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Abstract—This paper presents a new design framework for
register-transfer-level data-paths. The conventional D-flip-flop-
based register (D-REG) is very practical, since the designers
can concentrate only on the timing constraints between registers.
However, with the development of deep sub-micron technology
and the increase in the data length, the D-REG hardware cost
is becoming relatively larger than the other hardware resources.
Thus, latch-based design methods have been proposed as alter-
natives to D-REG-based design methods, since the latch-based
register has smaller hardware cost than D-REG. A disadvantage
of the conventional latch-based architecture is the increase in the
hardware resources. As a result, the total register cost cannot be
fully reduced. We propose a new design framework, a kind of
level-triggered latch design, in which a D-REG is replaced by a
pair of latch-based registers: a master latch-based register (M-
REG) and a slave latch-based register (S-REG).

I. INTRODUCTION

In modern very large scale integration (VLSI) design, the
design flow becomes a highly sophisticated and complex
procedure [1]. In past, most VLSI developers start design from
the register-transfer level. However, it becomes difficult to treat
the numerous number of VLSI resources (registers, functional
units, multiplexers, wires, etc.) by hands. Thus, higher level
design will be indispensable also in the future. The process of
high-level synthesis (HLS) converts a behavioral description
of an application into its register-transfer level. HLS has great
potential to improve the quality of VLSIs [2].
HLS using flip-flop (FF)-based register has been widely

studied in both academia and industry for many years. The
main reason is the convenience of timing verification. The
designers can concentrate only on the timing constraints
between registers. However, with the development of deep
sub-micron technology and the increase in the data length,
the FF-based register cost is becoming relatively larger than
the other hardware resources [3].
Several methods have been proposed to reduce register cost.
1) Bitwidth-aware high-level synthesis (BIT-H) [4]: chang-
ing the bit-width of FF-based register according to
the data length during operation scheduling, resource
allocation, and resource binding.

2) Register write inhibition by resource dedication
(REWIRED) [5]: removing some intermediate FF-based
registers during register allocation and binding.

3) Latch-based high-level synthesis framework (HLS-L)
[6]: replacing all the FF-based registers with latch-
based registers during operation scheduling, resource
allocation, and resource binding.

Although most traditional HLS methods focus on uniform-
width resources, BIT-H adds awareness of the bitwidth infor-
mation into the HLS flow, and different bit-width FF-based
registers are used to obtain good quality-of-result. After the
precise bitwidth information is available, BIT-H binds data to
FF-based registers so as to minimize the total bit-widths. How-
ever, this method requires accurate input data length analysis,
and cannot treat the case that input data could be changed
after fabrication. In HLS, data generated by FUs are basically
assumed to be stored in registers. Consequently, intermediate
registers are required in any design. REWIRED removes
intermediate registers, and let generated data by FUs directly
propagate to the next FUs. Although REWIRED contributes
to reduce registers, it makes FU sharing conditions strict, and
could require extra FUs. Level latch design methods were
studied in logic-level design as alternatives to the conventional
edge-triggered flip-flop design method [7][8]. HLS-L explores
the solution space of latch design in HLS design flow, and
derives the HLS latch design conditions. However, since HLS-
L assumes that all registers are latch-based registers, each task
of HLS has to consider the complicated timing condition of
latch-based registers.
In this paper, we propose a register clustering method in

latch-based HLS in which latch-based registers are grouped
into several clusters. In conventional design, FF-based register
is required mainly due to the hold timing constraint. We point
out that some FF-based registers can be removed without
timing violation if considering resource binding. Compared
to the conventional full FF-based register design, our design
has smaller hardware cost by removing registers. Our method
does not require precise data length analysis, extra FUs, and
complicated design conditions.
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The main contributions of this paper are as follows.
• Proposing a new design framework in which an D-REG is
replaced by a pair of latch-based registers: a master latch-
based register (M-REG) and a slave latch-based register
(S-REG) (Section III).

• A heuristic and an exact algorithms are proposed to
decide resource binding with the minimum number of
D-REGs (Section IV).

• Discussing M-REG sharing with several S-REG for fur-
ther optimization (Section V).

