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Abstract— Double modular redundancy (DMR) is to execute
an operation twice and detect soft error by comparing the dupli-
cated operation results. The soft error is corrected by executing
necessary operations again, called replay. The replay requires
error-free input data and registers are needed to store such nec-
essary error-free data. In this paper, a method to minimize the
required number of registers is proposed where replay intervals
are appropriately selected so as not to increase the register re-
quirement. The experimental results show up to 27% reduction
of required registers.

I. I NTRODUCTION

When neutrons derived from cosmic rays or the like enter
a large scale integrated circuit (LSI), a transient error such as
inversion of a signal value in the circuit occurs if the energy ex-
ceeds a threshold. This is called a soft error [1, 2]. The thresh-
old decreases as the signal energy in the circuit decreases due
to the supply voltage lowering and miniaturization of semicon-
ductor devices. The probability of occurrence of soft errors is
increasing accordingly.

A redundancy method has been considered as a means for
solving soft errors. In triple modular redundancy (TMR), the
same operations are performed in triplicate and the majority
is taken, thereby obtaining the correct result even if an error
occurs in any one. TMR however has the disadvantage that the
circuit size and power consumption are tripled.

Double modular redundancy (DMR) performs the same pro-
cess in duplicate and detects a soft error by comparing the
results. An error is corrected by re-execution [3, 4, 5]. As
a re-execution method, a schedule dedicated to correcting the
error is prepared, and when an error is detected, the dedicated
schedule is invoked [6, 7]. In a rewind-style error correction
scheme, a schedule dedicated to error correction is not used,
but the necessary part of the original schedule is invoked [8].
While the delay of re-execution can be reduced by using a dedi-
cated schedule for error correction, the execution control of the
re-execution schedule is required in addition to the execution
control of the original schedule, and therefore the increased
control circuit area would be a disadvantage. The rewind-style
re-execution simply executes the necessary part of the normal
schedule to correct the error. Therefore, the change to the con-

trol circuit can be minimum and the increase in the control cir-
cuit area would be very small. In this study, we adopt rewind-
style re-execution.

Re-execution of operations for error correction requires the
input data that is guaranteed to be error-free. Thus in addi-
tion to potentially erroneous data, the error-free data for er-
ror correction must be prepared and many registers might be
needed to store them. It is an important problem to minimize
the registers for storing these error-free data for error correc-
tion. Methods of minimizing register cost in DMR are pro-
posed in [9, 10]. In [9], errors that occur in registers are not
taken into account. Although [10] aims to minimize the reg-
ister area cost required on the premise that the input data for
re-execution is stored in the radiation hardened register [4, 11],
there is a problem that the hardened register has a larger area
than the normal register. In this research, no radiation hard-
ened register is used, and the number of registers is reduced
which hold the input data for error correction as well as the
ordinary data for normal operations.

The data that needs to be stored for re-execution depends on
how the set of operations to be re-executed is selected. Hence
the required number of registers can be reduced by appropri-
ately selecting the operations to be re-executed. In this paper,
we propose a method in DMR design that minimizes the re-
quired number of registers for a given DMR operation schedule
by optimizing the combination of the re-execution operations.

The remainder of the paper is organized as follows. The er-
ror detection and the correction by re-executing operations are
described in Sect. 2. The proposed method to minimize regis-
ters is presented in Sect. 3. Experimental results are presented
in Sect. 4 and Sect. 5 concludes the work.

II. ERROR COLLECTION AND REGISTER USAGE INDMR

A. Error model and DMR

To detect soft error in DMR, an operation execution and the
input data to the operation are duplicated, and the equality of
the duplicated operation results is checked. Error is modeled
so that no more than one error occurs at the same time in 1)
the input data, 2) duplicated operation execution, and 3) the
equality check (comparison) for error detection, all of which
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Fig. 1. An example for error correction by replay in DMR. (a) a DFG.
(b) DMR schedule for operation execution. (c) replaying the schedule when
an error is detected.

are related to an operation. When an error is detected for an
operation, the error exists in one of the duplicated input data,
in the operation executions, or in the equality check. If an error
is detected, the operation is executed again. The re-execution
is done within a sufficiently short time interval from the error
and thus no error occurs during the re-execution.

