
Dynamic Data Migration to Eliminate Bank-level Interference
for Stencil Applications in Multicore Systems

Wei Hen Lo, Yen Hao Chen, and TingTing Hwang
Department of Computer Science, National Tsing Hua University, R.O.C

turtleevil 1@hotmail.com, tingting@cs.nthu.edu.tw

ABSTRACT

A stencil computation repeatedly updates each point of a d-dimensional
grid as a function of itself and its near neighbors. Modern automatic
transformation compiler framework can generate efficient tiling parallel
stencil codes. Dynamically scheduling parallel stencils significantly im-
proves system performance. However, memory contention problem exac-
erbates because of less idling cores and more memory requests sent to
the DRAM memory. Traditional OS page coloring method which partitions
the memory pages in advance can not alleviate the memory contention
in dynamic scheduling parallel stencils. To address this issue, we provide
a new software/hardware cooperative dynamic data migration method by
exploiting the update-and-reuse property of stencils. We notice that the
OS page allocation needs to be aware of the flexibility for dynamic data
migration in memory to eliminate the memory interference. Experimental
evaluation in a 8-core x86 system shows that our method can improve the
system performance by 7% as compared with dynamic scheduling stencils
in 8-cores 4-memory banks system.

I. INTRODUCTION

Stencil is one of the most fundamental computational patterns in
numerical algorithms. These codes generally achieve low fraction of peak
performance. The computational domains involved in stencils include
medical and life science, petroleum reservoir simulations, weather and
climate modeling, and physics simulations. Stencils may execute tens of
thousands of iterations over spatial domain in order to resolve the time-
dependent solution accurately. Generally, it takes hours running stencils
on supercomputers. Therefore, any performance improvement may reduce
the total runtime tremendously. Figure 1 shows an example of stencil
application named Heat 3D over a 3-dimensional data space where a grid
point of array B in next time step t + 1 is updated using neighboring
indices of array A in time step t. After the computation is finished in each
iteration, array A and array B are swapped and the output data will be
reused as the input in next time step.

for (t=0; t<timesteps; t++) { // time step loop

 for (k=1; k<nz-1; k++) {

 for (j=1; j<ny-1; j++) {

 for (i=1; i<nx-1; i++) {

 // 3-d 7-point stencil

 B[i][j][k] = A[i][j][k+1] + A[i][j][k-1] +

 A[i][j+1][k] + A[i][j-1][k] + A[i+1][j][k] +

 A[i-1][j][k] – 6.0 * A[i][j][k] / (fac*fac);

 }

 }

 }

 temp_ptr = A;

 A = B;

 B = temp_ptr;

 }

Fig. 1. Stencil : Heat 3D Equation

Over the last two decades, there has been significant improvement
in the development of powerful compiler frameworks for dependency
analysis and transformation of loop computations with affine bounds and
affine array access functions [6]–[12]. These techniques often focus on
the most computation-intensive components of scientific and engineering

applications such as stencil applications. For stencil applications, compile-
time optimization approaches have been developed using a polyhedral
abstraction of programs and dependencies [13]. They provide an auto-
matic transformation framework to optimize loop sequences with affine
dependencies for parallelism and locality simultaneously which is also
called loop tiling. Recent studies of loop tiling techniques for stencil
applications also provide opportunities for concurrent start for parallelism
[14]. Concurrent start allows parallel programs not to suffer from the
pipeline start-up overhead. However, these generated parallel codes contain
barriers that will lead to constrained inter-task synchronization. To avoid
load imbalance and resource under-utilization, M. M. Baskaran et al.
proposed a compiler-assisted dynamic scheduling method to schedule these
tiles during run time [1]. The dynamic scheduling method extracts the inter-
task dependencies and generates a directed acyclic graph (DAG) of tasks.
Thus, the tasks can be scheduled dynamically on the cores without barriers,
which improves system efficiency and scalability. Take Heat 3D as an
example. When the parallel code is generated using dynamic scheduling
model, the performance is improved by 23% as compared with simple
synchronization code with barriers.

Since the working sets of stencils are often much larger than the last level
cache, memory contention is still a problem, especially when the number of
processors scales up. In our experiments, dynamic scheduling stencils (ex:
Heat 3D) suffer even more (446%) from the memory interference (memory
bank conflicts) than barrier-synchronization stencils. Because the tasks are
scheduled during run time, it is hard to alleviate memory contention by
mapping data to memory banks statically. Once tasks in different DAG
level being executed in parallel, pre-partitioned memory regions of these
tasks may contend with each other in DRAM memory.

