
ASPE: an Abstraction Framework using ALU Arrays for Scalable
Multiple FPGAs System

Kenta Inakagata Takayuki Akamine Hirokazu Morishita
Dept. of ICS, Dept. of ICS, Dept. of ICS,

Keio University, Keio University, Keio University,
Yokohama JAPAN 223-8522, Yokohama JAPAN 223-8522, Yokohama JAPAN 223-8522,

cfd@am.ics.keio.ac.jp cfd@am.ics.keio.ac.jp cfd@am.ics.keio.ac.jp

Yasunori Osana Naoyuki Fujita Hideharu Amano
Dept. of EEE, ARD Japan Aerospace Dept. of ICS,

Ryukyu University, Exploration Agency, Keio University,
Nishihara JAPAN 903-0213, Chofu JAPAN 182-8522, Yokohama JAPAN 223-8522,

cfd@am.ics.keio.ac.jp cfd@am.ics.keio.ac.jp cfd@am.ics.keio.ac.jp

Abstract— Multi-FPGA systems have attracted at-

tentions as cost-efficient accelerators for high perfor-

mance scientific computation. The major problem of

such systems for users is programmability. It is dif-

ficult especially for Multi-FPGA systems to find the

best structure considering the resource and commu-

nication capability with HDL-based design.

Here, ASPE, a design framework using arrays of

processing elements on FPGAs is proposed to address

the problem. Instead of HDL-coding, ASPE makes

the application executed by defining operations and

communication in the ALU arrays on multiple FP-

GAs.

MUSCL, the core program in the computational

fluid dynamics is implemented on the ASPE as an

example, and evaluation results show that about 4.1

times performance compared with software on Intel

Core 2 Duo is achieved.

I. Introduction

Scientific computing is widely utilized in various fields
including physics, biology and finance. In most cases,
performance cannot be satisfied by a general-purpose pro-
cessor because of a large number of floating point calcu-
lations.

A lot of accelerators using diverse hardware devices
have been developed. For example, GPGPUs (Genaral-
Purpose Computing on GPU) and dedicated hardware
like GRAPE(GRAvity piPE)[1] have been achieved dra-
matic performance. However, the former cannot always
resolve problems caused by complicated memory access,
and the latter cannot be developed without paying vast
amount of cost.

An FPGA (Field-Programmable Gate Array) has been
taken notice as an accelerator because of its flexibility

and cost effeciency. FPGAs were regarded as unsuitable
devices for scientific computing due to their insufficient
resources. However, as a rapid growth of FPGA technol-
ogy [2][3], the reconfigurable devices have been introduced
into such a large scale computation [4][5], and realized
some successful examples are reported[6]. Besides, in or-
der to obtain more computational capability, multi-FPGA
systems have been studied. BEE3 (Berkeley Emulation
Engine) and CUBE as a large-scale multiple FPGA plat-
form are good examples[7][8].

The problem is FPGA is difficult to program. In most
scientific computation with FPGAs, a lot of computa-
tional units are connected with a data flow of target ap-
plication. Additionally, HDL(Hardware Description Lan-
guage) are used for FPGA programming. The distribu-
tion of logic into multi-FPGAs system will increase the
designers’ burden.

In order to address this problem, building an array of
programmable processing elements on FPGAs is a hope-
ful approach. SIMD array[9] and systoric array[10] are
practical exmaples. However, they are limited to specific
algorithms which can be also executed efficiently in GPU
or other accelerators. A coarse-grain architecture[11] is
one of approaches, which runs at higher speed and less en-
ergy consumption. but didn’t forcus on high-performance
computing on multiple FPGA platforms. Floating point
ALUs are also introduced into an FPGA[12], but it did
not treat multi-FPGA systems.

Here, we propose a design model called ASPE (ALU
array based Stream Processing for multiple FPGA Envi-
ronment) which constructs of computational circuits by
ready-made ALU array on FPGAs. ASPE contributes
following three : (1) the user can port an application just
by setting the operation of ALU and their interconnec-
tion attached with the data. (2) The user don’t have to
mind the partitioning of multiple FPGAs. For that, ALUs

SASIMI 2012 ProceedingsR1-14

- 71 -

are prepared on multiple FPGAs in advance. (3) Unlike
other processing arrays on FPGAs, the program by using
tokens makes configuration of FPGAs flexible. Following
the above concept, we designed ASPE framework. Then,
we evaluated the framework using MUSCL algorithm in
UPACS, which is CFD package software.

