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Abstract - Field programmable gate arrays (FPGAs) have 
recently become popular for accelerating the deep learning 
networks due to their parallel processing and reconfigurable 
capabilities as well as their energy efficiency. This paper presents 
a multi-layer neural network architecture with novel 
reconfigurable activation functions by utilizing the coordinate 
rotation digital computer (CORDIC) technique and applying the 
floating-point format (IEEE 754 standard in single precision). 
The functionality was successfully verified in hardware using a 
DE2-115 board that included an Altera Cyclone® IV FPGA.  
 

I. Introduction 
An artificial neural network (ANN) is an interconnected 

group of nodes which perform functions collectively and in 
parallel, akin to human brain activities [1, 2]. ANNs have 
broad applicability to real world problems and are fast-
growing artificial intelligence (AI) techniques used in 
industries during recent years. The artificial neuron represents 
real neuron mathematically. A large number of hardware 
architectures have been proposed for hardware 
implementation of ANNs. ANNs may be carried out by using 
analog systems or digital systems. In addition, existing 
platforms for hardware implementation of ANNs include 
digital signal processing (DSP) chips, application specific 
integrated circuits (ASICs), graphical processing unit (GPU) 
[3] and field programmable gate array (FPGAs) [4]. As the 
parallel structure of FPGAs matches the topologies of ANNs, 
they are quite suitable for the implementation of ANNs [5, 6].  

The FPGA-based designs can accelerate the network 
classification process (forward computation) and achieve 
faster execution time and higher energy efficiency than CPU 
and GPU. This feature enables the neural network inference to 
have the advantage of reducing the cost of neural model 
development. Most FPGA implementations are reconfigurable 
by means of system regeneration and device reconfiguration to 
change the network topology. Although network training 
describes the problem of determining the parameters to model 
the target function, the activation function of the nodes can 
affect the training behavior of the network. Various activation 
functions lead to different convergence behavior and accuracy. 
For example, long short-term memory (LSTM) is the most 
commonly used model in the current recurrent neural network 
(RNN). The RNN is mainly applied to solve the problem of 
time series data. In training RNN, different kinds of activation 
functions can be applied to obtain the different shapes of the 
error surface. The presented reconfigurable activation 

functions can provide more flexible applications for neural 
networks. In this paper, the FPGA implementation with 
reconfiguration activation functions for neural networks is 
thus proposed. 

 
II. Non-Linear Activation functions  

 A neuron forms the basis for designing the ANNs. The 
output activation f for the neuron is described by  
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wij denotes the weights connecting the jth input unit to the ith 
hidden unit. The weighted summation adds up the products of 
previous neurons multiplied by the corresponding weights, and 
then, the activation function is utilized to calculate the output. 
The bias bi can be viewed as simply another weight (w0) with a 
constant input of 1 (x0=1). The role of activation functions is to 
make neural networks non-linear. The non-linearity takes a 
real-valued number and squashes it into the range between 0 
and 1. In particular, large negative numbers become 0 and large 
positive numbers become 1. The sigmoid function is 
frequently applied because it has a nice interpretation as the 
firing rate of a neuron. The ReLu function is fragile during the 
training procedure. A large gradient flowing through a ReLu-
based neuron could cause the weights to update in such a way 
that the neuron will never activate on any data point again. By 
exploiting the MNIST dataset [7], an ANN model is trained by 
a two-layer perceptron to recognize the handwritten digits. 
Fig.1 depicts the training loss for two types of activation 
functions. For a two-layer perceptron, the training loss of the 
sigmoid function is less than that of ReLu function. 
 

 
Fig. 1 Training loss over iterations for the ANN model 

 
Fig. 2 shows the evaluation results of a neural network 

performance with different activation functions, including the 
sigmoid, ReLu and hypertangent (tanh) functions to train the 
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CartPole Agent in OpenAI gym [8]. It indicates that the tanh 
outperforms the other two activation function. 

 

 
(a) Sigmoid function 

 
(b) ReLu function 

 
(c) Tanh function 

 

Fig. 2 Learning curve for different activation functions 
 

III. FPGA Implementation 
Activation functions play an important role in the 

applications of deep learning and neural networks. A neural 
network with reconfigurable activation functions is 
implemented in the FPGA board. FPGA implementation of 
activation functions based on using the floating-point 
CORDIC technique [9] is shown in Fig. 3. The floating-point 
format is IEEE 754 standard in single precision. The CORDIC 
technique is a simple and efficient algorithm to implement the 
hyperbolic and trigonometric functions in hardware. We use 
the rotation mode to implement the exponential function. 

As shown in Fig. 4, the Zynq SoC with an FPGA and an 
ARM core are adopted for our system implementation. AP 
SoC consists of an SoC-style integrated processing system (PS) 
and programmable logic (PL) on a single die. This evaluation 

board allows for full operation of the device to be investigated. 
A Vivado tool-generated IP block is integrated into a Zynq AP 
SoC. The Vivado tool-generated IP block is pre-verified on 
Altera Cyclone® IV FPGA. 

 

 
Fig. 3 FPGA implementation of activation functions based on the 
floating-point CORDIC technique  

 
 

 
Fig. 4 System architecture of the proposed method 

 
The implemented neural network is shown in Fig. 5, where the 
input for the neural network is (-0.3169452, -0.3536957, -
0.003161569, 0.23862739) and the output results obtained are 
oxbf6ff9bb and ox3f54f7c1 by Python simulation. 
 

