
A Study on the Optimization of Asynchronous Circuits During RTL
Conversion from Synchronous Circuits

Shogo Semba Hiroshi Saito
The University of Aizu, Japan The University of Aizu, Japan

d8211108@u-aizu.ac.jp hiroshis@u-aizu.ac.jp

Abstract— In this paper, we propose three opti-

mization methods for asynchronous circuits during the

Register Transfer Level (RTL) conversion from syn-

chronous RTL models. The modularization of data-

path resources and the restriction of the use of D flip-

flops reduce the circuit area while fixing the control

signal of the multiplexers reduces the dynamic power

consumption. In the experiment, we evaluated the

effect of the three optimization methods. The combi-

nation of the three optimization methods could reduce

the energy consumption 24.6% in the case of a differ-

ential equation solver and 12.6% in the case of a tiny

encryption algorithm compared to the ones without

the proposed optimization methods.

I. Introduction

Asynchronous circuits are low power consumption
and low electromagnetic interference compared to syn-
chronous circuits. In asynchronous circuits, circuit com-
ponents are controlled by local handshake signals instead
of global clock signals.
However, the design of asynchronous circuits is more

difficult than the design of synchronous circuits. Accord-
ing to the selection of a delay model, handshake protocol,
and data encoding scheme, the design method and design
constraints are different. In addition, hazard-free imple-
mentation is required. Nevertheless, available Electronic
Design Automation (EDA) tools to support the design of
asynchronous circuits are insufficient.
To make asynchronous circuit designs easy, design

methods which convert synchronous Gate-level (GL)
netlists to asynchronous GL netlists (i.e., GL conversion)
were proposed in[1, 2, 3, 4, 5, 6, 7, 8]. In these meth-
ods, registers by D flip-flops (DFFs) are converted into
latches and the latches are controlled by latch controllers
based on local handshake signals. Indeed, the GL con-
version methods make asynchronous circuit designs eas-
ier, because commercial EDA tools are used as much as
possible. However, GL conversion methods cannot eval-
uate the quality of asynchronous circuits in early design
stages, cannot utilize logic optimization for asynchronous
circuits, and do not fit to the design of asynchronous cir-
cuits on commercial Field Programmable Design Arrays
(FPGAs). In FPGA designs, the standard design entry is
a Register Transfer Level (RTL) model.

Compared to the GL conversion methods, [9] addressed
an RTL conversion method for asynchronous circuits to
solve the problems of the GL conversion methods. In ad-
dition, [9] showed that the RTL conversion method can
generate better asynchronous circuits compared to the GL
conversion methods in terms of energy consumption. On
the other hand, the RTL conversion is more difficult than
the GL conversion, because there are various representa-
tion styles for RTL models. Although [9] used an interme-
diate representation for synchronous RTL models to deal
with various representation styles, the quality of asyn-
chronous circuits may depend on the representation style
of the synchronous RTL models.
In this paper, we propose three optimization methods

for the RTL conversion of asynchronous circuits from syn-
chronous RTL models. One is the modularization of data-
path resources to optimize the circuit area. Second is the
use of DFFs without an enable signal to reduce the circuit
area. Third is fixing the control signals of multiplexers by
the insertion of latches to avoid unnecessary operations
during the reset of the control signal to reduce the dy-
namic power consumption.
The rest of the paper is organized as follows. Section II

describes asynchronous circuits with bundled-data imple-
mentation. Section III describes the overview of the RTL
conversion method in [9]. Section IV describes three opti-
mization methods. Section V describes the experimental
results. Finally, section VI describes the conclusion and
future work.

II. Asynchronous Circuits with Bundled-data
Implementation

Bundled-data (BD) implementation is one of the data
encoding schemes in asynchronous circuits. In the BD im-
plementation, N -bit data are represented byN+2 signals.
Additional two signals correspond to local handshake sig-
nals; the request signal req and the acknowledge signal
ack. The operation timing is guaranteed by a delay ele-
ment on req signals. Therefore, the performance of the
BD implementation depends on the delay of the control
circuit including delay elements.
Figure 1(a) represents the circuit model of the BD im-

plementation used in this work. This model consists of a
data-path circuit and a control circuit.
The data-path circuit is almost the same as the one used

SASIMI 2019 ProceedingsR4-6

- 274 -



Fig. 1. Circuit model used in this work: (a) structure and (b)
timing diagram of ctrli.

in synchronous circuits. The data-path circuit consists
of functional units fuh, multiplexers muxl, and registers
regk. If there are hold violations on the registers, a delay
element hdregk is inserted to the input of the registers to
satisfy the hold constraints.

