
GPU-based Line Probing Techniques for Mikami Routing Algorithm

Chiu-Yi Chan† Jiun-Li Lin� Lung-Sheng Chien�

s996004@mail.yzu.edu.tw p76004148@mail.ncku.edu.tw lungshengchien@gmail.com

Tsung-Yi Ho� Yi-Yu Liu†

tyho@csie.ncku.edu.tw yyliu@saturn.yzu.edu.tw
† Department of Computer Science and Engineering, Yuan Ze University, Taiwan 320, R.O.C.

� Institute of Computer Science and Information Engineering, National Cheng Kung University, Taiwan 701, R.O.C.
� Department of Mathematics, National Tsing Hua University, Taiwan 300, R.O.C.

Abstract— Graphic processing unit (GPU), which

contains hundreds of processing cores, is becoming a

popular device for high performance computation in

multi-core era. With strictly computation regularity

characteristic, specific algorithms are key challenges

for performance speed-up. In this paper, we pro-

pose a parallel CUDA-Mikami routing algorithm on

NVIDIA’s GPU. A 32-bit routing grid encoding is pro-

posed to simplify wire intersection identification and

wire direction recognition. Furthermore, thread-level

and warp-level line probing techniques are proposed

for vertical and horizontal routings, respectively. The

experimental results indicate that the run-time effi-

ciency is promising as compared to traditional CPU-

version algorithms.

I. Introduction

Multi-core processing is an industrial trend for high per-
formance computing since the processor clock frequency
has reached its physical limit. As the number of com-
puting cores increases, parallel algorithm is the key to
fully utilize the computing power of a multi-core sys-
tem. Many parallel algorithms have been developed based
on various parallel computing architectures [1]. Graphic
processing unit (GPU) is traditionally used for graph-
ics and image computations with high computation de-
mands and low data dependency characteristics. In re-
cent years, GPU integrates hundreds of processing cores
to fulfill the needs for high definition images and videos.
High data throughput is achieved by GPU since many
operations can be simultaneously performed on massive
homogeneous cores. With the parallel computation capa-
bility on GPU, lengthy run-time of some applications can
be dramatically improved. Therefore, GPU becomes an
attractive device to improve computation performance of
various applications.

In modern VLSI physical design, millions of compo-
nents are required to be connected in a single chip. Rout-
ing, which determines wire segments of all interconnec-
tions without violating design rules, has become a time-

consuming step due to the huge number of instances and
chip dimension. Many wire routing algorithms are pro-
posed for various routing objectives and design styles.
Among them, maze routing is one of the most important
routing algorithms for wire length minimization [2]. How-
ever, the run-time complexity and memory requirement
of maze routing algorithm result in serious problems in a
large-scale VLSI design. Mikami and Tabuchi propose a
run-time efficient routing algorithm based on line prob-
ing technique [3]. The proposed algorithm guarantees to
obtain a routing result with minimum number of bends.
In this work, we are motivated to utilize NVIDIA’s GPU
computing power for Mikami routing algorithm optimiza-
tion. To the best of our knowledge, this is the first paper
which proposes a GPU-compliant line probing technique
for wire routing.

The rest of this paper is organized as follows. We briefly
introduce conventional routing algorithms and NVIDIA’s
GPU architecture in Section II. Our CUDA-Mikami rout-
ing algorithm is proposed in Section III. The experimental
results and the race condition issue are discussed in Sec-
tion IV. Finally, we conclude this paper and point out
further research directions in Section V.

II. Background

A. Conventional Routing Algorithms

Maze routing, also known as Lee’s algorithm, is a
grid-based path-finding technique based on breadth-first
search (BFS) algorithm [2]. With the nature of BFS, maze
routing algorithm guarantees to obtain a routing result
with minimum wire length from source-point to target-
point. There are two major stages in maze routing: wave
propagation and back trace. In wave-propagation stage,
adjacent grids are incremented by 1 from source-point
to target-point. In back-trace stage, a routing path is
obtained from target-point to source-point. The draw-
back of a two-dimensional maze routing algorithm is the
quadratic run-time complexity and memory storage. A
huge number of grid size could significantly impact the
efficiency of maze routing algorithm.

