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Abstract- With the increase of colorectal cancer patients in recent 
years, the needs of quantitative evaluation of colorectal cancer are 
increased, and the computer-aided diagnosis (CAD) system which 
supports doctor's diagnosis is essential. In this paper, a hardware 
design of type identification module in CAD system for colorectal 
endoscopic images with narrow band imaging (NBI) 
magnification is proposed for real-time processing of full high 
definition image (1920 x 1080 pixel). A pyramid style image 
segmentation with SVMs for multi-size scan windows, which can 
be implemented on an FPGA with small circuit area and achieve 
high accuracy, is proposed for actual complex colorectal 
endoscopic images. 
 

I. Introduction 
 
With the increase in the number of colorectal cancer patients, 
systems which support a doctor's diagnosis have been 
researched. The computer-aided diagnosis (CAD) system for 
colorectal endoscopic images with narrow band imaging 
(NBI) magnification [1] has already been proposed [2]. The 
proposed CAD system classifies colorectal endoscopic images 
obtained by classifying endoscopic diagnosis into three types 
(Types A, B, and C3) based on the NBI magnification findings 
(Fig.1).  

Currently our software implementation of the system is able 
to identify with only the region (we call scan window) as small 
as 120x120 pixels at 14.7 fps and it takes about 20 minutes to 
scan and process a whole Full-HD (1920x1080) image. For 
further speed improvement for high resolution image, a 
hardware realization is indispensable because the computation 
time of software implementation is exponentially increased 
with the increase of image size. As a demand on a clinical 
doctors, the proposed CAD system satisfies the throughput of 
1 - 5 fps and the latency is at least 1 sec for on-the-fly 
diagnostic supporting. 
 

II. Overview of Computer-Aided Diagnosis System 
 
Outline of the proposed CAD system is shown in Fig. 2. The 
system is based on a Bag-of-Features (BoF) representation of 
local features in the endoscopy image.  
 The system has two stages, learning and testing. The 

overview of processing flow of the system is as follows.  
First, the local feature quantities of the endoscopy images in 

each type are extracted based on Dense Scale-Invariant 
Feature Transform (D-SIFT) algorithm [3] because the pit 
patterns of endoscopic images (Fig. 1) are very complex and 
irregular comparing with object recognition such as face and 
pedestrian recognitions.  

Then the features obtained from the learning phase are 
clustered and the center of each cluster is saved as a Visual 
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Figure 1. Narrow Band Imaging (NBI) magnification findings [1].

Figure 2.Computer-Aided Diagnosis system  
for endoscopic images. 
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Word (VW) for each type, which are used for feature 
representation using k-means clustering. In the classifier 
module, support vector for support vector machine (SVM) is 
obtained at the learning phase using the type information of 
leaning image which is judged by the professional doctors.  

Next, in the testing phase, the D-SIFT based feature 
extraction is performed for a whole input image and a visual-
words histogram is created by voting for the nearest VW. Then 
the CAD system classifies the testing image within an 
endoscopy movie (frame) by pre-learned SVM.  

Finally, a color gradation map which is converted from the 
result of classifier for each SW displays for doctor as a “second 
opinion” (Fig. 3). In our software implementation, D-SIFT of 
Library VLFeat [3] is used for the feature extraction and 
Support Vector Machine (SVM) of LIBSVM [4] is used for 
type identification.  

Also, as a utility of the real-time image recognition system, 
our research group applied the system to real clinical test. In 
the learning phase, a set of 2,247 cutout endoscopic images 
which were collected by a technical doctor are used. The 
learning images are separable into 504 Type A images and 
1,743 Type B and C3 images, so in this experiment, the system 
identifies into type A or B&C3. The feature quantities 
extracted from D-SIFT algorithm are 128-dimensional vectors. 
Then, an output of the system is the SVM output value, and a 
cutoff value of the SVM output value is 0.5. Figure 4 shows 
that the result of evaluation and from this result, our group 
verified that the SVM output value of neoplastic lesions could 
identify the non-neoplastic lesions or neoplastic lesions [5]. 
 