The control circuit consists of control modules ctrli
(0≤i≤n−1), glue logics glueregk and gluemuxl

, and delay
elements hdmuxi l. One ctrli is used to control data-
path resources used in a state i.glueregk and gluemuxl

are
used to generate the write signals for the registers and the
control signals for the multiplexers. hdmuxi l is used to
guarantee the hold constraint for the registers caused by
a transition of the control signals for the multiplexers.

ctrli consists of a Q-module qi [11], a D latch Dlatchi,
a glue logic logici, and delay elements sdi, bdi, and idi.
logici generates a rising transition to trigger ctrli when
required input signals arrive at ctrli. The delay element
sdi is used to guarantee the setup constraints of the reg-
isters controlled by ctrli. The delay element bdi is used
to guarantee the correct timing of a control branch to en-
ter ctrli. The delay element idi is used to guarantee the
initialization of ctrli.

Figure 1(b) represents the timing diagram of ctrli where
a rising transition of signals is represented by signal+
while a falling transition is represented by signal−. ctrli
starts the control of data-path resources in the state i
when outi−1+ generated from the previous control mod-
ule ctrli−1 arrives at ctrli. The signal transition is
changed to ini+ through logici and Dlatchi. The ris-
ing transition ini+ is used to control muxl and propa-
gated to qi. qi generates the request signal reqi+. reqi+

is changed to acki+ through sdi. acki+ is returned to
qi. Then, qi generates reqi− which is changed to acki−
through sdi. The falling transition acki− is used to write
data into regk. Finally, qi generates outi+ to pass the
control to the next control module ctrli+1. After outi+,
ctrli waits ini− and generates outi− to initialize ctrli.
In the timing diagram, we call the time from ini+ to

outi+ as active phase and the time from outi− to the
next ini+ as idle phase. In the active phase, operations
are performed in the data-path circuit while in the idle
phase, no operations are performed. The control signals
are initialized in the idle phase.

III. RTL Conversion

Our optimization methods for asynchronous circuits are
performed during RTL conversion using [9]. In this sec-
tion, we briefly describe the RTL conversion method de-
scribed in [9].
The RTL conversion method consists of two parts.

The first part called Sync2XML generates an eXtensible
Markup Language (XML) file from a given synchronous
RTL model. The XML file is called Model-XML. The
second part called XML2Async generates the RTL model
of a BD implementation. According to [9], the XML file
is used to convert synchronous RTL models with vari-
ous representation styles in Verilog Hardware Description
Languages (HDLs). Therefore, the XML file has a for-
mat to represent resources, both control and data-paths,
and control timing of data-path resources in a given syn-
chronous RTL model.
In Sync2XML, resource information, path information,

and timing information are extracted from a given syn-
chronous RTL model through a parser. Then, the infor-
mation is represented in the Model-XML. For example,
Fig.2(a) represents the RTL model of a synchronous cir-
cuit and Fig.2(b) represents the Model-XML of the syn-
chronous circuit.
In XML2Async, data-path resources and ctrli are

mapped based on the resource information, the connec-
tions among resources are established based on the path
information, and the glue logics for registers and multi-
plexers are generated based on the timing information.
For example, Fig.2(c) represents the RTL model of a BD
implementation from the Model-XML in Fig.2(b).

IV. Proposed Method

In this paper, we propose three optimization meth-
ods during RTL conversion from the RTL models of syn-
chronous circuits to the RTL models of BD implementa-
tion. The first optimization method is an area optimiza-
tion of combinational circuits by modularizing data-path
resources. The second optimization method is also an area
optimization method by restricting to use DFFs without
enable signals. The last optimization method is a dynamic
power optimization method of combinational circuits by

- 275 -



Fig. 2. Example of RTL conversions: (a) RTL model of a
synchronous circuit, (b) Model-XML, and (c) RTL model of a BD
implementation.

fixing control signals for multiplexers. We describe each
method in the followings.