SASIMI 2012 ProceedingsR3-9

- 340 -

Mikami routing algorithm employs line probing tech-
nique to speed-up the run time of BFS wave propagation.
In line probing stage, with setting both source-point and
target-point as base grids, Mikami routing generates two
level-1 cross lines (one horizontal wire and one vertical
wire) for each base grid. All the grids on the level-l cross
lines will become new base grids in next level. Mikami
routing iteratively generates cross lines from base grids
until there exists cross-line intersection from source and
target points. After that, back traces are performed from
the intersection point to source-point and target-point,
respectively. The actual routing path is completed after
back traces. Mikami routing effectively reduces the run
time of maze routing algorithm.

In summary, maze routing guarantees for routing result
with shortest wire length and Mikami algorithm guaran-
tees for minimum bend count. The search space and time
complexity of maze and Mikami algorithms are O(MN)
and O(L), respectively, where M and N are the horizontal
and vertical grid size, and L is the number of Mikami rout-
ing levels. The graph grids data dependency of Mikami
algorithm is lower than that of maze algorithm, since
Mikami algorithm performs cross line propagation and
maze algorithm performs grid-by-grid wave propagation.

B. Graphic Processing Unit

GPU computing and GPGPU (General-Purpose Com-
putation on Graphics Processing Units) are the techniques
of using GPU to perform general purpose computation.
GPU is traditionally used for graphics and image compu-
tations. Nowadays, GPU collaborates with CPU (host)
in a heterogeneous manner for various applications. GPU
computing is challenging due to the intrinsic graphic oper-
ations in GPU. NVIDIA develops “Compute Unified De-
vice Architecture (CUDA)” parallel programming model
to ease the implementation challenges of general purposed
GPU computing [4, 5]. Fermi is the latest CUDA pro-
gramming model [6]. There are plenty of intrinsic func-
tions supported in Fermi to enhance the performance of
GPU computing.

In CUDA, thread is a fine-grained pseudo GPU pro-
cessing unit for each data-parallel and data-independent
operation. Each thread is assigned to a GPU stream-
ing processor (SP) for actual execution. Since each GPU
contains hundreds of SPs, a GPU program achieves high
throughput if most SPs are executing data-parallel tasks
simultaneously. A warp, which contains 32 threads, is
a scheduling unit on NVIDIA’s GPU. Each warp can be
scheduled to a streaming multiprocessor (SM) for execu-
tion if all required data is ready. Taking NVIDIA GTX
580 as an example, there are 16 SMs and each SM con-
tains 32 SPs. Hence, there are total 512 SPs in a GTX
580. To fully utilize a GPU, the most important issue is
to increase the number of threads for SMs execution. We
will use GTX 580 as our implementation platform in this
work.

Fig. 1. Memory coalesced and non-coalesced phenomena.

In addition, memory access is another key issue for
GPU programming. Since a GPU has its own individual
memory hierarchy, data transfer is required between host
and GPU memories. To reduce the data transfer overhead
between two memories, we need to prevent unnecessary
communications between host and GPU. In GTX 580,
each off-chip memory access fetches 128-byte data into a
cache line. Assume that there are 32 active threads within
a warp and each thread requires a 4-byte data. If all 32
required data are not in the same cache line, there are 32
cache misses (off-chip memory accesses) within a warp.
This phenomenon is so-called non-coalesced memory ac-
cess. If all 32 required data are in the same cache line,
there is only 1 cache miss (off-chip memory access) within
a warp. This phenomenon is so-called coalesced memory
access. A warp with non-coalesced memory access will be
deferred for a long memory access latency. If all warps
are waiting for memory accesses (inactive warps), the SM
utilization as well as the GPU data throughput will be
drastically reduced. Therefore, coalesced memory access
within a warp significantly improves GPU performance.
Figure 1 indicates that 7 vertical threads shares one mem-
ory access (cache line). However, 7 horizontal threads
require 7 memory accesses.