II. FF/LATCH MIXED DESIGN
FF/latch mixed design has been proposed, where the register

type of each register is not restricted to the same one (only
FF or latch). Since our proposed method is based on FF/latch
mixed desgin, we show a brief summary here. Figure 1 is an
example data-flow graph (DFG) where operations o1 and o2
are scheduled at 1st and 2nd clock-cycles (CCs), respectively.
We focus on the execution of o1 on datapath. Figure 2-
left shows three types of datapaths, where R1, R2, R3 are
registers, F is a functional unit (FU), and M is a multiplexer.
Symbol ’�’ represents master latch (M-REG), symbol ’�’
represents slave latch (S-REG). flip-flop-based register (D-
REG) is a concatenation of M-REG and S-REG, and symbol
’��’ represents D-REG.
In Fig. 2(a), the left figure shows a datapath, and the

right figure shows the timing diagram of executing o1 in
conventional D-REG design. dmax and dmin are the maximum-
and minimum-path delays between R1 and R3, respectively.
Assume that F is shared with o1 and o2. To store b in R3 at
CC2, M-REG in R3 must be in the transparent state during
the negative clock period in CC1, and S-REG must be in the
transparent state during the positive clock period in CC2. Since
F is reused by o2 in CC2, the fastest effect of this reusing
violates the output of F (denoted as ’x’) after dmin. S-REG
does not store x since M-REG is in the latched stated in CC2.
This is the correct execution of o1 in D-REG design.
Figure 2(b) shows the design where all the M-REGs are

removed. This type of design is called full latch design which
is a basic model of HLS-L [6]. Since M-REG in R3 is
removed, data x directly propagates to S-REG in R3. As a
result, wrong data x is stored in R3. To prevent this timing
violation, HLS-L requires additional design constraints that
cause the increase in resources.
Finally, we show FF/latch-mixed design as shown in

Fig. 2(c). We focus on the fact that timing problem in latch-
based design is caused only by the structure of the output
register, not by the input register. In this example, M-REGs in
both R1 and R2 can be safely removed (M-REG in R3 is still
remained). Figure 2(c)-right shows the resulting timing chart
which is the same with the correct timing in Fig. 2(a).
From the point of view of timing accuracy, conventional

design (a) and FF/mixed design (c) are acceptable. Further-
more, from the point of view of hardware cost, (c) is better
than (a) by removing two M-REGs. Our objective is to explore
the solution space of the design in which some M-REGs are
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Fig. 1. Example data-flow graph with scheduling result.
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Fig. 2. Example timing charts in three designs.

suitably removed to reduce the hardware cost without a risk of
timing error. Note that each register would be an input register
for an operation, and the output register for another operation,
which is decided by resource binding.
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III. PROPOSED HIGH-LEVEL SYNTHESIS
A. Operation Scheduling

Operation scheduling is a HLS task to assign each operation
in DFG to the start CC, and the latency is defined as the
number of CCs needed for the whole computation. In our
architecture, operation scheduling can be done in the same
way with the conventional D-REG-based HLS. That is, the
execution CCs of each operation oi can be computed as
�di/Tc�, where di is the execution delay of oi and Tc is
the clock period. Each operation is scheduled in a CC with
keeping the resource constraint. For each pair of operations,
if there is a data-dependency between them. the preceding
operation must be scheduled in the earlier CC than the other
operation.

B. Functional Unit Binding

The lifetime of an operation is the time duration between the
birth and death CCs. It is possible to obtain FU binding with
no hold violation with a simple modification in the lifetimes.
Each operation should not be changed until one more CC after
the death CC of the operation: t′o(oi) = to(oi) + 1, where
to(oi) is the death CC of the lifetime of oi, and t′o(oi) is the
modified death CC. It means that the adjacent operations in
operation scheduling cannot share the same FU. However, as
shown in Sect. II, adjacent operations can share the same FU
if the output register is D-REG. In the proposed architecture,
the lifetime of oi, denoted as To(oi) is defined as follows:
(C1) For each operation oi, if its output is stored in D-REG,

To(oi) = to(oi); otherwise, To(oi) = to(oi) + 1.

C. Register Binding

The lifetime of a data is the time duration between the CC
at which the data is generated and the CC at which the data is
finally referenced. In similar to FU binding, register binding
could also cause hold violation. For example in Fig. 2, if
R1 is overwritten by another data at CC2, the fastest effect
violates b. Each data a should not be overwritten until one
more CC after the death CC of the lifetime: t′d(a) = td(a)+1,
where td(a) is the death CC of the lifetime of a, and t′d(a)
is the modified death CC. If all the outputs of the operations
referencing a lastly are stored in D-REG, the lifetime of a
does not need to be enlarged. In the proposed architecture,
the lifetime of a, denoted as Td(a) is defined as follows:
(C2) For each data a, if all the output data of operations

oi that reference a lastly (i.e., to(oi) = td(a)) are bound to
D-REGs, Td(a) = td(a); otherwise, Td(a) = td(a) + 1.