Many previous work has focused on managing memory contention
problem in multi-programmed workloads [2]–[4]. For example, ATLAS
[3] designs a memory controller to prioritize those memory requests
from memory non-intensive application. Thus, those requests will be
served first and will not contend with requests from memory intensive
application. TCM [4], which classifies threads into memory intensive group
and memory non-intensive group, improves not only the overall system
performance but also the system fairness. Lei Liu et al. propose a software
memory partition approach to eliminate bank-level interference, which
applies page coloring method in OS to map the data of threads to specific
banks [2]. Since OS partitions memory space in advance, interleaving effect
will be propagated to the main memory and alleviate memory interference.

The above work mainly focuses on the memory interference in multi-
programmed workloads. When parallel multi-threaded applications are
addressed, Eiman Ebrahimi et al. propose a memory controller scheduling
policy to improve parallel application performance [5]. They first estimate
likely-critical threads based on lock contention information and progress
of threads in parallel loops. Then, the memory controller prioritizes likely
critical threads and shuffles priorities of non-likely-critical threads to reduce
memory contention. This method works well while the structure of the
parallel multi-threaded application is a series of simple parallel loops.
However, for modern multi-threaded applications, parallel structures may
be complex such as a pipeline or a group of tasks which are scheduled
dynamically. It is hard to detect critical tasks during run time. In addition,
applications such as parallel stencils have no lock at all. Hence, their
method is not so effective for parallel stencils.

To solve the memory contention of various kinds of automatic parallel
stencils, we develop a dynamic data migration method to migrate data

SASIMI 2015 ProceedingsR1-5

- 22 -

dynamically. The goal of our dynamic data migration method is to move
data dynamically so that accesses to memory banks are interleaved and the
memory contention caused by different cores is reduced. It includes the
cooperation between OS and memory controller to make sure the migration
process runs correctly and efficiently.

II. MOTIVATION

In Section I, we introduced the compiler-assisted dynamic scheduling
method for parallelization of stencil applications. The dynamic scheduling
method is able to decrease the inefficiency caused by inter-task barrier syn-
chronization and increase load balance. It is especially suitable for stencils
because there may be heavy load imbalance when the dimension of stencils
is high. Figure 2 shows the execution time of many stencil applications
by dynamic scheduling programming model and barrier-synchronization
programming model. The experimental environment setting is a 8-cores
CMP with 16KB private L1 caches, 1MB L2 cache, and 4 memory banks.
We normalize the execution time to that of barrier-synchronization. From
this figure, we can see that the execution time of the dynamic scheduling
stencils are 28.1% faster than that of barrier-synchronized stencils in
average.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Execution Time

Sync. With Barriers

Dyn. Scheduling

Fig. 2. Execution Time of Stencils in Different Program Models

Although dynamic scheduling programming model improves system
performance, it also exacerbates the memory contention problem due to
two reasons. First, the working sets of stencils are usually larger than
the last level cache. Second, the dynamic scheduling allows more number
of concurrent executing cores. Therefore, there are more memory requests
sent to the memory controller per memory cycle. To further improve system
performance, the problem of memory contention must be solved.

After carefully analyzing the type of contention, we notice that a large
portion of memory bank conflicts are caused by only limited number of
memory pages because stencils keep updating and reusing data. Consider-
able portion of bank conflicts is caused by stencils updating blocks of one
task and reusing the same blocks in the the following iterations. We call
it update-and-reuse memory access. If many requests from different tiles
running on different cores collide in the same memory bank the first time,
it is very possible that the subsequent requests accessing the same blocks
will collide again in the future.

In order to verify this observation, we profile some stencil applications.
Figure 3 shows the percentage of the bank conflicts caused by update-and-
reuse blocks. In average, 67% of bank conflicts are caused by update-and-
reuse blocks. If we can migrate contending update-and-reuse blocks into
other bank, a large amount of bank conflicts will be eliminated.

We use the following examples to illustrate our observation. Figure 4
is a directed acyclic graph (DAG) of tasks in a stencil. It represents the
tiling tasks and their dependency. A child task can not be executed on
processors until its parents tasks finish. In this example, we target the
access of memory block C1 of task T3 and the access of memory block
C0 of task T8.

When the parallel model is barrier-synchronization, tasks at each DAG
level need to wait for a barrier as shown in Figure 5(a). It means that T8
must not execute with T3 concurrently because of the barrier. Supposed
that C0 is mapped to bank A when T1 first accesses C0, C1 is also mapped
to bank A when T3 first accesses C1, and T8 accesses C0 after T1 and T3

0%

20%

40%

60%

80%

100%

Heat3d Upstream 3d7pt Wave 3d27pt Avg.