III. CUDA-Mikami Routing Algorithm

We propose a parallelized CUDA-Mikami routing al-
gorithm on NVIDIA’s GPU. Our algorithm is composed
of three stages: preparation stage, CUDA-Mikami stage,
and back-trace stage. In the preparation stage, we gen-
erate cross lines from source-point and target-point. All
grids on the lines are taken as the initial base grids for
CUDA-Mikami stage. In CUDA-Mikami stage, vertical
and horizontal segments are generated from base grids by
using our proposed line probing techniques. All grids on
the generated segments are taken as the base grids for
next level line probing. The line probings are iteratively
performed until an intersection point has been found. Fi-
nally, CPU performs back-trace to determine the routing
path. Figure 2 illustrates the overall routing algorithm.

- 341 -

Fig. 2. GPU-based Mikami routing algorithm.

Fig. 3. 32-bit routing grid encoding.

A. Routing Grid Encoding

To efficiently utilize the precious memory resource in
a GPU, we encode routing level, line source/target, and
line direction into a 32-bit integer routing grid. The
routing level records the sequence number of line seg-
ments. Source/target bit distinguishes the origin of line
segments. The direction field indicates line probing di-
rections. Since there are four different directions, we use
0001(1), 0010(2), 0100(4), and 1000(8) to represent right-
ward, leftward, downward, and upward directions, respec-
tively. Figure 3 illustrates our proposed encoding scheme.

With our proposed encoding scheme, we can easily iden-
tify wire intersection by taking XOR operation on the
source/target bit of two adjacent grids. The wire inter-
section type can be recognized according to the direction
bits from the grids by Equation 1. SourceDir and Tar-

getDir represent source-point and target-point directions,
respectively. Figure 4 draws all wire intersection types.

intersection type = (SourceDir + TargetDir)%8 (1)

B. Line Probing

Line probing marks routing grids according to our pro-
posed encoding scheme. CUDA-Mikami algorithm iter-
atively generates horizontal and vertical wire segments
for line probing. All grids on the generated wires are
base grids for next level vertical and horizontal line gen-
erations. Since the memory-access patterns of horizontal
and vertical lines are different, we separate them into two

Fig. 4. Wire intersection types.

individual line probings and propose different algorithms
to support coalesced memory accesses.

As mentioned in Section II, memory accesses between
adjacent routing grids can be easily coalesced in verti-
cal line probing. Therefore, we propose a thread-level
approach, which generates a vertical line by one thread.
Each thread checks the routability of the corresponding
vertical line and marks all routable routing grids. All
marked grids in current level are base grids for next level
line probings. A thread stops line probing on the first
encountered un-routable grid, which contains a boundary
grid, an obstacle grid, and a marked grid.

In horizontal line probing, non-coalesced memory ac-
cesses occur if we assign a thread to generate one hori-
zontal line. As illustrated in Figure 1, 32 off-chip mem-
ory accesses per warp result in huge performance degra-
dation. To avoid non-coalesced memory access and to
improve cache hit rate, we propose a warp-level line prob-
ing technique, which generates a horizontal line by one
warp. Before discussing horizontal line probing using the
warp-level approach, we first introduce two CUDA intrin-
sic functions ballot() and ffs() [4]. Function ballot()
evaluates a predication for all 32 threads within a warp
and returns an integer. Each thread asserts a bit to 1 if
and only if the thread-corresponding predication is evalu-
ated to non-zero. The predication is user-defined and we
take the predication as the routability of one grid in this
work. Function ffs() is same to common Linux ffs() func-
tion. The ffs() returns the position of the first asserted
bit from least significant bit of an integer. The two intrin-
sic functions are employed within a warp for routability
checking and routable grid marking. Hence, all memory
accesses are coalesced within each warp.

