
Minimization of Energy Consumption of Double Modular Redundancy Design of
Conditional Processing by Common Condition Dependency

Kazuhito Ito

Graduate School of Science and Engineering
Saitama University

Saitama 338-8570, Japan
kazuhito@ees.saitama-u.ac.jp

Abstract— Double modular redundancy (DMR) is to execute
an operation twice and detect soft error by comparing the op-
eration results. The error is corrected by executing necessary
operations again. The DMR design for conditional processing
is considered in this work. A method is proposed which makes
the secondary executions of the duplicated operations be depen-
dent on the primary execution of the condition operation, thereby
widening the schedule solution space and allowing better results
to be derived. The minimization of energy consumption with the
proposed method is formulated as ILP models and the optimum
solution is obtained by using an ILP solver.

I. I NTRODUCTION

As large-scale integrated circuits (LSI) chips integrate more
transistors and other components, and the operating power sup-
ply voltage decreases, LSI chips are becoming more vulnera-
ble to the soft error caused by an incident of a neutron induced
from cosmic rays and so on [1, 2].

As a countermeasure against soft error, the redundancy tech-
nique is examined [3, 4, 5]. Double modular redundancy
(DMR) executes the same operations in double, the obtained
data are respectively retained in registers or memories, and the
data are compared. When the data are not identical, a soft er-
ror is detected, and the error is corrected by re-executing nec-
essary operations. DMR requires less resources such as func-
tional units (FUs) and registers and consumes less energy for
processing execution than triple modular redundancy (TMR),
Thus DMR is more attractive in design optimization for redun-
dant systems, and some design automation approaches have
been proposed [6, 7].

In conditional processing, an operation to be executed later
is selected depending on the execution result of a certain oper-
ation. While there exists non-conditional processing, such as
digital filters and FFT, many digital systems consist of general
conditional processing.

In conditional processing, two or more operations are exclu-
sively executed according to the truth or falsity of a condition,
and those operations can share a single FU at the same time.
In addition, the processing execution time can be shortened by
speculative execution in which an operation depending on the
condition is executed before the truth or falsity of the condi-

tion is proven [8, 9]. As described above, it is important to
optimize the implementation of conditional processing by op-
eration scheduling which determines the execution time of the
operation.

The DMR is effective for the conditional processing, but the
DMR technique for the conditional processing known so far
simply duplicates the non-redundancy processing schedule.

In this paper, we propose a method to obtain an optimum
solution for minimizing energy consumption of DMR condi-
tional processing design with the constraints of execution time
and resource usage. The optimization problem is formulated
as an integer linear programming (ILP) model and is solve by
an ILP solver.

The remainder of the paper is organized as follows. Condi-
tional processing and DMR are briefly introduced in Sect. 2.
The proposed DMR conditional processing design method and
its ILP formulation is presented in Sect. 3. Experimental re-
sults are shown in Sect. 4 and Sect. 5 concludes the work.

II. CONDITIONAL PROCESSING ANDDMR

Conditional processing and DMR are briefly described.

A. Conditional Processing

In conditional processing, according to the execution of
an operationZ, some other operations are divided into two
groups: those executed whenZ is true and those executed when
Z is false. Let such an operationZ be called acondition judg-
ment operation. Examples of condition judgment operation
are the comparison result of two values, the sign (positive or
negative) of the result of addition or subtraction, the existence
of overflow after addition. Let an operation which is executed
only when some condition judgment operation results in true
(or false) be called acondition-dependent operation.Condi-
tional dependencies and data dependencies between operations
are described by a control data flow graph (CDFG). In the con-
ditional processing shown in Fig. 1(a), condition-dependent
operations{B, D, E, G} are performed when condition judg-
ment operation A is true, and condition-dependent operation
C is performed when A is false. The operations A and D are
additions, and B, C, E and G are subtractions. Assuming the
execution time of each operation is one clock cycle (CC), the

SASIMI 2019 ProceedingsR1-4

- 18 -



T F

A

B

E

T F

D

C

T: branch if True

F: branch if False

Data dependency

(with precedence constraint)

Conditional dependency

1

2

0 B

ADD SUB

A

B/C

ED

CC

1

0

ADD SUB

A

C/ED

CC

(a)

(b) (c)