Composition of Bank Conflicts

Updated and Reused Blocks Bank Conflicts Other Bank Conflicts

Fig. 3. Composition of Bank Conflicts in Dynamic Scheduling Stencils

T0

T1 T2 T3

T4 T5 T6 T7

T8 T9 T10

Fig. 4. DAG of a Stencil

finished as shown in Figure 5(a). There is no bank conflicts between the
accesses of C0 and C1 and their subsequent accesses as shown in Figure
5(b), since the tasks T3 and T8 executes sequentially. The memory accesses
denoted as R andW represents the request is a read request or write request.

T1 T2
T3

Core
1

Core
2

Core
3

Core
4

T4 T5 T6
T7

T8 T9
T10

Barrier

Barrier

Execution
Time

(b) Memory Access Condition

Bank A

Bank B

(a) Barrier-Synchronization Execution

C0, C1 are
mapped to

memory bank
A

C1
(W)

C1
(R)

C1
(R)

C1
(W)

T3 Execution Time

C0
(W)

C0
(R)

C0
(R)

C0
(W)

T8 Execution Time

Time

Fig. 5. Barrier-Synchronization and Memory Access Condition

Now, suppose the same example is executed by dynamic scheduling
programming model as shown in Figure 6(a), where tasks T3 and T8 also
execute sequentially. The requests of C0 and C1 will not contend with each
other in the memory as shown in Figure 6(b), which is similar to Figure
5(b).

(a) Dyamic Scheduling Execution

T1 T2
T3

Core
1

Core
2

Core
3

Core
4

T4

T5
T6

T7 T8

T9

T10

Execution
Time

(b) Memory Access Condition

Bank A

Bank B

C1
(W)

C1
(R)

C1
(R)

C1
(W)

T3 Execution Time

C0
(W)

C0
(R)

C0
(R)

C0
(W)

T8 Execution Time

Time

Fig. 6. Dynamic Scheduling and Memory Access Condition : No Conflicts

Suppose another possible execution condition of the dynamic scheduling
stencil is shown in Figure 7(a). In this case, task T3 and T8 executes in
parallel. Let the first requests accessing C0 and C1 contend with each other
in memory bank A. Then, the subsequent memory accesses to C0 and C1

- 23 -

cause more serious bank contention because data intensive applications
such as stencils continuously update and reuse the same memory blocks
as shown in Figure 7(b).

(a) Dyamic Scheduling Execution

T1 T2
T3

Core
1

Core
2

Core
3

Core
4

T4T5

T6
T7

T8

T9

T10

Execution
Time

(b) Memory Access Condition

Bank A

Bank B

C1
(W)

C1
(R)

C1
(R)

C1
(W)

T3 & T8 Overlapped Execution Time

C0
(W)

C0
(R)

C0
(R)

C0
(W)

Time

Fig. 7. Dynamic Scheduling and Memory Access Condition: Conflicts

The above two dynamic scheduling orders show that it is hard to predict
the status of memory contention because we can not predict whether two
tasks will execute in parallel or sequentially. Therefore, simply partitioning
memory statically is not an effective solution to solve memory contention
of dynamic scheduling stencils.

Figure 8 shows a solution to eliminate the memory contention of
dynamic scheduling stencils. The symbols R and W represent that the
request is a load request or a store request. If we find that block C0 contends
with block C1 at time ti at bank A and block C0 is ready to be written to
memory at time tj , we write C0 to bank B. Then, the following requests
accessing C0 will no longer collide with the requests accessing C1. We
call this lazy migration. In general, if the updated blocks of concurrent
executing tasks can be migrated to different memory banks, the memory
contention problem will be alleviated.

Bank A

Bank B

Time

Migrate data C0 to bank B
When data is written to

memory

C1
(W)

C1
(R)

C1
(R)

C1
(W)

C0
(R)

C0
(W)

C0
(R)

C0
(W)

T3 & T8 Overlapped
Execution Time

ti tj

Fig. 8. Eliminate Memory Contention of Reusable Data

III. METHODOLOGY

In the following subsections, we first show the whole system flow from
the automatic transform compiler framework of sequential stencil source
code, the Operation System, the memory controller to DRAM memory in
Section III-A. Next, a special function added to the operation system will
be explained in Section III-B. In the end, we demonstrate how to design
the memory controller to receive information from Operation System and
allow us to migrate data between different memory banks.