A. Modularization for Data-path Resources

The purpose of modularizing data-path resources is to
assign the modularized resources to “through points” of
the maximum delay constraints in order to optimize cir-
cuit area. In BD implementations, we are required to

Fig. 3. Modilarization of data-path resources: (a) without
modularization and (b) with modularization.

assign the maximum delay constraints for paths to satisfy
a given latency or cycle time constraint.
By assigning “through points”, we can reduce the area

of data-path resources. Let us explain this using an exam-
ple shown in Fig.3. Fig.3(a) describes a converted RTL
model without modularization and a data flow graph for
the RTL model. Each state in the graph has the same
delay. In the state s0 and s1, we have the data-paths
whose source and destination registers are equivalent but
used functional units are different (add0 in s0 and add0,
mul0 in s1). This may result in the difference of the path
delays, e.g., 8 ns for the path in s0 and 10 ns for the path
in s1. Under a given latency constraint, we can change
the delay of s1 to 12 ns (2 ns for s0 is borrowed in s1).
This is possible for BD implementations, because each
state can have the different delay value due to the use of
the local handshake signals. As a result, we may obtain a
data-path resource with smaller size if a loose value can
be assigned to the maximum delay constraint.
To realize the area optimization, we need to assign

“through point” for the maximum delay constraint. In
the above example, we assign the multiplier mul0 and
the adder add0 as “through points”. Fig.3(b) describes
a converted RTL model with modularization and a data
flow graph for the RTL model.
Modularization can be performed easily during RTL

conversion. This is because the Model-XML has the re-
source information and the path information for the RTL
model of a given synchronous circuit.

B. Restricting the Use of DFFs

The purpose to restrict the use of DFFs is to optimize
circuit area for registers. In BD implementations, regis-
ters are triggered by the acki signals from ctrli. If no need
to write data into registers in state i, there is no connec-
tion from acki to the registers. This allows registers to
use DFFs without an enable signal. Since in general a
DFF without an enable signal is smaller size than a DFF
with an enable signal, it results in the reduction of circuit
area.
On the other hand, enable signals may be generated by

data-path resources. This is particularly remarkable in
the RTL models of synchronous circuits which are syn-
thesized by using a high-level synthesis tool with a clock
gating option. In such a case, we cannot remove the en-
able signals.

- 276 -



Fig. 4. Area estimation for reg2: (a) parameters, (b) registers
with enable signals, and (c) registers without enable signals

Instead, we restrict the use of DFFs by moving the as-
signments for the enable signals to outside of the register
representations when the following inequality is satisfied.

areaenableDFF − areaDFF > threshold (1)

where areaenableDFF , areaDFF , and threshold represent
the circuit area when DFFs with an enable signal are used,
the circuit area when DFFs without an enable signal are
used, and a threshold value. Note that the combinational
logics to generate the enable signals are also included in
areaenableDFF and areaDFF . Since we do not know the
exact area for the DFFs and the combinational logics, we
estimate areaenableDFF and areaDFF from the reference
of the used technology library and the number of literals
and operations in the assignments for the enable signals.

This optimization is also performed during RTL con-
version easily, because the information for registers is rep-
resented in the resource information in the Model-XML.
The information includes whether enable signal is used
or not, the bit-width of the registers, and the number
of operations and literals in the assignments of the en-
able signals. In addition, we need to prepare a parameter
XML file which represents the circuit area of basic logic
operations, the circuit area of DFFs, and the threshold
value as shown in Fig.4(a).

Figure 4 shows an example of this optimization.
From the parameter in Fig.4(a) and the calculations of
areaenableDFF in Fig.4(b) and areaDFF in Fig.4(c), the
DFFs without an enable signal is used because the differ-
ence is more than the threshold value.

Fig. 5. Fixing the control signal for multiplexers: (a) RTL model
and the waveform during the idle phase before fixing and (b) RTL
structure model and the waveform during the idle phase after
fixing.

C. Fixing Control Signals for Multiplexers

Fixing the control signals for multiplexers reduces the
dynamic power consumption of the data-path resources.
It is motivated from the unnecessary operations of the
data-path resourced during the idle phase of the control
circuit.
Figure 5(a) represents the circuit model and the wave-

form during the idle phase. In the idle phase of the control
circuit, the data-path resource add0 performs an addition
due to a change of the control signal for the multiplexer
mux0. During the idle phase of the control signal, ini

and outi of all ctrli are changed to zero as the reset of the
control signals before the next control. A signal transition
of ini from one to zero is propagated to mux0 in which
results in the unnecessary operation of add0.
To prevent the signal transition of ini to mux0, we in-

