
A Proposal of Application Specific Approach with RISC-V Processor on
FPGA

Tetsuo Miyauchi Kiyofumi Tanaka

School of Information Science School of Advanced Science and Technology
Japan Advanced Institute of Science and Technology Japan Advanced Instituted of Science and Technology

Nomi, Ishikawa 923-1292 Japan Nomi, Ishikawa 923-1292 Japan
t-miyauc@jaist.ac.jp kiyofumi@jaist.ac.jp

Abstract— Currently, the number of IoT(Internet

of Things) devices is increasing. In IoT devices, small

footprint is desirable. RISC-V is an open processor

architecture, which is becoming popular for IoT de-

vices. We implemented RISC-V soft processor core,

of which instruction set is RV32IM (base implemen-

tation and multiple/division in 32 bit registers), on

an FPGA with 5-stage pipeline. In this paper, we

propose a method for reducing hardware resources

by adapting the processor core to an application pro-

gram. We show our approach can reduce necessary

FPGA resources to 14.8% (Rijndael) and 14.4% (Ma-

trix) of the full processor core implementation.

I. Introduction

Currently, the number of IoT(Internet of Things) de-
vices is increasing, so that studies for domain specific ar-
chitecture are widely undertaken. In IoT devices, small
footprint is desirable due to cost reduction and constraint
of the available resources.

We have been studying a framework of development
environment for application-specific systems. In the lit-
erature [9], we introduced our framework for generating
application-specific FPGA-based SoC. For a part of this
framework, we describe how we implement the proces-
sor core and propose a method for minimizing hardware
resources to fit the target application. We show the eval-
uation results comparing full and application specific im-
plementation in the view of resource usage.

To implement the processor core on an FPGA, we adopt
RISC-V architecture for the instruction set architecture
(ISA). Recently, RISC-V has been gaining popularity for
IoT devices since the architecture is open and suitable for
IoT devices [6].

The structure of this paper is as follows. In Section II,
we show the related researches about application specific
systems as well as RISC-V architecture. Section III ex-
plains our implementation and features of the processor.
In Section IV, how the processor resources are adapted
to an application is described. In Section V, we illustrate

the evaluation results. Finally, Section VI concludes the
paper.

II. Related Work

MicroBlaze [13] of Xilinx and NiosII [14] of Intel are
commonly used soft-processors. While we can use these
soft-processors on an FPGA, we cannot build an appli-
cation specific processor since the soft-processors are not
open architecture.

ASIP (Application-domain Specific Instruction-set Pro-
cessor) in the literature [1] is an environment to create an
application specific processor. With their approach, a spe-
cial developing environment for the processor is necessary.
ASIP technologies are surveyed in [2].

RISC-V is a modern processor architecture [12]. In-
struction set architecture of RISC-V is license-free. The
popularity of RISC-V is increasing for IoT devices. There
are several processor designs in both of industrial and aca-
demic fields.

RISC-V instruction set consists of the base integer in-
struction set and extensions. ISA RV32I stands for the
32-bit base integer instruction set, and the suffixes M, A,
F, and D are the meaning of supporting multiply/divide,
atomic instructions, floating point (single precision), and
floating point (double precision), respectively. The suffix
G supports all of I, M, A, F, and D.

Rocket Chip in the literature [3] is one of the well know
RISC-V implementation. With using Rocket Chip gener-
ator, from high-performance designs to small embedded
processors can be generated. For the small embedded pro-
cessors, a generated processor is RV32IM ISA and uses 3-
stage pipeline. In our approach, while we also developed
a processor core with RV32IM ISA, our implementation
is the 5-stage pipeline, which has higher throughput than
the 3-stage pipeline.

In the literature [5], out-of-order RISC-V core, BOOM,
is presented. It has RV64G RISC-V ISA, which is 64-
bit processor with double precision floating point instruc-
tions. However, 32-bit processor is enough for our target
system, so we adopt RV32IM RISC-V ISA.

SASIMI 2019 ProceedingsR4-5

- 270 -



Fig. 1. Processor Block

The literature [4] describes a soft-processor framework
for high performance CPU. They present a RISC-V 32-bit
processor architecture with RV32IMA ISA. They imple-
ment TLBs and caches for OS(Linux) support in shared
memory systems whereas our target application is a rel-
atively small system with a real-time operating system
without virtual memory.
In IoT systems, since a processor core with small foot-

print plays a significant role, we have been studying a
framework for developing an application specific system.
The literature [9] illustrates our whole framework. In this
paper, we explain our proposal to create an application
specific processor core with using RISC-V architecture.

III. Implementation

We have implemented a processor on an FPGA based
on 32-bit RISC-V architecture. The instruction set is
composed of a base integer instruction set, RV32I, and
the instruction set extension of integer multiplication and
division, so RV32IM is our supporting instruction set. We
show the processor block diagram roughly in Figure 1, in
which only primary data paths are shown for simplifica-
tion.
In the RISC-V specification [7], how the hardware

structure should be implemented is not specified, so we
decided to design the processor as follows.