A. Overview of System Flow

In this section, we first briefly introduce the flow of executing stencil
codes shown in Figure 9. In the beginning, given a sequential stencil
code, the compiler first uses a scanner and parser to construct an abstract
syntax tree. Then, it uses polyhedral model to represent the data dependen-
cies. After analyzing data dependencies, the compiler will perform tiling
transformation to minimize the communication among tiles. The tiling
transformation is to find a series of proper hyperplanes in the transformation
space and uses these hyperplanes to partition the transformation space into

rectangle tiles. In the end, all information, including dependencies, iteration
spaces, transformations are all fed into a code generator tool such as Cloog
[15] to generate the final parallel code.

Compiler
Framework

Automatically Transform the
Sequential Code into a Dynamic
Scheduling Parallel Tiling Code

Virtual Address

Operation
System

Physical Address

Memory
Controller

DRAM
Memory

Updated-and Reused Aware
Page Allocation

DRAM Address

Migrate-on-write Controller

Sequential
Stencil Code

Fig. 9. Flow of Software-hardware Cooperation Data Migration Method

Figure 10 shows an example of stencil tiling technique, the x-axis
represents the data array space and the y-axis represents the time frames.
The red arrows represents the dependencies between iterations and the
black arrows represents the inter-tile dependencies. Each tile can be seen
as a task which will be executed on a core. Since the inter-tile dependencies
are extracted by compiler, the directed acyclic graph (DAG) of tasks can
be constructed and used during run time.

Time frame

Array space

Fig. 10. Example of Stencil Tiling Technique

Based on the DAG, in the second step, the OS uses a task queue to
dynamically schedule these tasks. Figure 4 illustrates the DAG of the tasks
in the above stencil example. The arrows is the inter-tasks dependencies.
The tasks are prioritized based on the length from current level to the
bottom level.

During run time, when a task of the stencil program accesses the memory
page in the data arrays for the first time, the virtual address of the page will
be found not mapped to any physical frame yet. The memory management
unit (MMU) will signal a page fault to OS. The Operating System (OS)
then finds a free physical frame from the free-list and set up a new page
table entry to map it to the requested virtual address.

Once the memory request is sent from core to memory hierarchy system,
it first looks up the TLB and finds the mapped physical address. Then, the
request will use this physical address to lookup the first level caches. If
there is a cache miss, it will try to look up the next level cache. Once
there is a last level cache miss, the request will be sent to the memory
controller. In the third step, based on the address mapping scheme of the
system, the actual physical DRAM memory address is translated by the
memory controller. Assume that there is a system with 1 channel, 1 DIMM,
1 rank, 4 banks in the DRAM memory. Figure 11 shows an example of

- 24 -

one kind of address mapping scheme where the 17th and 18th bits of
physical address decide which memory bank the physical frame is located
at. We call 17th and 18th bits as bank-bits. If two addresses are mapped
to different banks, the accesses to these locations are interleaving.

row columnbank bits block offset

31 19 17 6 0

Fig. 11. Simple Address Mapping Scheme of 4 Memory Banks

To solve memory contention problem, we proposed a lazy migration
technique. Three main problems related to the migration policy required
to be solved are:

1) Where to migrate the data?
2) When to perform the lazy migration?
3) How to design a memory controller to support the lazy migration?

To solve these problems, we target on the modifications of step 2, the
OS level and step 3, the memory controller in this flow.

B. Updated-and-Reused Aware Page Allocation Policy in OS

Ideally, we would like to have requests to memory bank to be balanced.
Therefore, during the run time, the memory controller should migrate one
contending updated-and-reuse data block to other memory bank. In other
words, once a task starts to execute on a core, the memory controller
gradually moves the updated-and-reuse data blocks to a specific memory
bank for that core. As a result, the updated-and-reuse data blocks from the
tasks executing in parallel will be migrated to different memory banks. An
obvious next question is where the destination is for migration. One way
is to select a destination located at the same relative location but different
bank. That is, the address bits of the destination are the same as those of
migrated data but bank-bits.

However, if there is some useful data already located in the destination
of migrated data, the useful data will be overwritten by the migrated data.
Once some tasks try to access that useful data, they will load the wrong
data and lead to system crash. To solve this problem, we modify the OS
to reserve spare free frames located in different memory banks for data
migration when a page is loaded to memory for the first time. Since there
is free spare space in other memory bank, the data migration will not
destroy useful data.

In the following paragraphs, we will illustrate how we modify OS for
the dynamic data migration method. Our modifications are mainly for the
memory correctness after activating the data migration method.

