
Reconfigurable Activation Functions for Neural Networks Application

Abstract - Field programmable gate arrays (FPGAs) have
recently become popular for accelerating the deep learning
networks due to their parallel processing and reconfigurable
capabilities as well as their energy efficiency. This paper presents
a multi-layer neural network architecture with novel
reconfigurable activation functions by utilizing the coordinate
rotation digital computer (CORDIC) technique and applying the
floating-point format (IEEE 754 standard in single precision).
The functionality was successfully verified in hardware using a
DE2-115 board that included an Altera Cyclone® IV FPGA.

I. Introduction
An artificial neural network (ANN) is an interconnected

group of nodes which perform functions collectively and in
parallel, akin to human brain activities [1, 2]. ANNs have
broad applicability to real world problems and are fast-
growing artificial intelligence (AI) techniques used in
industries during recent years. The artificial neuron represents
real neuron mathematically. A large number of hardware
architectures have been proposed for hardware
implementation of ANNs. ANNs may be carried out by using
analog systems or digital systems. In addition, existing
platforms for hardware implementation of ANNs include
digital signal processing (DSP) chips, application specific
integrated circuits (ASICs), graphical processing unit (GPU)
[3] and field programmable gate array (FPGAs) [4]. As the
parallel structure of FPGAs matches the topologies of ANNs,
they are quite suitable for the implementation of ANNs [5, 6].

The FPGA-based designs can accelerate the network
classification process (forward computation) and achieve
faster execution time and higher energy efficiency than CPU
and GPU. This feature enables the neural network inference to
have the advantage of reducing the cost of neural model
development. Most FPGA implementations are reconfigurable
by means of system regeneration and device reconfiguration to
change the network topology. Although network training
describes the problem of determining the parameters to model
the target function, the activation function of the nodes can
affect the training behavior of the network. Various activation
functions lead to different convergence behavior and accuracy.
For example, long short-term memory (LSTM) is the most
commonly used model in the current recurrent neural network
(RNN). The RNN is mainly applied to solve the problem of
time series data. In training RNN, different kinds of activation
functions can be applied to obtain the different shapes of the
error surface. The presented reconfigurable activation

functions can provide more flexible applications for neural
networks. In this paper, the FPGA implementation with
reconfiguration activation functions for neural networks is
thus proposed.

II. Non-Linear Activation functions

 A neuron forms the basis for designing the ANNs. The
output activation f for the neuron is described by

1

().
m

i ij j i
j

o f w x b

 (1)

wij denotes the weights connecting the jth input unit to the ith
hidden unit. The weighted summation adds up the products of
previous neurons multiplied by the corresponding weights, and
then, the activation function is utilized to calculate the output.
The bias bi can be viewed as simply another weight (w0) with a
constant input of 1 (x0=1). The role of activation functions is to
make neural networks non-linear. The non-linearity takes a
real-valued number and squashes it into the range between 0
and 1. In particular, large negative numbers become 0 and large
positive numbers become 1. The sigmoid function is
frequently applied because it has a nice interpretation as the
firing rate of a neuron. The ReLu function is fragile during the
training procedure. A large gradient flowing through a ReLu-
based neuron could cause the weights to update in such a way
that the neuron will never activate on any data point again. By
exploiting the MNIST dataset [7], an ANN model is trained by
a two-layer perceptron to recognize the handwritten digits.
Fig.1 depicts the training loss for two types of activation
functions. For a two-layer perceptron, the training loss of the
sigmoid function is less than that of ReLu function.

Fig. 1 Training loss over iterations for the ANN model

Fig. 2 shows the evaluation results of a neural network

performance with different activation functions, including the
sigmoid, ReLu and hypertangent (tanh) functions to train the

Wun-Siou Jhong

Dept. of Electronic Engineering
National Kaohsiung University

of Science and Technology,
Taiwan
email:

f107152130@nkust.edu.tw

Shao-I Chu

Dept. of Electronic Engineering
National Kaohsiung University

of Science and Technology,
Taiwan
email:

erwinchu@nkust.edu.tw

Meng-Jhe Li

Dept. of Electronic Engineering
National Kaohsiung University

of Science and Technology,
Taiwan
email:

1106305149@nkust.edu.tw

Yu-Jung Huang

Dept. of Electronic
Engineering,

I-Shou University, Kaohsiung,
Taiwan
email:

yjhuang@isu.edu.tw

SASIMI 2019 ProceedingsR1-3

- 14 -

CartPole Agent in OpenAI gym [8]. It indicates that the tanh
outperforms the other two activation function.