• Memory Map for small footprint: Memory map of
this processor is illustrated in Figure 2. Program area
is located from 0x0 to 0x7fff in 32K bytes area, which
is enough for our target applications. The area from
0x8000 to 0xbfff is for read only memory, in which
constant data are stored. RAM area for variable data
is from 0xc000 to 0xcfff in 4K bytes area. While we
decided the memory map as above for this implemen-
tation, we can change the memory map flexibly ac-
cording to the application as long as FPGA resources
are allowed.

• 5-stage pipeline: We implemented this processor core
with 5-stage pipeline, which consists of IF (Instruc-
tion Fetch), ID (Instruction Decode), EXE (Execu-
tion), MEM (Memory access), and WB (Write Back
to a register).

• Branch decision: We placed the module to decide
whether a branch is taken or not in ID stage. Since
RISC-V architecture does not have a delay slot, an
instruction is flushed in a pipeline register when the
branch is taken.

• CSR registers: In the RISC-V specification, 4096
Control and Status registers (CSR) are indicated by
bits 31-20 in csr instructions [8]. While these regis-
ters are defined in the specification, we implemented
only actually used eleven registers.

• Forwarding unit: When an instruction uses the result
of the former instruction, the data have to be for-
warded from the corresponding stage of the pipeline.
The example is as follows.

add x3, x2, x1

add x4, x3, x5

In this case, the value of x3 register has to be for-
warded from the MEM stage in order that the value
is used in EXE stage for the second add instruction
since the value to be written in x3 exists in MEM
stage.

• Hazard detection unit: When an instruction uses the
results of the former instruction and the forward-
ing unit cannot supply the results immediately, the
pipeline detection unit works and stall the pipeline.
While there are several cases to stall the pipeline, we
show one example as follows. In this case, the value
of x3 is used in ID stage to decide whether the branch
operation should be performed, but the value of x3
has to be one which is being calculated in the next
stage, EXE stage, so the pipeline has to be stalled to
wait for the x3 register value to be generated.

add x3, x2, x1

beq x3, x4, label

IV. Building Application Specific Processor

In this section, we explain how the application spe-
cific processor is built. While there are 40 instructions in
RV32I Base Instruction Set, 6 instructions in CSR Stan-
dard Extension, and 8 instructions in RV32M Standard
Extension, all of these instructions are not used in an ap-
plication program.
If the system can be implemented without using CSR

instructions, we can delete the CSR related registers,
wires, and multiplexers. Similarly, multiplication calcula-
tion unit can be removed if an application program does
not use mul, mulh, mulhsu or mulhu instructions, and
division calculation unit can be removed if an application

- 271 -



Fig. 2. Memory map

TABLE I
ALU operation

bit
30 14:12 operation
0 000 addition
1 000 subtraction
0 000 shift left
0 010 set less than (signed)
0 011 set less than (unsigned)
0 100 exclusive or
0 101 shift right logical
1 101 shift right arithmetic
0 111 and

program does not use div, divu, rem or remu instruc-
tions. For ALU (Arithmetic Logic Unit), an operation of
ALU is decided by the field of bits 30,14-12 in R-type and
I-type instructions as Table I. We can omit operations
which are not used in an application program.
Table II shows all of RISC-V RV32IM instructions and

◦ idicates the instructions which application programs of
Rijndael and Matrix actually use. Rijndael is a commonly
used block cipher algorithm known as Advanced Encryp-
tion Standard (AES) [11], and Matrix is a program for
multiplication of 10 x 10 matrices.

In general, there are several types of memory accesses,
read/write and byte/half word/word, in an application
program. In 32-bit RISC-V (RV32) load instructions,
there are two types of extension operations, signed ex-
tension and zero extension, and three types of data sizes,
byte, half-word and word(32bits). To manipulate these
types, a processor has a data selection function as de-

TABLE II
Instructions

Inst. Rijndael Matrix Inst. Rijndael Matrix
lui ○ ○ add ○ ○
auipc ○ sub ○
jal ○ ○ sll
jalr ○ ○ slt
beq ○ ○ sltu ○
bne ○ xor ○
blt ○ srl
bge ○ ○ sra
bltu or ○
bgeu and ○
lb ○ fence
lh ecall
lw ○ ○ ebreak
lbu ○ csrrw
lhu csrrs
sb ○ ○ csrrc
sh csrrwi
sw ○ ○ csrrsi
addi ○ ○ csrrci
slti mul ○
sltiu mulh
xori mulhsu
ori mulhu
andi ○ div
slli ○ ○ divu
srli ○ rem
srai remu

picted in Figure 3. If an extension type or a type of data
size is not used in an application program, we can delete
the corresponding hardware resources.
After the resources are selected as above, in the case of

Rijndael, the hatched modules in Figure 4 can be removed
and only the dotted modules are actually embodied.