B. Error correction by replay

When an error is detected in DMR, the error can be miti-
gated by executing necessary operations. Figure 1 shows an
example of the error mitigation. Assume there are two opera-
tions ‘A’ and ‘B’ and there exists data dependency that ‘B’ uses
the result of ‘A’ as shown in Fig. 1(a). Let ‘B’ be said achild
of ‘A’. With DMR, each operation is executed twice and these
are called respectively theprimary andsecondaryexecutions
of the operation. They are denoted as ‘Ap’ and ‘As’ for opera-
tion A. When both Ap and As are executed and the results are
stored in registers, they are compared to check an error. Fig-
ure 1(b) is a time chart showing the schedule of operation ex-
ecutions and comparisons, where ‘Ae’ denotes a comparison.
Let d(Gm) denote the result produced by Gm for operation G
(m= p or m= s). For example, Ap and As start at clock cy-
cle (CC) 0 and 1, respectively. Both Ap and As take one CC
and d(Ap) and d(As) are stored in registers at the end of CC
0 and CC 1, respectively. An arrow in Fig. 1(b) represents the
lifetime of data stored in a register. The comparison between
d(Ap) and d(As) is done at CC 2. If the comparison is affir-
mative, i.e., the compared data are equal, any of Ap, As, and
d(Ap) and d(As) stored in registers does not contain an error.
If the comparison is negative, either Ap or As, or one of the
data stored in registers, or even the comparison itself contains
an error. Since it is not possible to identify which is erroneous
and which are correct, both Ap and As are executed again, and
d(Ap) and d(As) are stored in registers again. According to the
error model where at most one error occurs within a short time
period, re-executed Ap and As, and d(Ap) and d(As) stored in
registers are error-free, and thus the error is mitigated.

When an error occurred with operation A, the child (chil-
dren) of operation A which has executed before re-execution
of operation A might have used erroneous d(Ap) and d(As).
Thus the child (children) must be re-executed when operation
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Fig. 2. Error-free input data for error correction by replay. (a) a DFG.
(b) DMR schedule for operations and data. (c) error detection schedule and
the necessary input for replay. (d) replay invoked when an error is detected at
CC 3. (e) replay invoked when an error is detected at CC 4.

A is re-executed. Such re-execution of a child (children) can
be easily achieved by repeating the schedule from the start of
Ap. Let this scheme be calledreplay. Figure 1(c) shows an ex-
ample of replay when an error occurred for operation A. Since
Ap is scheduled at CC 0 and the error occurred for operation A
is detected at CC 2, the part of the schedule from CC 0 to CC 2
is executed again in the replay. The replayed CC is denoted as
‘Rt ’ for the original CCt. By re-executing Ap, the error-free
d(Ap) is stored in a register, and Bp is also re-executed using
the error-free d(Ap). After the replay, the original schedule
resumes.
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C. Error-free input data for replay

Suppose that the DMR operation schedule of the DFG in
Fig. 2(a) is given as shown in Fig. 2(b). It is assumed that
all the operations take 1 CC and 3 functional units (FUs) are
used. In Fig. 2(a), ‘IN’ indicates the input data to the operation
A. The data to Ap is denoted as d(INp) and the data to As as
d(INs). d(INp), d(INs), and other data are bound to 4 registers
as shown in Fig. 2(b). LetpD denote the allowed maximum
delay penalty caused by the replay. HerepD is specified as
4 CCs. To satisfypD, comparisons Ce and De are executed
at CC 3 using two equality check units EQ0 and EQ1, and a
comparison Ee at CC 4 using EQ0 as shown in Fig. 2(c). If
Ce or De detect an error, operations A, B, C, and D need be
re-executed. Operations Ep and Es have been executed, and
they might have used erroneous data. Therefore Ep and Es
also must be re-executed. The replay of 4 CCs from R0 to
R3 is performed as shown in Fig. 2(d). If Ee detects an error,
the replay of 2 CCs of R3 and R4 is performed as shown in
Fig. 2(e).