G

3 G

2 G

(no precedence constraint)

Fig. 1. An example conditional operation. (a) CDFG. (b) conditional FU
sharing. (c) speculative execution.

execution schedule for one adder and one subtractor is shown
in Fig. 1(b). Condition judgment operation A is executed at
CC 0. Condition-dependent operation B is executed when A
is proven to be true, and condition-dependent operation C is
executed exclusively when A is false, thus B and C can share a
subtractor and are scheduled at identical CC 1. This situation
is said the same FU isconditionally shared[8]. B is now a
condition judgement operation for{D, E, G} and D and G are
executed if B is true or E is executed if B is false. The total
processing execution time is 4 CCs.

The execution of condition-dependent operation needs not
wait for the completion of the corresponding condition judg-
ment operation. Executing condition-dependent operation be-
fore or at the same time as the corresponding condition judg-
ment operation is calledspeculative operation[8]. For exam-
ple, as shown in Fig. 1(c), the condition judgment operation A
is executed at CC 0 and its condition-dependent operation B is
speculatively executed at the same CC 0. At CC 1, C and E,
which are conditionally dependent on A, conditionally share a
subtractor. The use of speculative execution reduces the total
execution time to 3 CCs.

While the speculative execution increases the degree of free-
dom in scheduling the execution time of condition-dependent
operations, there is a demerit that more energy is consumed
by the speculatively executed operations which are originally
unnecessary.

B. Double Modular Redundancy

The soft error in LSIs are modeled as follows. A soft error
is assumed to occur only in one of the data stored in a register
or the execution of the operation in an FU in the same CC, and
there is a sufficiently long time between successive errors. In
general, an error in a combinational circuit including an FU
continues for more than one CCs. The error duration is set to
1 CC for the sake of simplicity in this work.

DMR duplicates the operation execution and data storage,
and detects errors by comparison. Figure 2(b) shows an ex-
ample in which the operation execution and data retention of
the processing shown in Fig. 2(a) are duplicated. Duplicated
operation executions are respectively calledprimary execution

(a)

(b)

1 20 43 1 20 R2R1

B
P

A
S

B
S

A
P

C
S

C
P

3 4

C
E

B
E

A
E

B
P

A
S

A
P

C
S

C
P

C
E

A
E

(c)

A

C

B

cycle cycle

B
P

A
S

B
S

A
P

C
S

C
P

C
E

B
E

A
E

R0

replay

Fig. 2. DMR design. (a) DFG. (b) DMR scheduling of operations.
(c) re-execution to correct an error (replay).

andsecondary execution. The primary execution of operation
A is denoted as AP, and the secondary execution as AS. In
Fig. 2(b), AP is executed at CC 0 and AS is executed at CC 1,
and the execution results are stored in registers. At CC 2, the
data are read from the registers and the values are compared by
the comparison operation AE.

If the AE detects a value mismatch, it means that there is
an error in either AP, AS, or the resultant data of these execu-
tions stored in registers. The error is corrected by executing
all the operations suspected to be an error and storing the re-
sults again. This is called thereplay. Figure 2(c) shows the
replay when AE detected an error. The re-execution of oper-
ations is performed from CC R0 to R2, and the execution of
the processing is delayed by this time duration. This is called
a delay penaltyassociated with re-execution, and in the exam-
ple of Fig. 2(c), the delay penalty is 3 CCs. When the error
detection comparison is performed immediately after the sec-
ondary execution, the difference in execution time between the
primary and the secondary executions causes the delay penalty.
If a large delay penalty is allowed, it is possible to execute the
primary and the secondary of the operation at different CCs,
thereby increasing the degree of freedom of the scheduling and
a good operation schedule may be obtained. On the other hand,
it would be necessary to set an appropriate upper limit of the
delay penalty, for example in real time processing.

III. C ONSIDERATIONS IN DMR DESIGN OF

CONDITIONAL PROCESSING

A. DMR for Conditional Processing

In DMR, data dependency is closed in each of the primary
executions and the secondary executions of the operations.
That is, when operation B uses the operation result of oper-
ation A as input data, BP depends on AP and BS depends on
AS. This is because, when BP and BS are executed using the
same input data, BE reports the coincidence even if there is an
error in the data, thereby overlooking the error. On the other

- 19 -



A

B

T F

C

(a) (b)

(c)

A
P

B
P

T F

C
P

A
S

B
S

T F

C
S

B
P

T
F

B
S

C
P

C
S

A
P

T
F

A
S

Fig. 3. DMR for conditional operation. (a) CDFG. (b) simple double
execution. (c) operations depend on the primary execution of condition.