The rest of this paper is organized as follows. Section II.
introduces the design concept of ASPE. Section ?? shows
the FLOPS-2D, which is target platform. Section III. il-
lustrates the detail of implementation. Section IV. shows
the evaluation results and Section V. explains conclusion
and future work.

II. Design of ASPE

In most cases, an accelerator for stream-processing con-
sists of an access controller and a computational circuit
as shown in Fig.1(a). It is difficult for researchers to con-
struct these circuits since optimizing circuits structure is
required with HDL.

In this study, ASPE shown in Fig.2, a stream-
processing machine for single precision floating point com-
putation by a ready-made ALU array is proposed. In
ASPE framework, users can use multi-FPGAs system ac-
cording to the following design flow.

Step 1. Optimize inputs and outputs for the target ap-
plication.

Step 2. Set the configuration data such as the number
of FPGA chips.

Step 3. Set the operations of ALUs in each FPGA chips.

Step 4. Using API, send data from host CPUs

Step 5. After calculation, extract result data from
FPGA using API.

In this paper, we focus on the mechanism for Step 2. and
Step 3. in this flow. APIs are now under development.

First, overview of ASPE is described in this section.
Configuration method is then introduced and finally mod-
ules and operations of ASPE are shown.

A. ASPE Overview

ASPE consists of IFPGAs (FPGAs for input), CFP-
GAs (FPGAs for Computation) and OFPGAs (FPGAs
for output) as shown in Fig.2. The left side of the figure
shows 2D-mesh connected FPGAs which perform compu-
tation by sending data from upper FPGAs to lower ones,
while the right side shows the architecture of the CF-
PGA. IFPGAs manage the data access, thus, their design
depends on applications. Also, OFPGAs store or send
calculation results to the host CPU. One or more num-
ber of host CPUs are connected to the ASPE, and the
calculation data and operations for ALU are sent from
them.

Calculation starts along with the following steps.

Computational
Circuit

(a) basic accelerator

ALU
Array

DATA

Access Controller

DATA

Access Controller

(b) proposed method
 before configuration

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU
Array

DATA

Access Controller

(c) proposed method
 after configuration

Thr

Thr

Fig. 1. Existing Accelerator and Proposed Method

1. Operations are sent from the host machine to each
ALU.

2. After configuration of all ALUs, configuration
completion signals, which informs the host CPU
of the end of FPGAs configuration, are sent.

3. Calculation data from the host CPU are stored in
BlockRAMs of each FPGA or memory modules in
each FPGA board.

4. After storing, data from IFPGA are sent, and calcu-
lated in CFPGAs.

After Step.2, CFPGAs can calculate valid data sent from
the connected host CPU to CFPGAs directly, that is, an
CFPGA does not store data in calculation. In the system,
changing configuration of ALU during calculation is not
supposed.

B. Transferring Operations

CFPGAs are formed in a uniform structures, and no
information for identification such as address or ID is at-
tached due to adding further FPGAs easily. Thus, the
mechanism for transferring operations uses the location
in the coordinate. Configuration data are transferred ac-
cording to the following steps.

1. Assign the location of the target FPGA into the co-
ordinate field in the header: Fig. 3(a).

2. If both x-field and y-field in the coordinate field are
0, transferred data is stored as its own: Fig. 3(d).

3. if y-location is 0, x-field in the coordinate field is
decremented, and the data is transferred to the right
FPGA: Fig. 3(b).

4. if x-field is 0, y-field is decremented, and the data is
transferred to the lower FPGA: Fig. 3(c).