D. Example

Figure 3(a) shows another example DFG to explain our
design. Figure 3(b) is the FU binding solution and register
binding solution in the full latch design (i.e., full S-REG
design), where a rectangle represents the lifetime of opera-
tion/data. In this case, each lifetime must be enlarged by one
CC according to (C1) and (C2), and two FUs and two registers
are required. Let us assume that R1 is S-REG, and R2 is
D-REG. The lifetimes of o1 and a are shorten by one CC

based on the design rules (C1) and (C2). As a result, we can
save one FU (Fig. 3(c)). If all the registers are D-REGs (i.e.,
conventional D-REG design), we can obtain a synthesis result
with the same number of resources with our design. However,
the hardware cost of our design is better than conventional
design by changing R1 from D-REG to S-REG (i.e., removing
M-REG from R1).

IV. D-REG MINIMIZATION PROBLEM AND ALGORITHMS

Using D-REG requires not only register costs, but also
additional control cost. It is important to minimize the number
of D-REGs. As shown in the example in Fig. 3, not every
register needs to be D-REG. In practical design, the number
of available resources would be given. This fact motivates us
to minimize the number of D-REGs (i.e, removing M-REG as
much as possible) under the resource constraint.
Our target synthesis problem can be written as follows.

Problem1 : Given a scheduled DFG and the resource
constraints of FUs and registers, find FU and register binding
solutions, so that (C1) and (C2) are met for all the data and
operations, resource constraints are met, and the number of
D-REGs is minimized. �

A. Heuristic Algorithm

In this section, we propose a heuristic algorithm to obtain
near-optimal solutions in polynomial time if DFG is a directed
acyclic graph. We use a path-based resource binding approach
to perform resource binding in fast time.

Definition1 : The weighted and ordered compatibility
graph (WOCG), Gcg, is a directed graph. The vertex set is
composed of vertices each of which represents a data. For
the sake of convenience, we treat a data in DFG and the cor-
responding vertex in Gcg without distinction. Arcs represent
the compatibility (i.e., no lifetime overlapping) between data.
For each vertex-pair, the arc (ai1, ai2) is added to Gcg if ai1
and ai2 are compatible, and ai1 is generated earlier than ai2.
wv(ai1) represents the weight on ai1. There is one source node
s and one sink node t. �

(a) DFG (b) full latch (c) proposed design
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Fig. 3. Example synthesis results.
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The following are the definition of each notation for each
data a. Suppose that operation oa outputs a.
Ma: Set of operations oj , such that oj is the same operations

type with oa, register binding for the output data of oj is
undecided, and to(oa) = to(oj).

ma: The minimum number such that the lifetimes of ma

operations inMa cannot be extended due to the current
resource constraint.

Na: Set of data aj , such that the lifetime of aj is undecided,
and to(oa) = td(aj).

na: The minimum number such that the lifetimes of na data
in Na cannot be extended due to the current resource
constraint of registers.

Qa: Subset of data in Na, that are referenced by oa.
sa: The number of operations that reference data a lastly, and

FU binding for these operations is undecided.
Ca: The cost for an FU of the same type with oa.
CR: The cost for a register.
For each data a, the lifetimes of at least ma operations in

Ma cannot be extended due to the resource constraint. This
is equal to choose at least ma operations fromMa, and bind
their output data to D-REG. We provide higher priority to the
data who has higher priority to be bound to a D-REG. It can
be represented as the following.

ma

|Ma| (1)

With regard to FU binding, this is equal to choose at least
na data from Na, and bind the output data of all the operations
referencing these data lastly, to D-REGs. The basic weight on
a is defined as na/|Na| by the same motivation with (1).
It is better to choose a data to bind to a D-REG, such

that this binding makes the lifetimes of other data shorten
as many as possible. This heuristic depends on the number of
operations referencing the data lastly. For example, we should
choose a data such that only one operation references it lastly,
rather than a data such that two operations references it lastly.
The former case requires two D-REGs. The latter case, on the
other hand, requires one. It is represented as follows.

na

|Na| ∗
∑

aj∈Qa

1

sj
(2)

Based on the above observations, we define the vertex
weight of a in Gcg as the weighted sum of the metrics for
reducing FUs and registers:

wv(a) = α ∗ Ca ∗ eq(1) + (1− α) ∗ CR ∗ eq(2) (3)

where α is a real value (0 ≤ α ≤ 1) that represents the
importance of each product term, and W+ is a some positive
value in order to include as much operations as possible in a
maximum weighted path.

Example : We show the structure of WOCG for an exam-
ple scheduled graph as shown in Fig. 4(left). Figure 4(right)
shows the resulting WOCG, where the vertices are data. The
source and sink s and t are connected to all the other data
vertices. We add an edge from a to c because there is no

lifetime overlapping between them. However, we do not add
an edge from a to b because there is lifetime overlapping
between them.