A
P

H
P

I
P

A
S

H
S

B
P
/C

P
1

2

0

B
S

H
P
/I

P

C
S

B
P

H
S
/I

S

C
P

B
S
/C

S

1

2

0

T F

A

B

E G

T F

D

C

H I
T F

ADD0 SUB1CC ADD1 SUB0

CC

(a)

(b)

(c)

G
P

I
S

ADD2

D
P
/E

P

A
P

E
P

A
S

ADD0 SUB1ADD1 SUB0ADD2

D
S
/E

S
/G

S

D
P
/G

P

D
S
/E

S
/G

S

Fig. 4. DMR schedule of conditional processing. (a) CDFG. (b) conditional
dependency in the primary and the secondary separately. (c) operations
depend on the primary execution of condition.

hand, for condition dependency, the secondary execution of
condition-dependent operations may conditionally depend on
the primary execution of condition judgment operations. This
is the proposal of this work.

For example, for the process shown in Fig. 3(a), the result of
simple DMR design is shown in Fig. 3(b), where the primary
executions BP and CP are conditionally dependent on AP, and
the secondary executions BS and CS are conditionally depen-
dent on AS. However, as shown in Fig. 3(c), BP, CP, BS and CS

can be conditionally dependent on the primary execution AP.
To detect an error in AP, the secondary AS is executed and the
results are compared. If an error is detected, AP and operations
conditionally dependent on A are re-executed.

The effectiveness of the proposed method is presented using
a simple example. When the conditional processing shown in
Fig. 4(a) is duplicated and scheduled in 3 CCs with 3 adders
and 2 subtractors, if the condition dependencies are sepa-
rated to the primary and the secondary, the resultant sched-
ule to achieve the minimum energy consumption is as shown
in Fig. 4(b). Here it is assumed that true and false branching
probabilities of the conditions are 0.5 for true and 0.5 for false
in all condition judgments, and that the energy consumption
of an operation execution is 1 unit of energy (u.e.) for addi-
tion and subtraction. BP and CP, and BS and CS respectively
share subtractors conditionally, and the execution probabilities
(EPs) of these operations are 0.5. To execute all the operations
within 3 CCs, HP, IP, HS, and IS must be executed specula-
tively. Therefore the EPs of AP, AS, HP, IP, and so on are 1.

The total probabilitistic energy consumption of the schedule is
10 u.e.

Figure 4(c) shows the schedule with the minimized energy
consumption by the proposed method. Since all the condition
judgement operations DP, EP, and GP have been executed be-
fore CC 2, the condition-dependent operations HP and IP, and
HS and IS respectively can share adders conditionally at CC 2,
and the EPs of HP, IP, HS, and IS are 0.5. The total probabili-
tistic energy consumption of the schedule is only 9 u.e.

The example shows the fact that the proposed method in-
creases the degree of freedom in scheduling conditional pro-
cessing. The proposed method is utilized for minimizing the
probabilitistic energy consumption of DMR conditional pro-
cessing.

B. ILP Formulation for Energy Minimization

The operation scheduling problem is NP-hard, and no
heuristic method for finding the optimum solution has been
obtained. Optimum operation scheduling problem of DMR
conditional processing becomes an advanced combination op-
timization problem. In order to know the optimum solution,
this combined optimization problem is formulated as an inte-
ger linear programming problem (ILP), and the optimum solu-
tion is obtained by an ILP solution tool (an ILP solver). Since
the solution time of the ILP solver generally depends exponen-
tially on the number of variables in the ILP model, it is im-
portant to reduce the number of variables required in the ILP
formulation.

The following ILP variables and parameters are used to de-
scribe the ILP model. With the constraints in Eqs. (1) – (16),
the total operation execution energy consumption shown in
Eq. (17) is minimized.