In our warp-level horizontal line probing, all 32 threads
within a warp handles its corresponding routing grid si-
multaneously. We use ballot() to check the routabilities
of 32 adjacent grids. The corresponding bit of each thread

- 342 -

Fig. 5. Example of horizontal line probing.

are de-asserted to 0 for routable grid and asserted to 1
for un-routable grid. The routability result obtained by

ballot() is then used for routable grid marking. There
are two horizontal routing directions, leftward and right-
ward. For leftward routing, the ffs() of routability result
specifies the first un-routable grid. For rightward routing,
the ffs() of bitwise reversed routability result specifies
the first un-routable grid. After that, the warp marks
all routable grids between the base grid and the first un-
routable grid. Each warp continues to handle next 32 hor-
izontal routing grids unless an un-routable grid is found.
Figure 5 illustrates our horizontal line probing. For sim-
plicity, we assume there are four threads in a warp. Sym-
bol ‘S’ and ‘X’ represent the base grid and obstacle grids,
respectively. In Figure 5, the warp checks grid routability
and marks routable grids. The horizontal wire segment
is completed when the first un-routable grid is found in
both directions.

IV. Experimental Result and Race Condition

Issue

We perform the routing experiments on a Linux-based
machine with Intel Core i7 CPU 930 @ 2.80GHz, 8G mem-
ory and NVIDIA GeForce GTX 580. Our CUDA-Mikami
router is compiled with gcc 4.4.5 and nvcc 4.0.

We randomly generate 10 benchmark designs with
thousands of obstacles to evaluate the efficiency of our
CUDA-Mikami router. We also implement Mikami router
in CPU-version for comparisons. The major difference be-
tween CUDA-Mikami and CPU-version Mikami router is
the approach of line probing. In CPU-version, we sequen-
tially generate all the lines one-by-one as the conventional
Mikami algorithm proposed; In CUDA-Mikami, we use
massive threads to generate all the lines simultaneously
on NVIDIA’s GPU.

Table I lists our experimental results. We compare the
results of CUDA-Mikami, denoted GPU, to the result of
CPU Mikami, denoted CPU. Columns No warp and Warp

indicate the results of CUDA-Mikami without and with
warp-level line probing technique during horizontal line
probing, respectively. The ratios of CPU to GPU run-

TABLE I
Run-time comparisons

Benchmarks CPU (msec) GPU (msec) Ratio (%)
No warp Warp No warp Warp

ben2210x2220 75.93 81.53 58.56 93.1 129.7
ben2120x2120 84.40 73.04 49.50 115.5 170.5
ben2345x2134 75.83 75.87 60.19 99.9 126.0
ben2400x2100 80.98 60.69 59.96 133.4 135.1
ben2450x2420 142.90 102.03 77.39 140.1 184.6
ben2700x2525 150.18 91.30 81.03 164.5 185.4
ben2425x2900 169.21 83.65 81.76 202.3 207.0
ben2813x2836 179.46 123.14 94.24 145.7 190.4
ben2800x2550 180.81 88.85 88.54 203.5 204.2
ben2819x2953 200.65 103.80 97.33 193.3 206.2

Average 134.04 88.39 74.85 149.1 173.9

TABLE II
Bend-count comparisons

Benchmarks CPU GPU Difference Ratio (%)
ben2210x2220 345 343 2 0.6
ben2120x2120 358 357 1 0.3
ben2345x2134 301 301 0 0.0
ben2400x2100 253 253 0 0.0
ben2450x2420 190 192 2 1.1
ben2700x2525 226 226 0 0.0
ben2425x2900 232 232 0 0.0
ben2813x2836 267 265 2 0.7
ben2800x2550 188 190 2 1.1
ben2819x2953 222 222 0 0.0

Average 0.4

time improvement are listed in column Ratio. According
to Table I, memory coalesced line probing achieves 173.9%
run-time improvement while memory non-coalesced line
probing achieves only 149.1% run-time improvement.

Our next experiment compares the routing quality of
CPU and GPU Mikami algorithms. The total number of
routing bends are listed in Table II. From Table II, we
notice that the routing bend number of CUDA-Mikami
are slightly greater than that of CPU Mikami. To under-
stand the bend-count differences between the two routers,
we analyze the routing results and identify a race condi-
tion issue during line probing.

