
ing on descriptions. We assume that performance of this

TABLE III
Comparison of required change descriptions

ASIP Meister (lines) HDL(lines)

ABSSUB 22 341
SWAP 35 615

TABLE IV
The evaluation result of area and delay time

Processor Frequency Area [μm2] Gate number delay time[ns]

ASIP Meister 200MHz 52,632 28,037 4.92
ASIP Meister 400MHz 53,272 28,378 2.42
VexRiscv 200MHz 37,245 19,841 3.70
VexRiscv 400MHz 37,332 19,887 1.50

- 37 -

processor can be improved by optimizing HDL codes, con-
structing RISC-V “C” extension.

V. conclusion

This paper proposed hardware developing environ-
ment for RISC-V 32-bit addressing integer architecture
RV32IM and challenged to construct processor for RISC-
V vector extension RV32V. About 400 test assembly pro-
grams are executed using implemented RV32IM based
processor and we confirmed that all programs are passed
without errors. Moreover, we added ABSSUB and SWAP
instruction to processors and evaluated the amount of re-
quired change descriptions in ASIP Meister and HDL. As
a result, in comparison with HDL, we can add these in-
structions by 6 percent number of change descriptions.
On the other hand, in benchmark test using Design Com-
piler and Open Cell Library, result of processor of this
paper is 1.3 times in area and 1.4 times in delay time as
those of VexRiscv.

Future work includes completing processor design with
vector extension and efficient processor design environ-
ment. Currently, we have not finished to implement data
memory reads and writes in parallel and configurable vec-
tor register type function. RISC-V includes other conve-
nient extensions such as compressed extension “C”, float-
ing point extension “F”, and so on. In particular, “C”
extension is important for performance improvement be-
cause “C” is instruction set that can execute two instruc-
tions at the same time by dividing the 32-bit instruction
register into 16-bit. Therefore, we need to improve perfor-
mance of processor in terms of area, execution cycle time,
and so on. As a mean of performance improvement, we
consider to optimize descriptions such as HDL and micro
operation description and implement “C” extension.

The second work is to implement configurable environ-
ment that can add instructions to riscv-tools and pro-
posed hardware processor at the same time by less num-
ber of change descriptions automatically. The method of
this paper enable designers to extend ISA of HW pro-
cessors by adding descriptions of instruction on behavior
level. However, it is not possible to simulate processors
with HW only. For simulation, SW of compiler, simulator,
etc. are neccessary. Therefore, we aim to enable design-
ers to extend ISA of both HW and SW simultaneously.
We consider to construct an environment for configurable
processor using riscv-tools and ASIP Meister. SW tools
riscv-tools are already configurable because we can ex-
tend instruction set of all SW tools by change a single
instruction definition. The goal is to build a configurable
development environment that can simultaneously extend
SW and HW instruction definitions from a single simple
description.

Acknowledgments

Part of this research is supported by JSPS research
grant JP17K00077. This research was conducted with the
cooperation of Synopsys, Inc. through the University of
Tokyo Large-scale Integrated Systems Design Education
and Research Center.

References

[1] David Patterson and Andrew Waterman, The RISC-
V Reader: An Open Architecture Atlas. Strawberry
Canyon, 2017.

[2] “GitHub - riscv/riscv-tools: RISC-V Tools
(GNU Toolchain, ISA Simulator, Tests),”
Last access date:2019/06/21. [Online]. Available:
https://github.com/riscv/riscv-tools

[3] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach,
Scott Beamer, David Biancolin, Christopher Celio,
Henry Cook, Daniel Dabbeltm, John Hauser, Adam
Izraelevitz, Sagar Karandikar, Ben Keller, Donggyu
Kim and John Koenig, “The rocket chip generator,”
Electrical Engineering and Computer Sciences De-
partment, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, 2016.

[4] Christopher Celio, Pi-Feng Chiu, Borivoje Nikolic,
David A Patterson and Krste Asanovi, “BOOMv2:
an open-source out-of-order RISC-V core,” Elec-
trical Engineering and Computer Sciences Depart-
ment, University of California, Berkeley, Tech. Rep.
UCB/EECS-2017-157, 2017.

[5] “GitHub - SpinalHDL/VexRiscv: A FPGA
friendly 32 bit RISC-V CPU Implementation,”
Last access date:2019/06/21. [Online]. Available:
https://github.com/SpinalHDL/VexRiscv

[6] Masaharu Imai, Yoshinori Takeuchi, Keishi Sakanushi
and Nagisa Ishiura, “Advantage and possibility of
application-domain specific instruction-set processor
(ASIP),” IPSJ Transactions on System LSI Design
Methodology, vol. 3, pp. 161–178, 2010.

[7] Takeshi Shiro, Masaaki Abe, Keishi Sakanushi, Yoshi-
nori Takeuchi and Masaharu Imai, “A processor gen-
eration method from instruction behavior description
based on specification of pipeline stages and functional
units,” in Asia and South Pacific Design Automation
Conference, 2007, pp. 286–291.

[8] Prabhat Mishra and Nikil Dutt, Processor Description
Languages Applications and Methodologies. Morgan
Kaufmann Publishers, 2008.

- 38 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