Note that an S range of an operation is the set of CCs at
which the operation can be executed. It is obtained as the inter-
val between the earliest and the latest possible execution CCs
of each operation execution determined by considering the
precedence constraint between operations derived from data
dependency.

• DFG (N,E,B): a given processing algorithm is denoted as
a data-flow graph (DFG) whereN is the set of nodes rep-
resenting operations,E the set of edges representing data
dependencies among operations, andB the set of edges rep-
resenting conditional dependencies among operations.

• F : the set of operation types.

• pD: a constant. The upper bound of the delay penalty.

• Ri,m: S range of the execution of operationim. (m∈ {P,S})

• xt
i,m: a binary variable and becomes 1 whenim starts at time

t. (m∈ {P,S})

• ut
i,m: a binary variable and becomes 1 when the execution of

im requires an FU at timet. (m∈ {P,S})

• si,m1, j,m2: a binary variable and becomes 1 when the execu-
tions of im1 and jm2 conditionally share an FU.

• bi,m,c,mc: a binary variable and becomes 1 whenim is exe-
cuted speculatively with respect to the conditioncmc.

- 20 -



• yp
i,m: a binary variable and becomes 1 whenim is executed in

the speculative execution patternp.

• NC: the set of condition judgment operation nodes．(NC⊂
N)

• NTc (NFc): a set of operations which are executed if the
conditionc is True (False).

• SEi : a set of speculative execution patters of operationsi.

• SEc
i : a subset ofSEi when i is speculatively executed with

respect to conditionc.

• Qi : a constant. The operation execution duration of opera-
tions iP andiS.

• K f : a constant. The maximum number of FUs of the opera-
tion type f .

• L f : a constant. The duration for which an execution of an
operation occupies an FU of the operation typef .

• Ep
i,m: a constant. The energy consumed whenim (m∈ {P,S})

is executed in the speculative execution patternp.

Operation execution:
Every operationim is executed exactly once at some timet

within its S range.

∑
t∈Ri,m

xt
i,m = 1 ∀i ∈ N,m∈ {P,S} (1)

Ti,m, the execution start time of operationim, is given by the
following equation.

Ti,m = ∑
t∈Ri,m

txt
i,m

Precedence constraint:
If there exists a data dependency from an operationi to an

operation j, the execution ofi must be completed beforej
starts. This precedence is constrained for every edge(i, j) ∈ E
and for primary operations and secondary operations, respec-
tively.

Tj,m ≥ Ti,m+Qi ∀(i, j) ∈ E,m∈ {P,S} (2)

Constraint on the primary and secondary executions:
Eq. (3) constrains thatiS starts no earlier thaniP.

Ti,S≥ Ti,P ∀i ∈ N (3)

The duration from the start of the primaryiP (Ti,P) to the end of
the secondaryiS (Ti,S+Qi) is constrained to be withinpD −1.

Ti,S+Qi ≤ Ti,P + pD −1 ∀i ∈ N (4)

Conditional FU sharing:
(a) If an operationi exists on the True side and an operationj
exists on the False side of a common condition operationc, im1

and jm2 can share an FU if these are executed at the same time.

si,m1, j,m2 ≤ 1+xt
i,m1−xt

j,m2 (5)
∀c∈ NC, i ∈ NTc, j ∈ NFc,m1,m2∈ {P,S}

When jm2 is executed att (xt
j,m2 = 1), the right hand side of

Eq. (5) becomes 0 ifim1 is not executed at the same timet
(xt

i,m1 = 0), andsi,m1, j,m2 = 0 is constrained.

(b) An FU is not shared by operationsi and j if j is specula-
tively executed with respect to the condition operationc.

si,m1, j,m2 +xt
j,m2 + ∑

τ≥t
xτ

c,mc≤ 2 (6)

∀c∈ NC, i ∈ NTc, j ∈ NFc,m1,m2∈ {P,S}
If jm2 is executed before the completion of the condition op-
erationcmc, the sum of the 2nd and 3rd terms of the left hand
side of Eq. (6) becomes 2 andsi,m1, j,m2 = 0 is constrained.
(c) More than one operations on the False side cannot share an
FU with an identical executionim1 on the True side.