- 72 -

ALU ALU ALU ALU

Buffer Plate

CROSSBAR

ALU ALU ALU ALU

Buffer Plate

CROSSBAR

ALU ALU ALU ALU

Buffer Plate

CROSSBAR

ALU ALU ALU ALU

Buffer Plate

CROSSBAR

ALUCTL

DATA_COMPOSER

DATA_DECOMPOSER

W
LIN

K
_M

A
N

A
G

E
R

S
E

R
IA

L_C
O

N
T

R
O

LLE
R

S
E

R
IA

L_C
O

N
T

R
O

LLE
R

E
LIN

K
_M

A
N

A
G

E
R

SERIAL_CONTROLLER

SERIAL_CONTROLLER

SLINK_MANAGER

NLINK_MANAGER

host

FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA FPGA

FPGA FPGA

FPGA

FPGA : FPGA for Input

FPGA : FPGA for Computation

FPGA

FPGA : FPGA for Output

Fig. 2. The Diagram of ASPE

This mechanism enables to transfer data to the target.
Next, the technique for sending configuration

completion signal to the host CPU is explained. The
host CPU starts to send calculation data after receiving
the signals, so completion of configuration of all CFPGAs
must be guaranteed at the time. Thus, the signal is prop-
agated over each CFPGA by the following rules.

1. Even though a CFPGA receives its own configura-
tion data, the configuration completion signal
is sent after receiving configuration completion
signal of right and lower CFPGAs.

2. Configuration completion signal from a CF-
PGA is sent to upper and left CFPGAs.

This mechanism configures m×n segment of CFPGAs
from upper left most FPGA connected to the host CPU
and doesn’t influence x > m || y > n segment of CFP-
GAs, Thus, configuration by multiple hosts is possible in
the same way.

III. Implementation

Following to concept of ASPE, we should design the
system for setting configuration of ALU, the modules for
synchronizing the timing of calculation , and the connec-
tor of communication between FPGAs. Especially, we
have taken care of the communication bandwidth between
CFPGAs and the timing of calculation. Then, we have
designed the architecture shown as Fig. 2. This system
has 16 ALUs, some synchronizer, and some connector be-
tween an FPGA to another. Additionally, in order to con-
nect further more FPGA to this system easily, we would

host

(0,0)

(3,2)

:FPGA

3 2

(a) setting of coordinate field

host

(0,0)

(3,2)

:FPGA

1 2

(b) movement and
decrement in X direction

host

(0,0)

(3,2)

:FPGA

0 1

(c) movement and decrement
in Y direction

host

(0,0)

(3,2)

:FPGA

0 0

(d) arrival

Fig. 3. Mechanism of Operation Transfer

not like to give some identification to FPGAs. Then, we
have prepared unique configuration headers. Users can
alter ALUs and a way to stream data by changing these
headers. Here, modules in ASPE and the header style are
explained.

A. Modules in ASPE

DATA COMPOSER/DECOMPOSER
This module manages data transfer between ALUs and
SERIAL CONTROLLERs. Here, assume the system includ-
ing 4x4 ALUs with two data inputs and outputs port. In
this case, 8 sets of data are inputted or outputted simul-
taneously in total. Since the IEEE 754 single precision
floating-point data are transferred through 32bits 4-lanes
XGMII interface, it takes 2 clock cycles to send or receive
8 data. Then, DATA DECOMPOSER sends data from ALU to
SERIAL CONTROLLER in two clock cycles. DATA COMPOSER
performs the reverse operation.

ALUCTL
This module delivers configuration data to another

FPGA and stores the data from the host CPU appropri-
ately. When configuration data are received, the header
is checked as mentioned in Section.B.. If the data are for
itself, configuration for ALUs and CROSSBAR in the data
are stored in corresponding register. Otherwise, the coor-
dinate field in the header is decremented properly. After
finishing configuration of itself, right and lower CFPGA,
the FPGA informs of the end of configuration by sending
signal to LINK MANAGER. This module doesn’t influence
calculation data.

{N, S}LINK MANAGER
This module manages data transfer between upper/lower
SERIAL CONTROLLER and each inside module. Data

- 73 -

XBAR

ALU

ALU

Buffer

XBAR

E
LI

N
K

_M
A

N
A

G
E

R

W
LI

N
K

_M
A

N
A

G
E

R

FPGA A FPGA B

DATA

Fig. 4. Data Transfer during Calculation

are sent to ALUCTL during configuration, and also to
DATA COMPOSER and DATA DECOMPOSER during calculation.
The destination is switched according to the signal from
ALUCTL.