III. Type Identifier Based on Support Vector Machine 
 
A. Support Vector Machine (SVM) 
 

Support Vector Machine (SVM) is a technique of binary 
classification introduced in 1990s by Vapnik [4]. There are 
several kernels of SVM, which generate identification hyper-
plane that maximizes a margin between a class Y and a class Z, 
allows the SVM to achieve high identification performance to 
an unlearned image. The accuracy difference in SVM 
computation using those different kernels is only 1% in our 
previous experiments [1]. Hence, the simplest one, the linear 
kernel is selected in our work. The linear kernel is also the best 
suitable for hardware implementation. Equation (1) shows a 
decision function of SVM with linear kernel in this work. 

��:�(�⃗) = � �	
�� × 
�������⃗�����

���
∙ �⃗ + ��:� (1) 

In which, x is a test data, svi is Support Vector (SV), which is 
obtained at the learning step for hyper plane identification 
between two corresponding classes Y and Z. coefi is a 
coefficient of each svi, and ρY:Z is a coefficient of a decision 
function. If the identification function dY:Z(x) is a positive 
value (>0), an input data x is determined as the class Y. 
 In this work, it is better for the hardware implementation to 
calculate the decision function by fixed-point number rather 
than floating point one. Verification on identification 18-bit 
fixed-point number, with 16 bit fraction is acceptable without 
decrease in accuracy compared with identification using 
floating-point number [6]. 

In order to realize 3-class (3-type) identification, we adopt 
probability estimation technique with two recognition stages 
[6]. The first stage evaluate type A or B&C3, the second stage 
evaluate type B or C3 (we call 2-step evaluation). 
 
B. Prediction Rate 
 
Prediction rate shows that a result of identification from input 
data x is represented as a percentage each type [7]. Prediction 
rate is computed from the result of decision function as shown 
as eq. (1), and its distribution map with decision function 
values draws as sigmoid curve.  
 
C. Pyramid-style Type Identification 
 
Accordingly, due to the complexity of the boundary of each 
type as shown in Fig. 5, 6 and 7, upper left part, it is difficult 
to catch the boundary of each type only by performing 
identification by single-size scan windows and to determine 
the image segmentation from the results. Thus we proposed a 
pyramid-style identification method using multiple-size SWs 
in Fig.8 [8]. In this paper, four multi-level scan window sizes, 
such as 60x60, 120x120, 180x180, and 240x240 pixel, are 
used. In general, the multi-level scan does not necessarily need 
to process simultaneously. Since the sequential processing is 
suitable in software implementation, if the type identification 
result does not clearly determine in the current level scan 

Figure 3. An Identification result for Type B NBI endoscopic image.

Figure 4. Support vector machine (SVM) output values  
for the images of non-neoplastic and neoplastic lesions [5].

Cutoff value

No. of Learning images : 2,247
( Type A : 504, B and C3 : 1743)
SIFT descriptor : 128-dimensional vector

No. of Testing lesions : 118
( Non-neoplastic : 45, Neoplastic : 73)
Region of Interest : the center of
videoendoscopic image (200 x 200 pixels)
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window, then the scan window will be broken down to the 
lower level scan window size. This method is top-down 
hierarchical identification. In this paper, a bottom-up 
hierarchical method is used. We call this method as pyramid 
style identification. In the method, the type identification 
results of all levels are accumulated and the probability of each 
type of each unit region (unit scan window) is calculated. 
Finally an image segmentation result is obtained based on each 
grid prediction rate. 

This method is suitable for hardware implementation. In the 
method, each unit probability is calculated using SVMs 
learned in each scan window size which is different on each 
level. Therefore, compared with the case where a SVM learned 
in single scan window size is used for scanning image, the 
number of scanning windows of the whole image is 
substantially reduced up to 1/10 (#SWs:17555 to 1901). 
Moreover, it is possible to improve the resolution of image 
segmentation by combining multi-level scan windows.  

Generally, although the identification accuracy of a small 
scan window becomes low, by considering the identification 
result of scan window for each level, the pyramid style 
hierarchical identification can suppress the decrease of 
identification accuracy. Since the multi-level SVMs in the 
bottom-up method can be calculated by one image scan and 
does not require random access to an external memory, it is 
suitable for the hardware implementation of the streaming 
processing. 
 