Since vertical and horizontal line probings employ dif-
ferent line generating techniques, race condition may oc-
cur when the two line probings are performed simul-
taneously. In horizontal line probing, we use function

ballot() to check the routability and function ffs() to
identify the first un-routable grid. All routable grids, be-
tween the base grid and the first un-routable grid, will be
marked in this level. If an unmarked and routable grid is
read by one vertical thread between horizontal routabil-
ity checking and grid marking, race condition occurs since
the grid can be marked by both vertical and horizontal
line probings. Taking Figure 6 as an example, CUDA-
Mikami marks source bits of all level-1 routable grids to
1 and 0 from source-point and target-point, respectively.
After level-1 cross line generation, all the blue grids be-
come base grids. In level-2 cross line generation, assume

- 343 -

TABLE III
Results of separated line probings

Benchmarks CPU (msec) GPU (msec) Ratio (%)
Combined VH Separated VH CPU to GPU Performance Degradation

ben2210x2220 75.93 58.56 67.93 111.8 16.0
ben2120x2120 84.40 49.50 85.37 98.9 72.5
ben2345x2134 75.83 60.19 64.06 118.4 6.4
ben2400x2100 80.98 59.96 64.33 125.9 7.3
ben2450x2420 142.90 77.39 95.00 150.4 22.7
ben2700x2525 150.18 81.03 104.08 144.3 28.5
ben2425x2900 169.21 81.76 112.42 150.5 37.5
ben2813x2836 179.46 94.24 108.64 165.2 15.3
ben2800x2550 180.81 88.54 109.08 165.8 23.2
ben2819x2953 200.65 97.33 126.51 158.6 30.0

Average 134.04 74.85 93.74 139.0 25.9

Fig. 6. Race condition between line probings.

that the horizontal routability checking is performed by
warp 1 and at the same time line probings are performed
by vertical threads. Three unmarked and routable grids,
labeled in red boxes, are simultaneously accessed by three
vertical line probing threads and one horizontal line prob-
ing warp. As a result, all the three routable grids can be
marked by either vertical line or horizontal line. Since
each grid can be marked for once, the horizontal line is
segmented by a vertical line when the vertical line marks
the grid, as illustrated in Figure 6. Otherwise, the vertical
line is segmented by a horizontal line. This race condition
incurs a routing result with unnecessary routing bends.

To avoid the race condition, we separate horizontal
and vertical line probings in a sequential manner and
get exactly same bend count with CPU Mikami. The re-
sults of race-condition-free router are listed in Table III.
Columns Combined VH and Separated VH indicate the
routing results with and without race condition, respec-
tively. Column CPU to GPU indicates the run-time ra-
tio of CPU Mikami to race-condition-free CUDA-Mikami.
Column Performance Degradation indicates the perfor-
mance degradation of separated line probings. From
Table III, we can find out that the race-condition-free
CUDA-Mikami router has 26% performance degradation
as compared to the original CUDA-Mikami router due
to the reduced number of parallel threads. The overall
run-time reduction as compared to CPU Mikami router
becomes 139%.

V. Conclusions and Future Work

In this paper, we have investigated the GPU-based line
probing issues. We propose a 32-bit routing grid encod-
ing and a simple equation to efficiently recognize intersec-
tion wire directions. Both thread-level and warp-level line
probing techniques are proposed to avoid non-coalesced
memory access for vertical and horizontal routings, re-
spectively. The experimental results indicate that there is
139% run-time efficiency in average as compared to tradi-
tional CPU-version algorithms. Currently, we are extend-
ing our single-net CUDA-Mikami router to a multiple-net
global router. Since we do not utilize share memory to
reduce the number of global memory accesses, there is
much room for further performance improvement.

References

[1] Prithviraj Banerjee, “Parallel Algorithms for VLSI Computer-
Aided Design, 1st edition,” Prentice-Hall, 1994

[2] Lee, C. Y. “An Algorithm for Path Connections and Its Appli-
cations,” IRE Transactions on Electronic Computers, EC-10
(2): 346365, 1961.

[3] K. Mikami, K.Tabuchi, “A computer program for optimal
routing of printed circuit connectors,” Proceedings of IFIP,
H47:1475-1478, 1968.

[4] “NVIDIA CUDA Programming Guide 4.0,” NVIDIA

[5] “NVIDIA CUDA Best Practices Guide 4.0,” NVIDIA

[6] Fermi architecture,
http://www.nvidia.com/object/fermi architecture.html.

- 344 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