Re-execution of Ap and As requires the error-free input data
‘IN’. Thus another copy of ‘IN’ denoted as d(INr) is kept in
a register not affected by the error in d(INp) or d(INs). Due
to the error model of at most one operation or one data con-
tains an error at a time, when an error is detected by Ce or De,
d(INr) is ensured to be error-free. Let such data for replay be
calledreplay input. When Ce or De detect an error at CC 3,
d(INr) is copied to registers Reg0 and Reg1 at the end of CC
3, and the re-executed Ap and As respectively use the data at
the next CC of R0. This suggests that d(INr) must be kept in
a register by CC 3. When Ee detects an error at CC 4, Ep and
Es are re-executed and they require d(Cp), d(Cs), d(Dp), and
d(Ds) in Reg0, Reg1, Reg2, and Reg3, respectively. Therefore
the error-free replay inputs d(Cr) and d(Dr) are copied respec-
tively to Reg0 and Reg1, and to Reg2 and Reg3 at CC 4 when
the error is detected. This suggest that d(Cr) and d(Dr) must be
stored in registers at the end of CC 2 and kept by CC 4. A pos-
sible register binding with the minimized number of registers
is shown in Fig. 2(c) and 7 registers are required.

III. R EGISTERM INIMIZATION

Here we present a method to choose a set of error detection
points which minimizes the required number of registers for a
given operation schedule.

A. Register Requirement

Figure 3(a) shows an example DFG. All the operations A
through G are assumed to take 1 CC. Operation A takes an
external input ‘IN’. Let a DMR operation schedule with two
FUs be given as shown in Fig. 3(b). The figure also shows the
lifetime of data and their binding to registers. Without consid-
ering the replay input, the number of data to be stored in each
CC is shown in the bottom of Fig. 3(b). The values are deter-
mined according to the given schedule and each value indicates
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Fig. 3. Register requirement for DMR. (a) a DFG. (b) baseline register
requirement for the primary and secondary operations. (c) the upper and
lower bounds of register requirement when no replay interval is considered.

the required minimum number of registers in the correspond-
ing CC. Let the values be calledRRB, the baseline of register
requirement.

By taking replay input into account, considering every pos-
sible replay execution, the replay inputs are tentatively re-
quired as shown in Fig. 3(c). Since which replay is executed
and which replay inputs are needed are not determined at this
moment, the lifetime of replay inputs are indicated in dotted
bold arrows. The minimum number of registers known to be
mandatory is denoted asRRL, the lower bound of register re-
quirement. On the other hand, the maximum number of reg-
isters possibly required at most is denoted asRRU, the upper
bound of register requirement. When any replay has not been
determined, RRL is equal to RRB, and RRU is the sum of RRB
and the number of replay inputs which tentatively have to be
stored in each CC. The RRL and RRU values are shown in the
bottom of Fig. 3(c).

For the given operation schedule, assume that the equality
checks of the primary and secondary operations of D, E, and
F are executed at CC 6 and the schedule from CC 3 to CC 6
is replayed when a soft error is detected as shown in Fig. 4(a).
Since the replay of D, E, and F requires the replay inputs of
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d(Ar), d(Br), and d(Cr), these data must be stored in regis-
ters until CC 6, at which the equality checks are scheduled.
Thus the lifetimes of d(Ar), d(Br), and d(Cr) are determined
and these are shown in solid bold arrows in Fig. 4(a). As the
replay inputs for G, d(Cr) and d(Dr) are required to be stored
in registers from CC 3 and CC 5, respectively, to at least CC
6. In addition, d(Fr) is required to be stored in a register at
least at CC 6 since d(Fr) would be needed as a replay input
for operation(s) succeeding this DFG. Here the values of RRL
are updated as the sum of RRB and the number of determined
replay inputs. The values of RRU are also updated, and these
updated values are shown in the bottom of Fig. 4(a). The RRL
and RRU are identical at CC 4 (and CC 6 too), and it suggests
that at least 12 registers are necessary.