{W, E}LINK MANAGER
This module manages data transfer between right/left
SERIAL CONTROLLER and each inside module. The data
are sent to ALUCTL during configuration and to CROSSBAR
during calculation for transfering computational data to
right and left adjacent CFPGAs as shown in Fig.4. The
destination is switched as well as {N, S}LINK MANAGER.

The number of lanes of links limits the data transfer as
following.

• The number of 32bits data transferred between each
CROSSBAR and LINK MANAGER is 4 in maximum.

• The number of 32bits data transferred between CF-
PGAs is 4 in maximum.

The first limitation is required due to XGMII per-
formance. The second is required in case that all
4 data from one CROSSBAR are outputted through
SERIAL CONTROLLER. The arbitration of the data from a
number of CROSSBARs is relegated in this module with
configuration data from the host CPU.

CROSSBAR
The module sends data to ALUs adequately.

Here, CROSSBAR has 16 inputs. Right and left
SERIAL CONTROLLER provide four inputs respectively,
and 8 inputs are provided by ALU or DATA COMPOSER. 16
outputs are also provided by the module.

BUFFER PLATE
This module synchronizes the timing of sending data to
ALUs when data transfer such as Fig. 4 is needed. The
module consists of eight FIFOs and inputs of those FI-
FOs are connected with the output of CROSSBAR. For syn-
chronization, valid signal included in calculation data and
data from SERIAL LINK are utilized.

Add Mult

DIV

Selector

FIFOFIFO

FIFOFIFO

OP_Decoder

OP Valid INA INB EXIST_DIV

OUTA OUTBVALID

Fig. 5. The Architecture of ALU

ALU
Here, the detail of ALU is described. There are 4 × 4

ALUs in each CFPGA, and each ALU supports adder, sub-
tractor, multiplier, divider and through operation. Arith-
metic units in ALU are provided by Xilinx Core Genera-
tor. According to performances of the arithmetic units,
the number of pipeline stages of divider must be 24, and
that of adder and multiplier is 10.

Outputs of ALUs on the same row must be synchronized
for stream-processing. However, the ALUs including 10-
stages pipelined dividers decreases the whole system per-
formance. Also, we would like not to increase clock in
vain. Then, FIFO and EXIST DIV signal synchronizes the
time for calculation. EXIST DIV signal indicates whether
division exists on the same row. If division exists, calcula-
tion requires 24 clock cycles. Otherwise it takes 10 clock
cycles as shown in Fig. 5. Each ALU has two output ports,
one of which is used for outputting calculation result, and
other is assigned for outputting inputted data directly.

B. Header Data for Configuration of CFPGA

Operations for CFPGAs are explained here. Header
data of configuration for the same CFPGA are sent in
3 steps continuously limited by the number of required
configuration data and bandwidth of serial link. The first
header includes the destination.

The structure of header is shown in Fig. 6. The numbers
in parenthesis mean bitwidth of the field. Bitwidth of each
lane is 32 with XGMII. Fields which have not mentioned
previously are explained as below.

• exist recv(exist send)
It indicates whether there are data received (sent)
from (to) right-and-left adjacent CFPGA on each
row.

• x max, (y max)
They mean whether the destination is the right(or
lower)-edge FPGA. Additionally, these signals are
substitutes for signals from right(or lower) FPGA
which informs of the end of configuration.

- 74 -

Step 1
y_max

(1)
x_coord

(8)
y_coord

(8)
exist_div

(4)
x_max

(1)
exist_send

(4)
exist_recv

(4)Lane 0:

OP_ALU_ROW1
(12)

OP_ALU_ROW0
(12)Lane 1:

OP_ALU_ROW3
(12)

OP_ALU_ROW2
(12)Lane 2:

OP_WSERDES
(12)

OP_ESERDES
(12)Lane 3:

Step 2

Lane 0:

OP_CROSSBAR0
(32)Lane 1:

Lane 2:

Lane 3:

OP_CROSSBAR0
(32)

OP_CROSSBAR1
(32)

OP_CROSSBAR1
(32)

Step 3

Lane 0:

OP_CROSSBAR2
(32)Lane 1:

Lane 2:

Lane 3:

OP_CROSSBAR2
(32)

OP_CROSSBAR3
(32)

OP_CROSSBAR3
(32)

Fig. 6. Configuration Header for CFPGA

• x coord, y coord
They are coodinate fields mentioned in Section B.