∑
j∈NFc

∑
m2={P,S}

si,m1, j,m2 ≤ 1 (7)

∀c∈ NC, i ∈ NTc,m1∈ {P,S}
(d) If jm3 is speculatively executed with respect to a condition
operationc, then for any operationpm1, it is not allowed to
share an FU bypm1, jm3, and the operationim2 which depends
on the same conditionc.

sp,mp,i,m1 +sp,mp,i,m2 + ∑
τ<t

xτ
j,m3 + ∑

τ≥t
xτ

c,mc≤ 3 (8)

∀p, i, j,c∈ N,n∈ NF j ,m1,m2,m3,mc∈ {P,S}
By assumingpm1 andim2 share an FU, andpm1 and jm3 share
an FU, andjm3 is speculatively executed with respect to a con-
dition operationc, the left hand side of Eq. (8) becomes 4, but
in that case,im2 and jm3 cannot share an FU.
(e) If an operationj is conditionally dependent on an operation
c, they cannot share an FU.

sp,mp, j,m1 +sp,mp,c,mc≤ 1 (9)
∀p, j,c∈ N,mp,m1,mc∈ {P,S}

FU requirement:
If an operation does not share an FU with other operations,

a dedicated FU is required to execute the operation.
ut

j,m2 + ∑
i,m1

si,m1, j,m2 ≥ xt
j,m2 (10)

∀c∈ NC, j ∈ NFc,m2∈ {P,S}
When jm2 does not share an FU with other operation execu-
tions, the 2nd term of the left hand side becomes 0 and it con-
strainsut

j,m2 = 1 at the execution timet of jm2.

si,m1, j,m2 ≤ ∑
t

ut
i,m1 (11)

∀i ∈ N,c∈ NC, j ∈ NFc,m1,m2∈ {P,S}
When jm2 shares an FU withim1, an FU must be allocated to
im1, and it constrainsut

i,m1 = 1 at some execution timet.

Judgement for speculative execution:
Judge whetherim1 is speculatively executed with respect to

the condition operationcmc.

xt
i,m1 + ∑

τ≥t
xτ

c,mc≤ 1+bi,m1,c,mc (12)

∀c∈ NC, i ∈ NTc∪NFc,m1∈ {P,S}
Let mc= m1 in the case of the conventional DMR, andmc= P
in the case of the proposed primary condition dependence.

Identifying speculative execution pattern:
Identify the combination pattern of whetherim1 is specula-

tively executed with respect to the condition operations.

∑
p∈SEc

i

yp
i,m ≥ bi,m,c,mc (13)

∀c∈ NC, i ∈ N,m∈ {P,S}

- 21 -



T F

A1

S2 S3

T F

T F

A4

S5 A2

T F

A5
S6

T F

A6

S7
A3

S4

S1

A7

A8S8

T F

IN

Fig. 5. Conditional operation MAHA

∑
p∈SEi

yp
i,m = 1 ∀i ∈ N,m∈ {P,S} (14)

For example, if operationi conditionally depends on three con-
ditions, there exist 8 patterns of the combination of whetheri is
speculatively executed or not with respect to each conditions.
Eq. (14) constrains that only one of 8 patterns is identified.

FU constraint:
For each timet and operation typef , the number of opera-

tions executed simultaneously att should not exceed the spec-
ified constraintK f .

∑
i∈Nf

∑
m={P,S}

L f −1

∑
t ′=0

∑
t−t ′∈Ri,m

ut−t ′
i,m ≤ K f (15)

t = 0,1, . . . ,Tr−1,∀ f ∈ F

Execution time constraint:
Every operation execution must be done by the specified

timeTE.

Ti,m+Qi ≤ TE ∀i ∈ N,m∈ {P,S} (16)

Objective:
The objective is to minimize the total probabilistic energy

consumptionC given as follows.