Assume another case where the equality checks are executed
for operations D and E at CC 5 and the schedule from CC 2 to
CC 5 is replayed when a soft error is detected as shown in
Fig. 4(b). The operations C, D, and E are replayed and the
replay inputs d(Ar) and d(Br) are required to be stored until
CC 5. Thus the lifetimes of d(Ar) and d(Br) are determined as
shown in solid bold arrows in Fig. 4(b). As the replay inputs for
G, d(Dr) and d(Er) are required to be stored in registers at least
until CC 5. The updated values of RRL and RRU are shown in
the bottom of Fig. 4(b). The RRL and RRU are identical at CC
4, and it suggests that at least 11 registers are necessary.
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Fig. 5. Replay interval including the CC with the largest RRU.

This example shows that the required number of registers
can be minimized by selecting optimized combination of the
equality check points for error detection.

B. Register Minimization Algorithm

When an equality check Qe for some operation Q detects an
error, the related replay re-executes the operations which sat-
isfy the conditions: 1) there is a path from the operation to Q
and 2) the error-freeness of the operation is not checked by any
equality checks other than Qe. The interval of CCs between
the CC at which the earliest re-executed operation is sched-
uled and the CC at which Qe is scheduled is calleda replay
interval. To satisfy the constraint ofpD, every replay inter-
val must be no longer thanpD. Let Replay( f , t) denote the
replay interval which is invoked when an error is detected by
one of the equality checks scheduled at CCt and starts at CCf .
For example, Fig. 2(d) shows a replay intervalReplay(0,3) for
the operation schedule of Fig. 2(b). In this case,Replay(0,3)
consists of CCs from CC 0 to CC 3 and the length is within
pD = 4. If the equality check(s) at CCt confirms no error, the
error-freeness is ensured for the operations scheduled within
Replay( f , t) except the operations scheduled at CCt. For ex-
ample, as shown in Fig. 2(c), Ep, Es, Ce, and De are scheduled
at CC 3. Although Ep and Es are included inReplay(0,3),
the error-freeness of E is not ensured because Ce and De are
not data dependent on Ep and Es. It is said that the operations
scheduled in a replay intervalReplay( f , t) except for CCt are
coveredby Replay( f , t). In this example, operations A, B, C,
and D are covered byReplay(0,3). To detect any soft error in
the system, every operation must be covered by a replay inter-
val. Thus in this example, another replay intervalReplay(3,4),
which is invoked if an error is detected by Ee and whose length
is 2 CCs, is necessary to cover operation E. It is important to
note that the first CC of a replay interval overlaps with the last
CC of another replay interval.

When a replay interval is adopted, while the numbers of reg-
isters required at CCs in the replay interval are determined,
the register requirement at other CCs would be increased and
it might result in a design with excessively many registers.
Hence the register minimization strategy taken in this work is
as follows: the larger the register requirement for the CC is,
the earlier the required number of registers at the CC is fixed
as small as possible by appropriately selecting a replay interval
which includes the CC. This is illustrated in Fig 5. The RRU
is largest at CCx among all the CCs and 12 registers would
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Input: DFG= (N,E) describing the processing algorithm,
the upper limit of delay penaltypD,
a DMR schedule withT clock cycles (CCs)

Output: replay intervals to minimize registers
1: Compute RRB for all the CCs;
2: L ← all the CCs from 0 toT −1;
3: while L is not emptydo
4: Evaluate RRU and RRL for all the CCs;
5: C← CCs inL with the largest RRU value;
6: W ← /0;
7: foreachx∈C do
8: foreachw = Replay( f , t) satisfying (1)f ≤ x≤ t −1,

(2) t − f +1≤ pD, and (3) all the CCs fromf
to t −1 are included inL do

9: Evaluate RRU and RRL for all the CCs assuming
w is adopted;