B. Integer Linear Programming (ILP) Formulation

To solve our problem exactly, and to obtain a better knowl-
edge of our heuristic algorithm, we formulate our problem
as an ILP. Our ILP uses the four types of 0-1 variables.
The following list shows the variables and the necessary-and-
sufficient condition each variable takes 1.

• xi,j takes 1 if and only if data ai is bound to jth register
Rj .

• yi,j takes 1 if and only if operation oi is bound to jth

FU of the same type.
• zi takes 1 if and only if ai is bound to a D-REG.
• wj takes 1 if and only if Rj is a D-REG.
Each data ai must be bound to a register:

xi,j = 1 ∀Rj ∈ R, (4)

where R is the set of the available registers.
Each pair of data ai1 and ai2 with lifetime overlapping

cannot be bound to the same register Rj :

xi1,j + xi2,j ≤ 1 ∀Rj ∈ R. (5)

Each operation oi must be bound to an FU of the same type:

yi,j = 1 ∀fj ∈ Fi, (6)

where Fi is the set of available FUs of the same type with oi,
and fj is jth FU in Fi.
Each pair of operations oi1 and oi2 with lifetime overlapping

cannot be bound to the same FU fj of the same type:

yi1,j + yi2,j ≤ 1 ∀fj ∈ Fi. (7)

The design constraint in (C2) in Sect. III can be translated
into the following constraint. Let ai1 and ai2 be a data-pair,
such that the birth CC of ai2 is the death CC of ai1 plus one
CC. If these data are bound to the same register, the output data
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CC2
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o4

a b

c d
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c
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d

s

t

Fig. 4. Example DFG (left) and the corresponding graph for our heuristic
algorithm (right).
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of all the operations referencing ai1 lastly (such an operation
set is denoted as Oi1) must be bound to a D-REG.

xi1,j + xi2,j ≤ zi3 + 1 ∀oi3 ∈ Oi1. (8)

The design constraint in (C1) in Sect. III can be translated
into the following constraint. Let oi1 and oi2 be an operation-
pair of the same operation type, such that oi1 andoi2 are
executed in consecutive CCs, and oi1 is executed earlier than
oi2. If oi1 and oi2 are bound to the same FU, the output data
of oi1 must be bound to a D-REG.

yi1,j + yi2,j ≤ zi1 + 1, (9)

where ai1 is the output data of operation oi1.
Each register Rj becomes a D-REG (i.e., wj = 1) if at least

one data ai with zi = 1 are bound to Rj :

xi,j + zi ≤ wj + 1. (10)

The objective is to minimize the number of D-REGs (i.e.,
removing M-REG as much as possible):

Minimize
∑

Rj∈R
wj . (11)

V. M-REG SHARING THEORETIC DISCUSSION
So far, we focus on whether each register is D-REG (M-

REG + S-REG) or S-REG. To pursue the further optimiza-
tion, this section discusses the M-REG sharing issue. Let us
consider two D-REGs Rx and Ry . These registers have own
M-REGs. If Rx and Ry store data at different timing, they can
share one M-REG. As a result, one M-REG can be removed
for these two registers without risk of timing violation. This
fact motivates us to divide registers into some group such that
the registers in one group share one M-REG. This new design
requires additional condition which can be written as follows.

(C3) For each D-REG pair R1 and R2, if they store data at
different timing, they can share the same M-REG. �
One possible optimization problem is to minimize the

number of D-REGs by M-REG sharing, which can be defined
as follows.

Problem 2 : Given a scheduled DFG and the resource
binding solution of FUs and registers, find register groups
such that each group shares one M-REG, so that (C1) , (C2),
and (C3) are met for all the data and operations, resource
constraints are met, and the number of M-REGs is minimized.
�
We have proven that the following theorem using the

polynomial reduction from the graph vertex coloring problem.
Theorem 1 : the computational complexity of Problem 2

is NP-hard. �

VI. CONCLUDING REMARKS
In this paper, we proposed a new design framework, a

kind of level-triggered latch design, in which an D-flip-
flop-based register (D-REG) is replaced by a pair of latch-
based registers: a master latch-based register (M-REG) and a
slave latch-based register (S-REG). We pointed out that the
number of M-REGs can be reduced if resource binding is
taken into consideration. Therefore, we considered a resource
binding problem to minimize the number of D-REGs under
resource constraints. To tackle the problem, we proposed an
efficient heuristic-based algorithm which is based on graph
theory. Next, to obtain a better knowledge of our heuristic
algorithm, and to solve general case input computations, we
also formulated our problem as an integer linear programming
(ILP). To implement these algorithms with software tool and
apply to several benchmark designs is left as a future work.
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