C = ∑
i∈N

∑
m={P,S}

∑
p∈SEi

Ep
i,myp

i,m (17)

IV. EXPERIMENTAL RESULTS

An ILP solver IBM ILOG CPLEX 12.6.0.0 [10] was used
to solve ILP models. ILP models were generated by a pro-
gram implemented using C++ programming language. The
CPU time for model generation is less than 1 s for each model.
All the experiments were done on a PC with a 3.4 GHz mi-
croprocessor running 8 threads on 4 physical cores and 16 GB
of main memory. The conditional processing algorithms used
were MAHA (8 additions, 8 subtractions) [12] shown in Fig. 5,

A2

S4

S8

S6S3

M5

S2

A13

A14

A15

C2

C3

C4

C5

S5 S7
S9

A1

A3 A4

A5

A6

A7 A8

A9

A10

A11

A12

M2

M3

M4

M11

M8

M6

M7

M9

M10

M12

M13 M15

T
F

T F

T F

T F

M14

Fig. 6. Conditional operation FIG17P

0

2

4

6

8

10

12

5:3/3 5:3/2 6:3/2 7:2/2 8:2/2 8:2/1

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [
u

.e
.]

Conventional

Proposed

Configuration (TE:A/S)

NA

Fig. 7. Minimized total energy consumption of MAHA (pD = 3).

and FIG17P (15 additions, 12 subtractions (including 4 com-
parisons), and 14 multiplications), which is a part of FIG17
[11], shown in Fig. 6.

The operation execution time is 1 CC for addition and sub-
traction and 2 CCs for multiplication. The energy consumption
of the operation execution is 1 unit of energy (u.e.) for addi-
tion and subtraction and 10 u.e. for multiplication. The true
and false branching probabilities of the conditions were 0.5 for
true and 0.5 for false in all condition judgments.

All the ILP solver runs successfully completed with the op-
timum solutions or no results when the ILP models were infea-
sible because of the constraints are too tight to be solved.

Figure 7 shows the results for MAHA forpD = 3. The con-
figurationTE:A/S indicates the given constraints of the total
execution CCsTE and the numbers of adders and subtractors.
For example, ‘5:3/2’ indicates that every operation execution
completes by CC 4(= 5−1), and 3 adders and 2 subtractors
are used. While smaller energy consumption is obtained by the
proposed method in many configurations, there is no difference
between the result of the conventional and the proposed meth-
ods in the cases of 7:2/2 and 8:2/2. It is important to note that
the proposed method can derive a feasible DMR design for
8:2/1, with that configuration the conventional method cannot
derive a solution.

Some of the obtained operation schedules are shown in
Figs. 8 and 9. From the results obtained by the proposed
method, it can be seen that the primary execution of condition

- 22 -



TABLE I
ENERGY CONSUMPTION OFFIG17P

E (pD = 3) E (pD = 5)
TE A/S/M conv. proposed conv. proposed

7 4/4/4 124.0 124.0 (−0.0%) 124.0 118.5 (−4.4%)
7 4/3/4 152.5 134.25(−12.0%) 152.5 118.75(−22.1%)

8 3/3/3 — 115.25 108.75 104.0 (−4.4%)
8 2/3/3 — — — 110.25
8 4/3/2 117.125 109.5 (−6.5%) 114.0 108.75 (−4.6%)
8 2/4/2 — — — 117.25
9 2/2/4 101.75 101.5 (−0.2%) 101.75 93.0 (−8.6%)
9 2/2/2 106.25 103.25 (−2.8%) 106.25 94.125(−11.4%)

10 3/2/2 89.5 89.5 (−0.0%) 87.125 84.25 (−3.3%)
10 2/2/2 91.0 90.0 (−0.6%) 88.875 87.0 (−2.1%)

11 2/2/2 83.75 83.25 (−0.6%) 83.5 83.0 (−0.6%)
11 2/2/1 — — — 93.0

12 2/2/1 — — 91.0 85.0 (−6.6%)

A1p

A3pA2p

A4p

A5p A6p

A8p

A8s

S1p

S2p

S4p

S8p

S3p

S5p

S6p

S1s

S2s

S4s

S8s

S7s

S3s

S5s

S6s

A7sA7p

A1s

A3s

A2s

A4s

A5s A6s

S7p

1

2

3

0

4

CC ADD0 ADD1 SUB0ADD2 SUB1

(a)

A1p

A3pA2p

A4p

A5pA6p

A8p A8s

S1p

S2p

S4p

S8p

S3p

S5p

S6p S1s

S2s

S4s

S8s

S7s

S3s

S5s

S6s

A7s

A7p

A1s

A3s

A2s

A4s

A5s A6s S7p

1

2

3

0

4

CC ADD0 ADD1 SUB0ADD2 SUB1

(b)

Fig. 8. Obtained DMR schedules for MAHA withTE= 5, pD = 3, 3 adders
and 2 subtractors. (a) conventional. (b) proposed.