IV. An Architecture of Decision Function Calculator 
 

Figure 9 shows the block diagram of the decision function 
module in our type identification module. In the case of the 2-
step evaluation method, we calculate two decision function, ��:�̅(�⃗) and d�:��(�⃗), and so we need two decision function 
calculation modules. Since high dimension feature quantity 
(512 dimensions) is processed in our medical application, it is 
necessary to perform the sum-of-product operations, which 
has included the decision function (eq.1), in parallel.  

Hence, there is a subject that how to reduce hardware 
resources while increasing parallel degree. The decision 
function calculation module is implemented using 2 pipelined 
stage architecture. The 1st stage is used for sum-of-product 
computation and the 2nd stage is used for summation. Support 
vector (SV) and coefficients obtained by learning step are read 
from memories. The timing chart of the calculation one scan 
window is shown in Fig.10. The sum-of-product calculation in 

Figure 5. Result of the real endoscopic image (Type B).

Figure 8. Concept of the image segmentation  
with 4-layered pyramid style SVM.

Figure 9. Decision function calculation architecture.
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Figure 6. Result of the real endoscopic image (Type B).

Figure 7. Result of the real endoscopic image (Type C3).
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the decision function is computed by sum-of-product 
calculator blocks which are colored to pale red in parallel.  
When the 1st sum-of-product calculation is finish, the other 
support vectors are read from sv memory for the next sum-of-
product calculation. At the same time, coefficient calculator 
reads the result of each sum-of-product, multiplies it with �	
��  before summing them up for summation. Finally, the 
coefficient � : !  is added to compute the calculation of the 
decision function. 

 
V. An Architecture of Prediction Rate Calculator 

 
Prediction rate is calculated repeatedly till minimizing error, 

so it is not taken constant processing time [7]. Therefore, it is 
desirable to develop hardware algorithm which can compute 
the prediction rate in fixed processing time for realization 
hardware implementation. Thus, distribution curve is 
approximated to linear as shown as eq. (2). The original 
sigmoid curves are colored by gray, and approximated lines are 
colored by blue and green, ��:�̅(�⃗)  and �":#�(�⃗) , 
respectively as shown as Fig. 11. 
 

$%
�&�'&	* -.'

= / 1�
��.02
 × . + 30

(�
��.02
 × . + 3 > 1)
(�
��.02
 × . + 3 < 0) (2) 

We also suggest a hardware-oriented method for probability 
estimation using 5-bit 2-stage look up table. A result of 
verification shows that the proposed probability estimation 
with 2nd stage in the range of 0.45 ~ 0.55 performs the same 
accuracy (± 2 %) with software implementation. Figure 12 
shows a prediction rate calculation architecture with 2-state 
look-up table. 

 

 
VI. Performance Verification of CAD system 

 
We have implemented the decision function calculation 

architecture on FPGA, Altera Stratix IV (EP4SE530H35C2) 
device. The occupied resources several number of parallel 
multiplier DSPs, 32, 64 and 128, and processing time are 
shown in Table 1. Also, we verified that a performance of the 
whole CAD system which computes one Full-HD endoscopic 
image from input an image data into feature extraction module 
[8] to output the result from type identification module via a 
feature transformation module [9] as shown as Fig. 13. 

The processing time of feature transformation module in Fig. 
13 is a critical path in our system, so the number of parallel 
multipliers as shown as Fig. 13 at the bottom can reduce to 64 
in the same processing time from 128. From this performance 
verification results, throghtput is 16.7 fps and latency is 60 
msec at 100 MHz. So it is achievable about the real time and 
on-the-fly diagnostic support for clinical doctor (demand 
throghtput: >5 fps, latency: <1 sec). 
 
VII. Estimation Platform Construction for SVM Identifier 

with Hardware-Software Co-design 
 
 We constructed an estimation platform with hardware-
software co-design for the proposed SVM architecture. 
Overview of the platform used in estimation is shown in Fig. 
14 and 15. Real endoscopic recorded movie which provided 
from Hiroshima University hospital is input to the system via 
HD-SDI (Serial Digital Interface) cable. We use a Decklink 
mini recorder as a capture board, and a ProceIV 530-A 
Development board for implementation. The development 
environment is shown in Table 2. 
 Once, a scan window (SW) is trimmed from the input frame, 
and feature vectors are extracted by feature extraction module. 
The feature vectors are transformed to Visual Word (VW) Figure 11. Timing chart of calculating the decision function.