The way to maintain memory correctness for dynamic data migration
method is to reserve spare memory space in DRAM memory. Therefore,
we target on the modification of the OS page allocating policy. Our goal
is to migrate data blocks accessed by each task to reserved memory bank.
Hence, when the OS receives a page fault, it tries to find a group of free
frames whose physical address is only different in the bank-bits. The OS
will map the virtual page to one of them, and reserves others as spare free
pages for data migration. Therefore, memory controller is able to write
data to any of the spare free frames in this group dynamically later and do
not need to worry about the memory correctness. Note that modern DRAM
memory allows OS to maintain multiple pools of free frames located at
different memory banks [17].

Our new page allocation policy is illustrated in Figure 12. Figure 12(a)
shows the original page allocation policy, where the memory management
unit (MMU) maps the virtual page with a free physical frame. Assume there
is 4 memory banks in the DRAM memory and the address mapping scheme
is shown in Figure 11. Let a physical frame Frame A be located inside a
certain memory bank as shown in Figure 12(a). Figure 12(b) illustrates our
new page allocation method. Suppose we have 2 banks as a group, i. e.,
we reserve one frame in other bank of the same group for migration. Let
18th bit be used to locate a reserved frame in the same group as shown
in Figure 13. As shown in Figure 12(b), Frame A and Frame B are in the
same group and their physical addresses are different only in the 18th bit.
These reserved frames play as a role of free space in the DRAM memory

which allows the memory controller to migrate data from original frame
to reserved frames.

Virtual Pages Physical Frames

Bank 0

Bank 1

Bank 2

Bank 3

Virtual Pages Physical Frames

DRAM
Memory

Bank 0

Bank 1

Bank 2
Bank 3

DRAM
Memory

(a) Conventional memory page mapping
diagram

(b) Proposed memory page mapping
diagram

Frame A

Reserved Frame B

Frame A

Fig. 12. Example of Our Spare Page Allocation Method

row column00 block offset

row column10 block offset

Original frame

Reserved frame

31 19 1718 6 0

Fig. 13. Reserved Pages Scheme of 2 Memory Banks

C. Migrate-On-Write

In this section, we will introduce the key idea of our lazy migration
policy, which is called Migrate-On-Write. Migrate-On-Write means that
the memory controller migrates a data block to other bank only when it is
a write-back request from last level cache. The main advantage of Migrate-
On-Write is two folds. First, it is a lazy migration. The data is migrated
only when it is written to memory. There is no extra memory requests for
migration. Memory controller only needs to change the destination when
the memory request is a write. Second, it migrates the data gradually (only
migrate-on-write). Traditional data migration policy such as page migration
requires to migrate a whole page to another memory bank. Therefore, the
memory controller generates a lot of read and write requests to migrate
data. These extra memory requests will cause more serious bank conflicts
and fail to alleviate the memory contention. In our design, we migrate data
at block level (i.e., a cache block) defined by write-back.

In order to access these data blocks in DRAM memory, we need to
add extra hardware mapping table to record migrated locations of data
blocks. Note that only bank locations are needed to record because all
other bits remain the same. To access the mapping table in memory, we
need an index to the table. Thus, mapping table index is designed which
is appended to a physical address. When a page fault signals the OS to
map a free frame, the OS also assign mapping table index in page table.
The first bit, movable, of mapping table index is designed to record if the
current frame has its reserved frame and can be migrated to other bank.
The rest of bits are frame index. The size of frame index depends on the
number of physical frames that are allowed to be migrated. For example,
if 16K physical frames have reserved frames for migration, the number of
bits of frame index is 14 bits as shown in Figure 14.

D. Memory Controller for Bank-level Interference Elimination

As Figure 15 shows, we add an extra hardware mapping table in the
memory controller to perform bank mapping. The frame index of mapping
table index is an index to the mapping table. In the mapping table, each
entry indexed by a frame index contains bank information of all blocks in
the same frame.

When a block is accessed, frame index is used to index the entry in
mapping table and the block address of its physical address is used to get

- 25 -

row bank bits block offset

46

mapping table index

 frame index

movable

column

32 19 17 6 0

Fig. 14. Address Mapping Scheme for Data Migration

the destination bank. For example, let there be two banks in one group,
where the 18th bit decides destination bank, 64 blocks in one frame and
an address a as shown in Figure 15. First, the movable is checked. Since it
is 1, the mapping table is accessed by using frame index 00000000000000
as index. Next, since the block number is 000001, the second block entry
is accessed and it is 1. Therefore, the translated bank address is 11 and its
translated address ta is as shown. As to the delay of mapping table look-up,
since it happens when a request is added to the memory controller queue,
this check-up will not extend the critical path in the common case because
queueing delays at the memory controller are substantial.

mapping table
index column block

offset

1

Physical Address

row bank

Fram
e D

ecoder

Block Decoder

page offset

100000000000000 01 000001 block
offset address a

row column block
offsetaddress ta

18 17

block address

Fig. 15. DRAM Address Translation Scheme for Data Migration

As mentioned in previous section, the key of our data migration policy
is Migrate-On-Write. When there is a write-back request coming from last
level cache, the memory controller checks the movable bit to see if this
block has reserved space for migrating. If the first bit of mapping table
index is not set, the memory controller writes the data according to the
bank bits in physical address. Otherwise, the memory controller finds a
bank in a group for writing. Then, the next problem is which bank to
write? Should the memory controller write the data to the current bank or
migrate it to any other bank in a group?