(a) Sigmoid function

(b) ReLu function

(c) Tanh function

Fig. 2 Learning curve for different activation functions

III. FPGA Implementation
Activation functions play an important role in the

applications of deep learning and neural networks. A neural
network with reconfigurable activation functions is
implemented in the FPGA board. FPGA implementation of
activation functions based on using the floating-point
CORDIC technique [9] is shown in Fig. 3. The floating-point
format is IEEE 754 standard in single precision. The CORDIC
technique is a simple and efficient algorithm to implement the
hyperbolic and trigonometric functions in hardware. We use
the rotation mode to implement the exponential function.

As shown in Fig. 4, the Zynq SoC with an FPGA and an
ARM core are adopted for our system implementation. AP
SoC consists of an SoC-style integrated processing system (PS)
and programmable logic (PL) on a single die. This evaluation

board allows for full operation of the device to be investigated.
A Vivado tool-generated IP block is integrated into a Zynq AP
SoC. The Vivado tool-generated IP block is pre-verified on
Altera Cyclone® IV FPGA.

Fig. 3 FPGA implementation of activation functions based on the
floating-point CORDIC technique

Fig. 4 System architecture of the proposed method

The implemented neural network is shown in Fig. 5, where the
input for the neural network is (-0.3169452, -0.3536957, -
0.003161569, 0.23862739) and the output results obtained are
oxbf6ff9bb and ox3f54f7c1 by Python simulation.

Fig.5.FPGA implementation of neural network with

reconfigurable activation functions

In addition, the weights and the bias extracted from the
trained neural network are listed in Table 1. The proposed
design has been simulated and synthesized by using Synopsys
design compiler logic synthesis tool. Table 2 summarizes the
logic element gate counts and the power consumption based
on the TSMC 130 nm technology file.

- 15 -

Table 1. Weights and bias extracted from the trained neural network
weight Input 1 Input 2 Input 3 Input 4 bias

Hidden1 n0 3d97b032 bdc57f3b bfac9f6c bf5d4225 3e945d1c
Hidden1 n1 3d482b43 be398996 bfafca4c bf598e34 3e99ca85
Hidden1 n2 bd38ab1c 3ec9ad78 3fa5ee4e 3f10b3d6 3eaf4ebc

 Hidden1 n0 Hidden1 n1 Hidden1 n2
Hidden2 n0 3f3fcfe7 3f54a216 bf462ce2 3e34c2b6
Hidden2 n1 3f394b2b 3f4897dc bf40a145 3e2fff6c
Hidden2 n2 bc94f551 bb07a8a3 bcd11dc4 bb372b22
Hidden2 n3 bc71eaa1 bc0f030f bb2b5a14 00000000

 Hidden2 n0 Hidden2 n1 Hidden2 n2 Hidden2 n3
Output 0 3f598f11 3f558439 3ce369c4 3ccdd157 bf5511d1
Output 1 bf59d8b9 bf4f79de bcadea02 bcac0397 3f5511d1

Table 2 Design compiler report

Power Group Internal Switching Leakage Total %

Register 40.1581 6.6978E-2 2.3126E+9 42.5385 88.49

Combinational 0.2173 1.9534 3.3609E+9 5.5311 11.51

Total (mW) 40.3754 2.0204 5.6735 48.0609 100.0

Combinational area 4436725.231794 um2
Buf/Inv area 672944.402659 um2

Non-combinational area 2589174.853397 um2
Total cell area 7025900.085191 um2

Table 3 lists the Quartus report based on Cyclone IV GX
family EP4CGX150DF31C7 device, where the number of
total logic elements is 135149. Simulation results of the ANN-
based architecture using Verilog with the same inputs are
shown in Fig. 6. It is observed that the output results are
consistent with by Python simulations, listed in Table 4. It
implies the successful and accurate implementation.