sert a D latch between Dlatchi and mux0 as shown in
Fig.5(b). Since the signal transition is not propagated to
mux0 by the inserted D latch, we can avoid the unneces-
sary operation of add0. This results in the reduction of
the dynamic power consumption of add0.
During RTL conversion, this optimization can be per-

formed easily by referring to the timing information of the
Model-XML where the control of multiplexers and regis-
ters is described for each state (see Fig.2(b)). We insert
D latches to the control signals of multiplexers when the
values of the control signals in the initial state and the
last state (before the idle phase) are different.
Fixing the control signal for multiplexers mull by the

insertion of D latches requires an additional timing con-
straint. The inserted D latches must be opened after ini+
arrives the inserted D latches. If the timing constraint
is violated, the control signal is changed during the idle
phase. Figure 6(a), (b), and (c) represent an example

- 277 -



Fig. 6. Timing constraint for fixing the control signals for
multiplexers: (a) the paths related to the additional timing
constraint, (b) the waveform when the timing constraint is
violated, and (c) the waveform when the timing constraint is
satisfied.

of the timing constraint, a waveform where the timing
constraint is violated, and a waveform where the timing
constraint is satisfied. We formulate the timing constraint
as follows. tminfcpi,l

represents the minimum delay of the
path fcpi,l (the red line in Fig.6(a)) from outi to the clock
pin of the inserted D latch. tmaxfdpi,l

represents the max-
imum delay of the path fdpi,l (the blue line in Fig.6(b))
from outi to the data pin of the inserted D latch. The
timing constraint is represented by the following inequal-
ity

tminfcpi,l
> tmaxfdpi,l

(2)

If this inequality in violated, we need to insert a delay
element fdi,l by AND gates to satisfy this inequality.

V. Experimental Results

To evaluate the proposed optimization methods, we
converted three synchronous RTL models of synchronous
circuits, DIFFerential EQuation solver (DIFFEQ), Ellip-
tic Wave Filter (EWF), and Tiny Encryption Algorithm
(TEA), to the RTL models of the BD implementations
using the proposed method. Then, we evaluated the de-
signed circuits after logic synthesis in term of circuit area,
execution time, dynamic power consumption, and energy
consumption. We extended the RTL conversion tool in
[9] to implement the proposed optimization methods.
Initially, we prepared the RTL models of the syn-

chronous circuits by synthesizing the SystemC models of
DIFFEQ, EWF, and TEA using Cadence Stratus 18.1.
The used technology library was an eShuttle 65 nm pro-
cess technology. We explored the synchronous circuits
with the shortest clock cycle time. The clock cycle times
of DIFFEQ, EWF, and TEA were 1, 600 ps in the all
cases.
To evaluate each optimization method, we prepared five

RTL models of the BD implementations.

• async - no optimization

• async m - with modularization of data-path re-
sources

Fig. 7. Evaluation results: (a) circuit area, (b) execution time, (c)
dynamic power consumption, and (d) energy consumption.

• async r - with restricting the use of DFFs

• async i - with fixing control signals for multiplexers

• async a - with all optimization methods

Following to the design method in [10], we designed the
BD implementations from the RTL models. To check the
effect of the proposed optimization methods more pre-
cisely, we used the same maximum delay constraints and
the local clock constraints for all designs. For the design
of the BD implementations, we used Cadence Genus 18.1
for logic synthesis, Synopsys PrimeTime M-2017.06-SP3-
1 for static timing analysis (STA) and power analysis, and
Synopsys VCS M-2017.03-SP2 for logic simulation. The
technology library was the eShuttle 65 nm.
Figure 7 (a) to (d) represents the circuit area, the ex-

ecution time, the dynamic power consumption, and the
energy consumption of the designed BD implementations

- 278 -



after logic synthesis. The circuit area was obtained from
the report file generated by Genus. The execution time
was obtained by simulating the designed circuits with ar-
bitrary test patterns using VCS. The dynamic power con-
sumption was obtained by PrimeTime with the switching
activity interchange format file generated by VCS. The
energy consumption was the product of the execution time
and the dynamic power consumption. Note that asynci
of EWF is represented by N/A, because no latch is in-
serted to any control signal for multiplexers. Since the
initial state and the last state have the same signal value,
no unnecessary operations in the data-path resources ex-
ist in the original BD implementation (i.e., async) during
the idle phase. Note that hereafter, we consider async as
the baseline.
All of the proposed optimization methods could reduce