• OP ALU ROW0 - 3
They mean operations for each ALU in CFPGA.

• OP WSERDES, OP ESERDES
They inform which inputs should be outputted for
LINK MANAGER.

• CROSSBAR
They mean operations for each CROSSBAR in CFPGA.

IV. Evaluation

Here, we evaluate ASPE by means of resource usage
and performance. The performance is estimated by using
an implementation example of MUSCL, an algorithm in
CFD(Computational Fluid Dynamics).

A. Resource Usage

Resource usage of each module in CFPGA is shown in
Table I. We used Xilinx ISE-12.2 in order to measure re-
sources. Each ALU includes four DSP48 primitives. 12
BlockRAMs in total are utilized, an ALU has four and a
BUFFER PLATE has 8 BlockRAMs. The resource consump-
tion of SERIAL CONTROLLER for four lanes is estimated
from the consumption of 2-lanes controller[13]. It is found
that 64 BlockRAMs are used from the estimated result.

Fig. II shows the total resource usage of all mod-
ules except SERIAL CONTROLLER in case of 4 by 4 ALU
array. Since the number of slices of XC4VLX100 on
FLOPS-board is 49,152, the usage is 74.4%. By adding
SERIAL CONTROLLER’s resource estimated, the total used
slices become up to about 90.7%. Though this result
means that there are about 10% available slices, it’s re-
ported that frequency of design tends to decrease as in-
creasing resource usage[?]. Then, adding further modules
may decrease performance.

B. Performance

Performance of CFPGA is evaluated by implementing
MUSCL on ASPE. First, MUSCL algorithm is described.

TABLE I
Resource Usage of Each Module

Module Slices FlipFlops LUTs
ALUCTL 382 613 510
ALU 1,472 1,617 1,864

DATA COMPOSER 131 260 131
DATA DECOMPOSER 163 307 134
BUFFER PLATE 316 336 346

{N, S}LINK MANAGER 266 4 396
{W, E}LINK MANAGER 959 5 1,910

CROSSBAR 2,112 4,224 4,224
SERIAL CONTROLLER 7,996 7,950 8,190

TABLE II
Total Resource Usage of CPFGA

Slices FlipFlops LUTs BlockRAMs DSPs
36,580 31,290 53,950 96 64

The elapsed time is then compared with that on Core 2
Duo and a dedicated computational circuits.

B..1 MUSCL

MUSCL (Monotone Upstream-centered Schemes for Con-
servation Laws) is a method to improve spacial accuracy.
In CFD, the target space is divided into mesh. Equations
are solved at each grid of the mesh. MUSCL extrapolates
contact surface values from cell center values as shown in
equations (1) to (4).

q′i+1/2 =
qi+1 − qi

Δi+1 + Δi
, (1)

q′i−1/2 =
qi − qi−1

Δi + Δi−1
, (2)

qi±1/2
∼= qi ± ψ(r)Δiq

′
i−1/2, (3)

r =
q′i+1/2

q′i−1/2

, (4)

where q represents five physical values consisting of verac-
ity, pressure and temperature. i means the direction in
the mesh, and Δi is the distance between the cell center
and the contact surface. ψ(r) is a limiter function to sup-
press the divergence. There are various limiter functions,
and Van Albada limiter as the equation (5) was used here.

ψ(r) = (r2 + r)/(r2 + 1) (5)

Then, with above known parameters, the physical values
of the neighboring grid qi±1/2 are computed.

- 75 -

FPGA(0,0) FPGA(0,1)

FPGA(1,0) FPGA(1,1)

FPGA(2,0) FPGA(2,1)

Fig. 7. MUSCL on CFPGAs

B..2 Comparison with Execution on Software
and an HDL described system

The flow of MUSCL on CFPGAs is shown in Fig. 7, and
when the calculation is done along this flow, it takes 166
clock cycles over arithmetic units. The number of clock
cycles consumed in SERIAL CONTROLLER is 33 and com-
munication delay over wire is about 181nsec. Operation
frequency measured by TimingAnalyzer is 78 MHz, so it
takes (166+2×33×2)/78MHz+182nsec×2 cycles to finish
a computation. Then, in the ideal case that data is pro-
vided every clock cycle, it is found that calculation with
ASPE is approximately 4.1 times faster than the soft-
ware execution which runs on Intel Core 2 Duo(2.4 GHz).
Source code is compiled by g95 FORTRAN compiler -O2
option.