To decide which bank to write, the key idea is to balance the loading of
each memory bank. In OS, frames are reserved as spare frames in a group,
we want to balance the use of frames in the group. For a task running on
a core, we use the core ID to select the bank in a group. Assume there
are 8 cores, whose core ID are b000 to b111, 4 memory banks and the
number of frames in a group is 2. Suppose two frames in banks 01 and
11 are assigned as a group. Their frame addresses are the same except the
18th bit. Since there are two frames in a group, we need only one bit from
the core ID. Let the Least Significant Bit of core ID be used to select a
bank in the group. Now, a write-bank request is sent to memory controller
and its bank-bits are 01. If the memory request is from core ID 00, then
frame in bank 01 is written (no migration). If the request is from core 11,
then frame in bank 11 is written (data is migrated). Note that since 0 and
1 appearing in each bit of core ID are equal, we are able to balance the
requests to each bank.

To decide when to turn on/off the dynamic data migration mechanism,
we set a default threshold for the miss rate of last level cache. The state-

of-the-art tools such as LiMit [16] are already able to correctly monitor
per-thread behavior (e.g.,cache miss rate, memory bandwidth etc.) with
negligible overhead. Therefore, the OS can dynamically change its policies
from these tools. If the miss rate grows higher than a threshold, the OS will
turn on the data migration. Otherwise, it will turn off the data migration.
In our experimental setting, we set this default value as 0.2 misses per
thousand instructions (MPKI).

IV. EXPERIMENTAL RESULTS

This section presents the experimental results of our proposed method.
In section IV-A, we will introduce our simulation environment. Section
IV-B shows the overall result of our experiments.

A. Simulation Environment

Environment: We evaluate our method using SIMICS [18] + GEMS
simulator [19] to generate a cycle-accurate x86 system running Linux
2.6.15. The processor model is a simple in-order pipeline model, leaving
each core with a fixed throughput of 1 instruction per cycle. The setting
in detail is described in Table I.

Compiler Framework: Different branches of Pluto [13] are integrated
and barrier-synchronization and dynamic scheduling parallel stencils codes
are generated.

Workloads: We pick five high-dimensions stencils for evaluation be-
cause these programs have higher last level cache miss rate. Hence, these
programs may suffer more from the memory contention in DRAM memory.
These programs are 3D-Laplacian (3d7pt), Heat 3D, 27 points stencils
(3d27pt), Wave and Upstream [13], [20]. The visualization of the stencil
structures are shown in Figure 16. The stencil program Wave is a little
bit different from other benchmarks since it depends on two previous time
steps.

(a) 3d7pt & Heat 3D (b) 3d27pt

(c) Wave (d) Upstream

Fig. 16. Structures of Stencil Workloads

B. Comparison Results

In the first experiment, we execute the parallel stencils with different
programming model in a 8-cores, 1 memory channel, 4 memory banks
multi-core system. In each stencil application, we test the following
schemes: (i) This first scheme, denoted as Sync., represents that the
programming model of the stencils is barrier-synchronized, the OS applies
default page allocation, and the memory controller is not modified. (ii)
The second scheme is denoted as Sync. + OSC.. In this scheme, the
programming model of the stencils is barrier-synchronized, and the OS
applies OS page coloring method to statically partition the memory space.
(iii) The third scheme is denoted as Sync. + OSC + Ours. This scheme
represents that the programming model is barrier-synchronized, OS page
coloring method is still applied, but the data can be migrated dynamically
through our data migration method. (iv) The fourth scheme is denoted
as Dyn.. In this scheme, the programming model is dynamic scheduling,
the OS applies default page allocation, and the memory controller is not
modified. (v) The fifth scheme is denoted as Dyn. + OSC.. This scheme
represents the programming model is dynamic scheduling and the OS
applies OS page coloring method. (vi) The sixth scheme is denoted as

- 26 -

TABLE I
SIMULATED SYSTEM PARAMETERS.