 
Fig.5.FPGA implementation of neural network with 

reconfigurable activation functions 
 

In addition, the weights and the bias extracted from the 
trained neural network are listed in Table 1. The proposed 
design has been simulated and synthesized by using Synopsys 
design compiler logic synthesis tool. Table 2 summarizes the 
logic element gate counts and the power consumption based 
on the TSMC 130 nm technology file. 
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Table 1. Weights and bias extracted from the trained neural network 
weight Input 1 Input 2 Input 3 Input 4 bias 

Hidden1 n0 3d97b032 bdc57f3b bfac9f6c bf5d4225 3e945d1c 
Hidden1 n1 3d482b43 be398996 bfafca4c bf598e34 3e99ca85 
Hidden1 n2 bd38ab1c 3ec9ad78 3fa5ee4e 3f10b3d6 3eaf4ebc 

 Hidden1 n0 Hidden1 n1 Hidden1 n2   
Hidden2 n0 3f3fcfe7 3f54a216 bf462ce2  3e34c2b6 
Hidden2 n1 3f394b2b 3f4897dc bf40a145  3e2fff6c 
Hidden2 n2 bc94f551 bb07a8a3 bcd11dc4  bb372b22 
Hidden2 n3 bc71eaa1 bc0f030f bb2b5a14  00000000 

 Hidden2 n0 Hidden2 n1 Hidden2 n2 Hidden2 n3  
Output 0 3f598f11 3f558439 3ce369c4 3ccdd157 bf5511d1 
Output 1 bf59d8b9 bf4f79de bcadea02 bcac0397 3f5511d1 

 
Table 2 Design compiler report 

Power Group Internal Switching Leakage Total % 

Register 40.1581 6.6978E-2 2.3126E+9 42.5385 88.49 

Combinational 0.2173 1.9534 3.3609E+9 5.5311 11.51 

Total (mW) 40.3754 2.0204 5.6735 48.0609 100.0 

Combinational area 4436725.231794 um2 
Buf/Inv area 672944.402659 um2 

Non-combinational area 2589174.853397 um2 
Total cell area 7025900.085191 um2 

 
Table 3 lists the Quartus report based on Cyclone IV GX 
family EP4CGX150DF31C7 device, where the number of 
total logic elements is 135149. Simulation results of the ANN-
based architecture using Verilog with the same inputs are 
shown in Fig. 6. It is observed that the output results are 
consistent with by Python simulations, listed in Table 4. It 
implies the successful and accurate implementation. 
 

Table 3 Quartus report 
Total logic elements 135149 / 149760 (90%) 
Total registers 54158 
Total pins 198 / 508 (39%) 
Embedded Multiplier 9-bit elements 518 / 720 (72%) 

 

 
Fig. 6 Simulation result of the ANN with reconfigurable 

activation function 
 

Table 4. Results of software and hardware  
 

Env data 
Python 
(value) 

Modelsim 
(i754) 

Modelsim 
(value) 

sw-hw 
error 

-0.3169452 
-0.3536957 
-0.0031616 
0.2386274 

Output0: 
-0.937404332 
Output1: 
0.831905435 

 
bf6ff9ba 
 
3f54f7c2 

 
-0.9374043 
 
0.8319055 

 
3.2E-8 
 
6.5E-8 

-0.431019142 
-0.338862689 
-0.007135561 
0.228214161 

Output0: 
-0.645919531 
Output1: 
0.6483183988 

 
bfa255fb 
 
3f25f832 

 
-0.6459195 
 
0.6483184 

 
3.1E-8 
 
1.2E-9 

-0.457088163 
-0.143544401 
0.003705012 
-0.068809343 

Output0: 
-0.000970211 
Output1: 
0.0117675211 

 
ba7e5c00 
 
3c40ccc0 

 
-9.70304E-4 
 
0.011767566 

 
9.2E-8 
 
4.4E-8 

-0.478215659 
-0.143402603 
0.001295675 
-0.071936886 

Output0: 
0.0161192181 
Output1: 
-0.005099163 

 
3c840c20 
 
bba71580 

 
0.016119063 
 
-0.00509899 

 
1.5E-7 
 
1.6E-7 

 
The verified Verilog code was downloaded on an Altera 

Cyclone® IV FPGA in the Altera DE2 board. This Altera DE2 
board includes an Altera Cyclone® IV FPGA as well as various 
on-board components. The FPGA implementation and 
verification platform are shown in Fig. 7, which can be used 
simultaneously for comparison of the simulation and 
implementation results. In Fig. 8, the results of the FPGA 
implementation are further measured by the HP 16702A logic 
analyzer for real-time verification. 
 

 
Fig. 7 FPGA implementation and verification platform 

 

 

 
Fig. 8 Output obtained from a logic analyzer 

 
V. Summary and Conclusions 

Most of the neural networks have been applied for image 
applications. It might be enough using fixed‐point precision 
for pixel-type data. However, as the neural network is applied 
for other applications such as cartpole problem, the floating‐
point computation becomes necessary to obtain the correct 
results. The proposed ANN architecture, which consists of 
reconfigurable activation functions with floating-point 
arithmetic, has been realized in the FPGA devices. Results 
reveal the successful implementation of the neural networks 
by using the CORDIC technique. 
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