Next, comparison with HDL described dedicated design
is considered. The dedicated hardware solver for MUSCL
was designed also for FLOPS-2D. From the number of
arithmetic units, the dedicated circuits, and an access
controller can be implemented on a single XC4VLX100.
The dedicated solver of 8,000 times computations runs
at about a half of ASPE’s execution time. The perfor-
mance decrease because of I/O bandwidth for CFPGAs,
not communication delay between multiple FPGAs.

V. Conclusion

ASPE is a design framework using an ALU array for
easy development of accelerators of stream processing on
a platform with multiple-FPGAs. It mitigates the burden
for designers of accelerators including HDL-coding and
circuits optimization by using programmable ALU array.
Evaluation by implementing MUSCL reveals that about
4.1-fold acceleration is expected compared with software
execution.

As future work, in order to make ASPE more familiar
to users, a programming environment with library for IF-
PGA should be developed. Additionally, efficient method
to utilize unused ALUs should be considered.

Acknowledgments
This work is supported in part by Grants-in-Aid for Scientific
Research Japan (200061). The authors also thank to VLSI
Design and Education Centor Japan (VDEC) for suppoting
simulation tools.

References

[1] Junichiro Makino, et al. GRAPE-DR:2-Pflops Massively-
Parallel Computer with 512-Core, 512-GFlops Processor
Chips for Scietific Computing. Supercomputing, 2007.

[2] Keith Underwood. FPGAs vs. CPUs: Trends in Peak
Floating-Point Performance. Proc. of the International
Symposium on Field-Programmable Gate Arrays, pages
171–180, 2004.

[3] Jian Liang, et al. Floating Point Unit Generation and
Evaluation for FPGAs. Proc. of the Annual IEEE Sym-
posium on Field-Programmable Custom Computing Ma-
chines, 2003.

[4] T.El-Ghazawi, et al. The Promise of High-Performance
Reconfigurable Computing. IEEE Computer, Feb 2008.

[5] M.C.Herbordt, et al. Achieving High Performance with
FPGA-Based Computing. IEEE Computer, Mar 2007.

[6] Gerald R.Morris, et al. An FPGA-Based Floating-Point
Jacobi Iterative Solver. Proc. of the International Sympo-
sium on Parallel Architectures, Algorithms and Networks,
2005.

[7] S.Kestur, et al. Accelerating the Nonuniform Fast Fourier
Transform using FPGAs. IEEE Symposium on Field-
Programmable Custom Computing Machines, 2010.

[8] O.Mencer, et al. CUBE: A 512-FPGA CLUSTER. South-
ern Programmable Logic Conference, 2009.

[9] Kentaro Sano, et al. Domain-Specific Programmable De-
sign of Scalable Streaming-Array for Power-Efficient Sten-
cil Computation. In International Workshop on Highly-
Efficient Accelerators and Reconfigurable Technologies,
2011.

[10] Kentaro Sano, et al. Systolic Architecture for Com-
putational Fluid Dynamics on FPGAs. In IEEE Sym-
posium on Field-Programmable Custom Computing Ma-
chines, 2007.

[11] C.Brunelli, et al. A coarse-grain reconfigurable architec-
ture for multimedia applications supporting subword and
floating-point calclulations. Journal of Systems Architec-
ture: the EUROMICRO journal, Vol.56, Issue 1, Jan.
2010.

[12] C.-W. Yu, et al. Optimizing Coarse-Grained Units in
Floating Point Hybrid FPGA. IEEE International Con-
ference on Field Programmable Technology, Dec. 2008.

[13] et al. Hirokazu Morishita. Exploiting Memory Hierarchy
for a Computational Fluid Dynamics Accelerator on FP-
GAs. International Conference on Field Programmable
Technology, Dec 2008.

[14] e. a. Hirokazu Morishita, “Implementation and evalua-
tion of an arithmetic pipeline on FLOPS-2D: multi-FPGA
system,” ACM SIGARCH Computer Architecture News,
vol. 38, pp. pp.8–13, Sep 2010.

- 76 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