A1p

A3p

A2p

A4p

A5p A6p

A8p A8s

S1p

S2p

S4p

S8p

S3p

S5p

S6p S1s

S2s

S4s

S8s

S7s

S3s

S5s

S6s

A7s

A7p

A1s

A3s

A2s

A4s

A5s A6s S7p

1

2

3

0

4

5

6

7

ADD0 ADD1 SUB0CC

Fig. 9. The DMR schedule for MAHA obtained by the proposed method with
TE= 8, pD = 3, 2 adders and 1 subtractor.

judgment operations are scheduled at early CCs to eliminate
speculative execution to reduce unnecessary energy consump-
tion while the secondary execution of condition judgement op-
erations are scheduled at later CCs.

Table I shows the results for FIG17p. ‘A/S/M’ indicates the
constraints on the number of adders, the number of subtrac-
tors, and the number of multipliers. Up to 22% energy reduc-
tion is achieved by the proposed method. Again, the proposed
method can derive a feasible DMR design for configurations
with which the conventional method cannot derive a solution.
These are shown in bold in the table.

V. CONCLUSIONS

To the minimization of energy consumption for DMR de-
sign of conditional processing, we proposed a method to make
the secondary execution of condition-dependent operation also
dependent on the primary execution of condition judgment op-
eration. The ILP formulation of the minimization problem was
presented and the optimal solutions were obtained by solving
the ILP models.

Consideration of the technique to further utilize the nature of
DMR conditional processing to obtain better design, develop-
ment of a heuristic algorithm for the solution remain as future
works.

REFERENCES

[1] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
& Test of Computers, vol.22, no.3, pp.258–266, 2005.

[2] F. Wang and V.D. Agrawal, “Single event upset: An embedded tutorial,”
Proc. Int. Conf. VLSI Design, pp.429–434, 2008.

[3] F.L. Kastensmidt, L. Sterpone, L. Carro, and M.S. Reorda, “On the op-
timal design of triple modular redundancy logic for SRAM-based FP-
GAs,” Proc. DATE 2005, pp.1290–1995, 2005.

[4] S. Golshan and E. Bozorgzadeh, “SEU-aware resource binding for mod-
ular redundancy based designs on FPGAs,” Proc. DATE 2009, pp.1124–
1129, 2009.

[5] T. Imagawa, H. Tsutsui, H. Ochi, and T. Sato, “A cost-effective selec-
tive tmr for coarse-grained reconfigurable architectures based on dfg-
level vulnerability analysis,” IEICE Trans. Electron., vol.E96-C, no.4,
pp.454–462, 2013.

[6] J. Oh and M. Kaneko, “Area-efficient soft-error tolerant datapath synthe-
sis based on speculative resource sharing,” IEICE Trans. Fund., vol.E99-
A, no.7, pp.1311–1322, 2016.

[7] K. Ito, Y. Ishihara, and S. Nishizawa, “Minimization of vote operations
for soft error detection in dmr design with error correction by operation
re-execution,” IEICE Trans. Fund., vol.E101-A, no.12, pp.2271–2279,
2018.

[8] K. Wakabayashi, “Unified representation for speculative scheduling:
Generalized condition vector,” IEICE Trans. Fundamentals, vol.E89-A,
no.12, pp.3408–3415, 2006.

[9] K. Ito and K. Kameda, “A method to reduce energy consumption of con-
ditional operations with execution probabilities,” IPSJ Trans. on System
LSI Design Methodology, vol.6, pp.60–70, 2013.

[10] IBM ILOG CPLEX. http://www.ilog.com/.
[11] T. Kim, N. Yonezawa, J.W.S. Liu, and C.L. Liu, “A scheduling algorithm

for conditional resource sharing — a hierarchical reduction approarch,”
IEEE Trans. Computer Aided Design, Int. Circuit. Syst., vol.13, no.4,
pp.425–437, 1994.

[12] A.C. Parker, J.T. Pizarro, and M. Mlinar, “MAHA: a program for datap-
ath synthesis,” Proc. Design Auto. Conf., pp.461–466, 1986.

- 23 -