Figure 10.Timing chart of calculating the decision function.
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histogram, and input to the type identification module 
implemented on FPGA. PCI Express Gen3 x4 connection 
between PC and FPGA board using Direct Memory Access 
(DMA) method. Other SWs of the input frame are processed 
in the same manner.  
 Table 3 shows the comparison in processing time of the type 
identification module (shown in red rectangle on Fig. 15) to 
process one SW in hardware and software, in which, 
processing time on hardware is defined as time for VW 
histogram transmission from software to hardware using DMA 
method and computation time on hardware. Since processing 
time of one SW relies on the number of dimensions of VW 
histogram, this time is unchanged regardless the size of each 
SW. 
 
 

 

 Type identification time of one Full-HD frame with pitch 60 
and pitch 30 pixels are shown in Figs 16 and 17. The parallel 
degree P is set to 64. The total processing time of one frame 
lineally increases with the number of SW inside the frame. 
Hence processing time for frame with bigger SW size 
gradually decrease in both hardware and software 
implementation, from 771 msec to 667 msec and from 35.7 
msec to 30.7 msec on software and hardware implementation, 
respectively for raster scan with pitch 60 pixels as shown in 
Fig. 16. These time increase 4 times when raster scan with 
pitch 30 pixels as shown in Fig. 17. In all the situation, the type 
identification implemented on FPGA is 20 times faster than 
that on software. 
 
 
 

 

timeTotal Clocks : 6,099,783 clk

P=128

P= 64

Feature 
extraction

Feature 
transformation

Type 
identification

Figure 13. A processing time estimation to compute one Full-HD frame.

 # ALUTs 424,960 2,154 1% 2,992 1% 8,079 2%
 # registers 424,960 2,256 1% 3,759 1% 7,200 2%
 # Logic Array Blocks 21,248 207 1% 299 1% 795 4%
 # M9K RAM Blocks 1,280 512 40% 520 41% 512 40%
 # M144K RAM Blocks 64 64 100% 64 100% 64 100%
 # 18 x 18 DSPs 1,024 288 28% 544 53% 1024 100%

163.9 MHz 133.0 MHz 122.61 MHz

Altera Stratix VI Available
(EP4SE530) 32 64 128

15,368 clocks 7,696 clocks 3,872 clocks

FPGA board

HD-SDI signal
capture board

Table 1. Resource Utilization of the decision function.

Figure 14. FPGA and Capture board.

Table 3. Processing Time Estimation of a SW.

ScanWindow
Size

60
(msec)

120
(msec)

180
(msec)

240
(msec)

Hardware 0.06 0.06 0.06 0.06

Software 1.2 1.2 1.2 1.2

FPGA Board PROCe IV 530-A (GiDEL)

Memory On-board DDRII 512MB 
DDRII SODIMM 1GB x2

Installed 
FPGA

Altera Stratix IV
EP4SE530H35C2

Host I/F PCI-Express Gen 3.0
OS Windows7 Enterprise SP1 64bit
CPU AMD FX-8120 8Core @3.10GHz
Memory DDR3-1333 8GB 4
Language C++
IDE Microsoft VisualStudio 2012
Library OpenCV 3.0
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PC (Software)
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Table 2. Elements of Evaluation Environment.
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VIII. Conclusion 
 

 In this paper, we introduce the hardware architecture of 
type identification module with SVM for endoscopic images. 
Estimation on processing time shows that the system can 
process one frame in 61 msec@100 MHz (with 64 parallel 
multiplier DSPs). We also evaluate the processing time of a 
scan window on the evaluation environment using hardware-
software co-design method. The processing time of type 
identification module for one scan window on hardware is 
about 0.06 msec, and is about 20 times faster than that of scan 
window implementation, which needs 1.2 msec to process one 
scan window. Processint time of type identification for one 
Full-HD frame is also verified. 
 Future work includes the development of the whole CAD 
system including our D-SIFT architecture [8] and our feature 
transformation architecture [9] in one FPGA board. 
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Figure 16. Result of Processing Time Evaluation (60 px pitch).
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Figure 17. Result of Processing Time Evaluation (30 px pitch).
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