10: Putw with RRU and RRL values intoW;
11: end foreach;
12: end foreach;
13: Select the replay intervalw = Replay( f , t) ∈W according to

the following criteria applied in order
(1) the largest RRL is smallest,
(2) RRL at CCf is smallest,
(3) the intervalt − f +1 is largest,
(4) f is earliest;

14: Remove all the CCsk ( f ≤ k≤ t −1) from L;
15: end while;

Fig. 6. Pseudocode of the proposed algorithm for register minimization.

be necessary at CCx in the worst case (RRU= 12). Thus a
replay intervalReplay( f , t) which includes CCx in its interval
( f ≤ x≤ t −1) is selected to fix the register requirement at CC
x. Many replay intervalsReplay( f , t) including CCx may ex-
ist. For eachReplay( f , t) which satisfies bothf ≤ x ≤ t − 1
andt − f + 1 ≤ pD, the RRU and RRL are evaluated assum-
ing the replay interval is adopted. Then the one replay interval
is selected where the largest of RRL values for all the CCs is
the smallest. If there is a tie, it is broken by the following pri-
orities: 1) RRL at CCf is the smallest, and 2) the interval
t − f +1 is the largest.

More than one CC with the largest RRU may exist. In that
case, as the third priority to break a tie, the replay interval with
the earliestf is selected. If a tie still exists, select one arbitrar-
ily.

Greedily selecting a replay interval is repeated until all the
operations are covered by replay intervals. The pseudocode of
the proposed method is shown in Fig. 6.

IV. EXPERIMENTAL RESULTS

The proposed register minimization method was imple-
mented using Python programming language. The processing
algorithms used in the experiments were the 5th order wave
elliptic filter (WEF) [12] consisting of 8 multiplications and
26 additions, the WEF unfolded [13] by factor 3 (WEF3, 24
multiplications and 78 additions), 8-point 1D DCT [14] (DCT)
consisting of 11 multiplications and 29 additions, and 32 point
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Fig. 7. The result of the register minimization. (a) WEF, (b) WEF3, and
(c) DCT with 6 adders and 6 multipliers. (d) FFT32 with 40 adders and 40
multipliers.

FFT (FFT32) consisting of 256 multiplications and 448 addi-
tions. The DMR schedules for the processing algorithms were
obtained by list scheduling [15] assuming 6 adders and 6 mul-
tipliers are available for WEF, WEF3, and DCT, and 40 adders
and 40 multipliers are available for FFT32. An addition takes 1
CC, a multiplication takes 2 CCs with pipelining, and an equal-
ity check takes 1 CC. It is assumed that an arbitrary number of
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Fig. 8. The resultant set of replay intervals. (a) a DMR schedule for WEF with 6 adders and 6 multipliers. (b) the result obtained by the proposed method.
(c) the result obtained by the conventional method.

comparators can be used for equality checks.
For comparison, as a conventional method, replay intervals

of the length equal topD are selected from the beginning of
the schedule. That is, the design with the conventional method
consists of the replay intervalsReplay(0, pD−1), Replay(pD−
1,2pD −2), Replay(2pD −2,3pD −3), and so on.

Figure 7 shows the minimized number of registers forpD

values from 3 to 9. In some cases the results of the proposed
and the conventional methods are identical. However, the pro-
posed method obtains DMR design with the smaller number of
registers than the conventional method in many cases, and up
to 27% reduction is achieved.

The selection of replay intervals for the case of WEF and
pD = 6 is shown in Fig. 8. While the proposed method uses
more replay intervals than the conventional method, a DMR
design with the smaller number of registers is obtained.

V. CONCLUSIONS

In this paper, a method to minimize registers in DMR de-
sign is proposed. By considering the replay style soft error
correction, the delay penalty for the error correction, and the
requirement for providing error-free input data for the replay,
the proposed method greedily selects replay intervals. The pro-
posed method obtains the DMR design with less registers in
many cases, and the reduction is up to 27%.

The minimization of the cost other than registers, such as
necessary multiplexors, and the minimization of comparators
for error detection remain as future work. In this paper, reg-
isters are minimized for a given DMR schedule. For further
minimization, optimizing the DMR schedule would be an in-
teresting problem.
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