Table 3 Quartus report
Total logic elements 135149 / 149760 (90%)
Total registers 54158
Total pins 198 / 508 (39%)
Embedded Multiplier 9-bit elements 518 / 720 (72%)

Fig. 6 Simulation result of the ANN with reconfigurable

activation function

Table 4. Results of software and hardware

Env data
Python
(value)

Modelsim
(i754)

Modelsim
(value)

sw-hw
error

-0.3169452
-0.3536957
-0.0031616
0.2386274

Output0:
-0.937404332
Output1:
0.831905435

bf6ff9ba

3f54f7c2

-0.9374043

0.8319055

3.2E-8

6.5E-8

-0.431019142
-0.338862689
-0.007135561
0.228214161

Output0:
-0.645919531
Output1:
0.6483183988

bfa255fb

3f25f832

-0.6459195

0.6483184

3.1E-8

1.2E-9

-0.457088163
-0.143544401
0.003705012
-0.068809343

Output0:
-0.000970211
Output1:
0.0117675211

ba7e5c00

3c40ccc0

-9.70304E-4

0.011767566

9.2E-8

4.4E-8

-0.478215659
-0.143402603
0.001295675
-0.071936886

Output0:
0.0161192181
Output1:
-0.005099163

3c840c20

bba71580

0.016119063

-0.00509899

1.5E-7

1.6E-7

The verified Verilog code was downloaded on an Altera

Cyclone® IV FPGA in the Altera DE2 board. This Altera DE2
board includes an Altera Cyclone® IV FPGA as well as various
on-board components. The FPGA implementation and
verification platform are shown in Fig. 7, which can be used
simultaneously for comparison of the simulation and
implementation results. In Fig. 8, the results of the FPGA
implementation are further measured by the HP 16702A logic
analyzer for real-time verification.

Fig. 7 FPGA implementation and verification platform

Fig. 8 Output obtained from a logic analyzer

V. Summary and Conclusions

Most of the neural networks have been applied for image
applications. It might be enough using fixed‐point precision
for pixel-type data. However, as the neural network is applied
for other applications such as cartpole problem, the floating‐
point computation becomes necessary to obtain the correct
results. The proposed ANN architecture, which consists of
reconfigurable activation functions with floating-point
arithmetic, has been realized in the FPGA devices. Results
reveal the successful implementation of the neural networks
by using the CORDIC technique.

References

[1] Simon Haykin, Neural Networks: A Comprehensive
Foundation, 2ed. Addison Wesley Longman (Singapore)
Private Limited, Delhi, 2001

[2] B. Schölkopf, “Artificial intelligence. Learning to see and
act,” Nature, vol.518, pp. 486–487, 2015.

[3] Shuoxin Lin, Yanzhou Liu, William Plishker and Shuvra
S. Bhattacharyya, “A design framework for mapping

- 16 -

vectorized synchronous dataflow graphs onto cpu gpu
platforms,” 19th International Workshop on Software
and Compilers for Embedded Systems, pp. 20–29, New
York, NY, USA, 2016. ACM.

[4] Z. Li, Y. J. Huang and W. C. Lin, “FPGA implementation
of neuron block for artificial neural network,” 2017
International Conference on Electron Devices and Solid-
State Circuits (EDSSC), pp. 1-2, 2017.

[5] A. Shawahna, S. M. Sait and A. El-Maleh, “FPGA-based
accelerators of deep learning networks for learning and
classification: A review,” IEEE Access, vol. 7, pp. 7823–
7859, 2019.

[6] S. I. Venieris, A. Kouris and C.-S. Bouganis, “Toolflows
for mapping convolutional neural networks on FPGAs: A
survey and future directions,” ACM Computing Surveys,
vol. 51, no. 3, Jun. 2018.

[7] Y. LeCun, MNIST Handwritten Digit Database, [Online].
Available: http://yann.lecun.com/exdb/mnist/

[8] https://gym.openai.com/
[9] V. Tiwari and N. Khare, “Hardware implementation of

neural network with sigmoidal activation functions using
CORDIC,” Microprocessors and Microsystems, vol. 39, no.
6, pp. 373-381,2015.

- 17 -