Processor Pipeline 2GHz processors, single pipeline
L1 Cache 16KB, 64B lines, 8-way assoc., Hit latency 1 cycles
L2 Cache 1MB, 64B lines, 16-way assoc., Hit latency 10 cycles

Main Memory 1GB, FR-FCFS, Micron DDR2-800 timing parameters, 1 Channel, 1 Rank, 4 Banks
Interconnect MESH, dimensional routing, NOC routers

OS Linux 2.6.15
Extra Hardware Entries 16K × 64 entries, Access latency 10 cycles

Dyn. + OSC. + Ours. This scheme represents the programming model is
dynamic scheduling and the system performs OS page coloring method
and our data migration method.

Figure 17 compares the execution time for all stencil applications under
the schemes described above. For each application, all bars are normalized
to Sync.. We first compare the results of Sync., Sync. + OSC. and Sync. +
OSC + Ours. In average, compared to Sync., Sync. + OSC. improves the
performance by 3% and Sync. + OSC + Ours improves the performance by
3%. The result shows adding dynamic migration is not so useful because
statically assigning pages to banks is good enough under static scheduling
of task. However, when we compare the performance of scheme Dyn., Dyn.
+ OSC., Dyn. + OSC. + Ours, Dyn. + OSC. degrades the performance
by 4.8%. The reason is because partitioning memory space statically may
cause more memory contention if tasks in different DAG level executing in
parallel. When we compared Dyn. + OSC. + Ours to Dyn., Dyn. + OSC.
+ Ours improves the performance by 7% in average. Our data migration
method can migrate the data evenly to different memory banks. Therefore,
it successfully reduces memory contention.

In summary, Dyn. + OSC. exacerbates the memory contention of
dynamic scheduling stencils while Dyn. + OSC. + Ours can successfully
alleviate the memory contention of dynamic scheduling stencils. In average,
our data migration method improves the performance of all stencils com-
pared to the default setting by 3% when the programming model is barrier-
synchronized and improves the performance by 7% when the programming
model is dynamic scheduling. Compared to the system which only applies
OS page coloring method, our method improves the performance of all
stencils 11.3% when the programming model is dynamic scheduling in
average.

Figure 18 shows the comparison result of total bank conflicts under all
schemes. It shows that the total bank conflicts of Dyn. is 415% more than
the total bank conflicts of Sync. in average. The Sync. + OSC. and Sync. +
OSC + Ours reduces the total bank conflicts by 13% and 14% compared
to Sync., respectively. Compared to Dyn., the Dyn. + OSC. increases the
total bank conflicts by 24.3% and Dyn. + OSC. + Ours reduces the total
bank conflicts by 28.3% in average.

0

0.2

0.4

0.6

0.8

1

1.2

Heat 3d 3d7pt 3d27pt Wave Upstream Avg.

Execution Time

Sync.

Sync. + OSC.

Sync. + OSC. + Ours

Dyn.

Dyn. + OSC.

Dyn. + OSC + Ours

Fig. 17. Performance of Barrier-Synchronization Baseline, Barrier-Synchronization
with Our Method, Dynamic Scheduling Baseline, and Dynamic Scheduling with
Our Method

V. CONCLUSION

In this paper, We have designed and evaluated a new dynamic data
migration method targeting dynamic scheduling parallel stencils. The

0

2

4

6

8

10

12

14

16

18

Heat3d 3d7pt 3d27pt Wave Upstream Avg.

Total Bank Conflicts

Sync.

Sync. + OSC.

Sync. + OSC. + Ours

Dyn.

Dyn. + OSC.

Dyn. + OSC. + Ours

Fig. 18. Total Bank Conflicts of Dynamic Scheduling Baseline, and Dynamic
Scheduling with Our Method

barrier-synchronized parallel code generated by automatic parallelization
approaches suffers from the excessive synchronization in the form of
barriers. On the other hand, the DAG-based dynamic scheduling parallel
program breaks the barriers and improve load balance for effective parallel
execution on multi-core systems. However, it also exacerbates the memory
contention problem because there are more concurrent running cores
generating memory requests. Traditional OS page coloring method which
partitions the memory in advance fails to alleviate the memory contention
because the scheduling order of tasks is decided during run time. Therefore,
we have proposed a dynamic data migration method to solve this problem.
The experimental results show that our method can improve the system
performance by 7% compared with default setting in a 8 cores and 4
memory banks system.

REFERENCES

[1] M. M. Baskaran, N. Vydyanathan, U. K. Bondhugula, J. Ramanujam, A. Rountev, P. Sadayappan, “The Compiler-Assisted
Dynamic Scheduling for Effective Parallelization of Loop Nests on Multicore Processors,” PPoPP’09, pp. 219-228, April
2009.