V. Evaluation

We have implemented the proposed application specific
processor in an FPGA device, Xilinx Artix-7(XC7A35T)
[10]. The processor core runs at 50MHz. Rijndael and
Matrix application programs are used for evaluation.
As Table II shows, the program code of Rijndael uses

21 instructions out of 54 instructions in RV32IM. On the
other hand, the program code of Matrix uses 14 instruc-
tions. As described in the previous section, we meticu-
lously remove unused modules, wires, multiplexers, and
functions of arithmetic logic unit.
Table III shows FPGA resources in post implementa-

tion. The column of “Full” indicates the resource usage
of the implementation for full functions of the processor
without adaptation for an application program. The col-

- 272 -



Fig. 3. Data Selection

Fig. 4. Processor Block (Rijndael application specific)

umn of “Rijndael” is the resource usage of the implemen-
tation which is specific to the application program for Ri-
jndael algorithm. Encrypted data are stored in the Read
Only Memory and we confirm the data are properly de-
crypted. The column of “Matrix” is the resource usage
of the implementation which is specific for Matrix appli-
cation. Elements of two matrices are stored in the Read
Only Memory in advance and we confirm the multiplied
data are equal to the expected values. In this table, we
can see that LUT is reduced from 13185 to 1962 (14.8%)
of “Full” in Rijndael, and from 13185 to 1895 (14.4%)
of “Full” in Matrix, respectively. This is the effect of
removed unused modules such as CSR, division, wires,
multiplexers, and functions of arithmetic logic unit.

TABLE III
FPGA Resources

Resources Full Rijndael Matrix Available
LUT 13185 1962 1895 20800
FF 1935 1479 1482 41600
BRAM 13.5 13.5 13.5 50
DSP 12 0 8 90

VI. Conclusions

This paper presented our method for developing an ap-
plication specific processor with small footprint for IoT
devices. To implement this processor, we developed a 32-
bit processor core with RISC-V architecture in 5-stage
pipeline. We show FPGA resources can be reduced to
14.8% (Rijndael) and 14.4% (Matrix) in our approach.
In future work, we are developing an environment to

generate an application specific processor automatically.

Acknowledgements

This work is supported partly by JSPS KAKENHI
Grant Number JP 19K11873 for developing adaptation
technology, and partly by SHIBUYA Science Culture and
Sports Foundation for designing a RISC-V processor.

References

[1] M. Imai, Y. Takeuchi, K. Sakanushi, N. Ishiura, Advantage
and Possibility of Application-domain Specific Instruction-set
Processor (ASIP), IPSJ Transactions on System LSI Design
Methodology Vol.3, pages 161–178, 2010.

[2] M.J. Jain, M. Balakrishnan, A. Kumar, ASIP Design Method-
ologies: Survey and Issues, Proceedings of 14th International
Conference on VLSI Design, pages 76–81, 2001.

[3] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin
et al, “The Rocket Chip Generator”, Electrical Engineering and
Computer Sciences, University of California at Berkeley, Tech-
nical Report No. UCB/EECS-2016-17, April 2016

[4] E. Matthews, L. Shannon, “TAIGA: A new RISC-V soft-
processor framework enabling high performance CPU architec-
tural features”, 27th International Conference on Field Pro-
grammable Logic and Applications (FPL) ,2017

[5] C. Celio, Pi-Feng Chiu, B. Nikolic, D. A. Patterson,
K. Asanović, “BOOM v2:an open-source out-of-order RISC-V
core, Computer Architecture Research with RISC-V, 2017

[6] D. A. Patterson, J. L. Hennessy, “Computer Organization and
Design, RISC-V Edition”, Morgan Kaufmann Publishers

[7] A. Waterman, K. Asanović, “The RISC-V Instruction Set Man-
ual Volume I: Unprivileged ISA”, Document Version 20190608-
Base-Ratified

[8] A. Waterman, K Asanović, “The RISC-V Instruction Set Man-
ual Volume II: Privileged Architecture”, Document Version
20190608-Priv-MSU-Ratified

[9] T. Miyauchi, K. Tanaka, “A Framework for Automatic Gener-
ation of Application-Specific FPGA-based SoC”, SASIMI 2016

[10] ”Artix-7” [Online] Available https://www.xilinx.com/

products/silicon-devices/fpga/artix-7.html

[11] ”Rijndael” [Online] Available https://embeddedsw.net/

Cipher_Reference_Home.html#AES

[12] ”RISC-V” [Online] Available https://riscv.org/

[13] ”MicroBlaze” [Online] Available http://www.xilinx.com/

products/design-tools/microblaze.html

[14] ”NIOSII” [Online] Available https://www.intel.com/

content/www/us/en/products/programmable/processor/

nios-ii.html

- 273 -