the circuit area. Especially, the average reduction ratio
of asyncm was the largest (4.0%). This is because a loose
value was assigned to the maximum delay constraints for
some of the data-paths with a through point.
For the performance, asynci resulted in the perfor-

mance degradation a little because the insertion of D
latches slightly changed the critical path delay. asyncm
and asyncr did not have the significant impact for the
performance.
All of the proposed optimization methods also reduced

the dynamic power consumption except asyncm of EWF.
Especially, the average reduction ratio of asynci was the
largest (12.9%). On the other hand, the dynamic power
consumption of asyncm of EWF was increased. The rea-
son came from the increase of the number of toggles in the
data-path resources. Because the toggles largely depend
on circuit structure and delay, we think that it is not the
direct effect of the proposed optimization methods during
RTL conversion.
Similarly, all of the proposed optimization methods re-

duced the energy consumption except asyncm of EWF.
This is because the energy consumption depends on the
execution time and the dynamic power consumption.
The experimental result showed that all of the proposed

optimization methods contribute to the reduction of the
circuit area and the dynamic power consumption. By the
combination of them (i.e., asynca), we could reduce the
energy consumption 24.6% in the case of DIFFEQ and
12.6% in the case of TEA.

VI. Conclusion

In this paper, we proposed three optimization meth-
ods for the RTL conversion of asynchronous circuits from
synchronous RTL models. We confirmed the effect of each
optimization method in the experiment. In addition, the
combination of the three optimization methods largely
reduced the energy consumption of DIFFEQ and TEA
compared to the ones without the optimization methods.
In our future work, we consider a dynamic power opti-

mization method during RTL conversion in which latches
are inserted to the operands of functional units to reduce

the toggles of the functional units.

Acknowledgements

The authors would like to thank Mr. Tatsuoka, Mr. Fu-
jimura, and Mr. Nakae in Socionext Inc. who gave useful
advice in this work. This work is partially supported by
Grant-in-Aid for Scientific Research from Japan Society
for the promotion of science (#18K11221).

References

[1] J. Cortadella et al., ”Desynchronization: Synthesis
of Asynchronous Circuits From Synchronous Specifi-
cations”, IEEE TCAD, vol. 25, pp. 1904–1921, 2006.

[2] N. Andrikos et al., ”A Fully-Automated Desynchro-
nization Flow for Synchronous Circuits”, Proc. DAC,
pp. 982–985, 2007.

[3] P. A. Beerel et al., ”Proteus: An ASIC Flow for
GHz Asynchronous Designs”, IEEE Design & Test
of Computers, vol. 28, pp. 36–51, 2011.

[4] A. Kondratyev and K. Lwin, ”Design of Asyn-
chronous Circuits by Synchronous CAD Tools”,
Proc. DAC, pp.411–414, 2002.

[5] R. Zhou et al., ”Quasi-Delay-Insensitive Compiler:
Automatic Synthesis of Asynchronous Circuits from
Verilog Specifications”, Proc. NWSCAS, pp. 1–4,
2011.

[6] A. Branover, et al., ”Asynchronous Design By Con-
version: Converting Synchronous Circuits into Asyn-
chronous Ones”, Proc. Design, Automation and Test
in Europe Conference and Exhibition, vol. 2, pp. 870–
875, 2004.

[7] J. Oberg et al., ”Automatic Synthesis of Asyn-
chronous Circuits from Synchronous RTL Descrip-
tion”, Proc. NORCHIP, pp. 200–205, 2005.

[8] Y. Zhang et al., ”Challenges in Building An Open-
source Flow from RTL to Bundled-Data Design”,
Proc. ASYNC, pp. 26–27, 2018

[9] S. Semba and H. Saito, ”Conversion from Syn-
chronous RTL Models to Asynchronous RTL Mod-
els”, IEICE TRANSACTIONS on Fundamentals of
Electronics, Communications and Computer Sci-
ences, vol. E102-A, No. 7, pp. 904–913, 2019.

[10] S. Semba and H. Saito, ”Comparison of RTL Conver-
sion and GL Conversion from Synchronous Circuits
to Asynchronous Circuits”, Proc. ISCAS, pp. 1–4,
2019.

[11] E. U. Rosenberger, C. E. Molnar, T. J. Chaney, and
T. P. Fang, ”Q-Modules: Internally Clocked Delay
Insensitive Modules”, IEEE TC, vol. C-37, no. 9, pp.
1005–1018, 1998.

- 279 -