[2] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, C. Wu, “A software memory partition approach for eliminating bank-level
interference in multicore,” PACT’12, pp. 367-376, September 2012.

[3] Y. Kim, D. Han, O. Mutlu, M. Harchol-balter, “ATLAS: A Scalable and High-Performance Scheduling Algorithm for Multiple
Memory Controllers,” HPCA’12, pp. 1-12, February 2012.

[4] Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, “Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior,” MICRO’10, pp. 65-76, December 2010.

[5] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, O. Mutlu, and Y. N. Patt, “Parallel Application Memory Scheduling,”
MICRO’11, pp. 362-373, December 2011.

[6] C. Ancourt and F. Irigoin. “Scanning polyhedra with do loops.” PPoPP’91, pp. 39-50, February 1991.
[7] C. Bastoul. “Code generation in the polyhedral model is easier than you think,” PACT’04, pp. 7-16, September 2004.
[8] P. Feautrier. “Dataflow analysis of array and scalar references,” IJPP, 20(1):23-53, 1991.
[9] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, O. Temam. “Semi-automatic composition of loop

transformations,” IJPP, 34(3):261-317, June 2006.
[10] A. Lim. “Improving Parallelism And Data Locality With Affine Partitioning.” PhD thesis, Stanford University, August 2001.
[11] W. Pugh, “The Omega test: a fast and practical integer programming algorithm for dependence analysis,” Communications

of the ACM, 8:102-114, August 1992.
[12] F. Quillere, S. V. Rajopadhye, and D. Wilde. “Generation of efficient nested loops from polyhedra.” IJPP, 28(5):469-498,

2000.
[13] U. Bondhugula, J. Ramanujam, and P. Sadayappan. “Pluto: A practical and fully automatic polyhedral parallelizer and locality

optimizer.” Technical Report OSU-CISRC-10/07-TR70, The Ohio State University, Oct. 2007.
[14] V. Bandishti, I. Pananilath, and U. Bondhugula. “Tiling Stencil Computations to Maximize Parallelism,” SC’12, pp. 1-11,

November 2012.
[15] CLooG: The Chunky Loop Generator. http://www.cloog.org.
[16] J. Demme, S. Sethumadhavan, “Rapid Identification of Architectural Bottlenecks via Precise Event Counting.” ISCA’11, pp.

353-364, June 2011.
[17] JEDEC. Standard No. 21-C. Annex K: Serial Presence Detect (SPD) for DDR3 SDRAM Modules, 2011.
[18] P. Magnusson et al. “Simics: A full system simulation platform.” Computer, 35(2), Feb 2002.
[19] M. M. K. Martin et al. “Multifacets general execution-driven multiprocessor simulator (GEMS)”
[20] M. Christen, O. Schenk, H. Burkhart, “PATUS: A Code Generation and Autotuning Framework for Parallel Iterative Stencil

Computations on Modern Microarchitectures,” IPDPS ’11, pp. 676-687, May 2011.

- 27 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CurlzMT
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /HelveticaNarrow
 /HelveticaNarrowBold
 /HelveticaNarrowBoldLefty
 /HelveticaNarrowBoldOblique
 /HelveticaNarrowLefty
 /HelveticaNarrowOblique
 /Helvetica-Oblique
 /HGGothicE
 /HGGothicM
 /HGGyoshotai
 /HGKyokashotai
 /HGMaruGothicMPRO
 /HGMinchoB
 /HGMinchoE
 /HGPGothicE
 /HGPGothicM
 /HGPGyoshotai
 /HGPKyokashotai
 /HGPMinchoB
 /HGPMinchoE
 /HGPSoeiKakugothicUB
 /HGPSoeiKakupoptai
 /HGPSoeiPresenceEB
 /HGSeikaishotaiPRO
 /HGSGothicE
 /HGSGothicM
 /HGSGyoshotai
 /HGSKyokashotai
 /HGSMinchoB
 /HGSMinchoE
 /HGSoeiKakugothicUB
 /HGSoeiKakupoptai
 /HGSoeiPresenceEB
 /HGSSoeiKakugothicUB
 /HGSSoeiKakupoptai
 /HGSSoeiPresenceEB
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /MingLiU
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Gothic
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MS-UIGothic
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /NewCenturySchlbk-Bold
 /NewCenturySchlbkBoldCn
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbkBoldLeftie
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewCenturySchlbkRomanCn
 /NewCenturySchlbkRomanLeft
 /NewGulim
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NSimSun
 /OCRAExtended
 /OCRB
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Pristina-Regular
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /UnDotum
 /UnDotum-Bold
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

