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Abstract— This paper proposes a design space ex-

ploration (DSE) method for CNN-based AI platform

to find SoC architectures that optimally parallelize

massive data computation and data transfer. First,

the proposed DSE explores both functional blocks,

which undertake a process execution, and their pa-

rameters, i.e. the number of instances and PEs, to

parallelize CNN’s intensive intra-process computation

with the ease of system modeling and exploration.

Second, a multi-layer bus architecture and configura-

tion are optimized to parallelize data transfer by per-

forming master-slave clustering with three-step chan-

nel mapping. Experimental result shows that the pro-

posed DSE with pruning technique found 17 Pareto-

optimal architectures from the design space of 2 mil-

lion architectures within 11.5 hours, which is 21% time

reduction compared to the exhaustive exploration.

I. Introduction

Designing an edge device for real-time convolutional
neural network (CNN)-based application is complicated
because of strict requirements. Due to the fact that CNN
is computation-intensive, the edge device must be high
performance, yet compact and low power. System-on-a-
chip (SoC) is a good candidate because it provides power
and area efficiency. However, designing an SoC takes long
design period to find an optimal architecture.
To shorten the design period, design space exploration

(DSE) is studied to search a design space for optimal ar-
chitectures in the early design stage. Generally, the DSE
maps system-level data processing to a pre-designed cir-
cuit, called intellectual property (IP), maps data transfer
to a bus, optimizes architecture’s parameters, and eval-
uates design qualities [1, 2]. However, for CNN, two
problems exist: (1) complexity in finding architectures
that parallelize CNN’s intra-layer computation; (2) in-
sufficiency in exploring high-performance bus, i.e. multi-
layer bus.
The first problem relates to granularity of CNN mod-

eling in system-level. It affects the DSE in the ability to
leverage the parallelism within one layer, aka intra-layer
parallelism, and the complexity of DSE, which implies
the effort for modeling and exploring the design space.
A CNN is composed of multiple layers, such as convolu-
tional, pooling and activation layers. In coarse-grained

granularity, each process models each CNN layer and is
mapped onto an IP. This incurs low complexity, but fails
to leverage intra-layer parallelism, which leads to work-
load imbalance when some layers, e.g. convolutional layer,
include more operations than the others, e.g. pooling
layer. On the other hand, modeling the convolutional
layer in finer granularity, such as one operation as one
process (fine-grained), allows intra-layer parallelization at
the cost of higher modeling effort and larger design space.
The second problem discloses the difficulty in discov-

ering high-performance communication architecture, aka
bus architecture, between IPs. Standard multi-layer bus
specification, such as AMBA’s multi-layer AHB [3], pro-
vides high-performance bus architecture, communication
protocol and several configurations for optimization. It is
important to model multi-layer bus and find its optimal
configuration because bus architecture, configuration and
protocol affect the design quality significantly.
This paper proposes a DSE method for designing an

SoC for CNN-based application using system-level and
IP-based design methodology. It solves multi-objective
DSE optimization with traversal through parameter trees
and tackles both of the above-mentioned problems with
two key contributions: (1) an IP is parameterized in
terms of the number of instances and processing elements
(PEs). Then, the DSE maps each process to an IP and
explores the parameters to exploit intra-layer parallelism
by distributing workload with data tiling, while keeping
the complexity of DSE low with a coarse-grained CNN
model; (2) a multi-layer bus is modeled in terms of bus
matrix configuration, and its parameters. Then, the DSE
explores multi-layer bus architecture through three-step
channel mapping, bus matrix mapping and bus parame-
ter mapping to parallelize data transfer.

II. Related Studies

Heuristic DSE searches the design space for optimal ar-
chitectures with design space pruning. Matai et al. reuses
the designed components for data processing and opti-
mizes parameters like operating frequency and bus width
[1]. A DSE based on system-level modeling, maps data
processing to an IP, maps data transfer to a bus, and se-
lects their parameters [2]. They are good for optimizing
architectures and parameters, but intra-layer computa-
tion cannot be parallelized with coarse-grained modeling.
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Fig. 1.: Example of models: (a) SLM; (b) ALM.

The DSE for deep learning should consider intra-layer
parallelism. DeepBurning analyzes NN model and cus-
tomizes hardware building blocks in its library to paral-
lelize NN’s computation [4]. Tsimpourlas et al. optimize
the parameters, such as the number of PEs, of the exist-
ing devices for CNN-based applications in terms of per-
formance and power[5]. Both methods can exploit CNN
parallelisms, but they do not consider concurrent data
transfer using, for example, multi-layer bus.
The multi-layer bus is optimized by master and slave

clustering using traffic traces. The method in [6] deter-
mines the shared and multi-layer bus architecture by par-
titioning masters and slaves into clusters. However, it
does not consider multiple-master cluster, bus protocol
and parameters. This paper parallelizes both intra-layer
computation and data transfer by optimizing the num-
ber of functional block instances and PEs, and exploring
multi-layer bus configuration, direct memory access con-
troller (DMAC), memory and parameters.

III. Model Definitions

This paper employs two models: a model of computa-
tion (MoC) describes the application in system-level and
an architectural model describes the SoC architecture.

A. Model of computation (MoC)

This paper employs a system-level model (SLM)
Msl = (P,C) in [7] as an MoC. A process set P = {pi|i =
0, 1, 2, ...} and a channel set C = {cj |j = 0, 1, 2, ...} de-
scribes data processing and data transfer, respectively. To
describe a CNN, this paper extends the SLM by describing
a process with pi = (Spi), where Spi is the CNN’s layer
specification including the process type, such as weight
loading (LoadW), convolutional layer (CONV), ReLU
layer (ReLU) and data storing (Data), and layer descrip-
tion, such as the size of input, output and weight filters.
An channel cj = (pm, pn, sj) transfers the data of size
sj from the source process pm to the destination process
pn. Fig. 1(a) shows an example of an SLM of a CNN
consisting of five processes written together with process
type and four channels represented by the arrows, which
shows data flow direction. It is a coarse-grained SLM, so
intra-layer and intra-process parallelisms are equivalent.
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Fig. 2.: Overview of the proposed DSE.

B. Architectural model

An architecture-level model (ALM) describes the
hardware components of an SoC and the mapping with
the SLM. To efficiently explore design space for CNN-
based AI platform, this paper extends the ALM in [7]
by parameterizing the IPs in terms of the number of in-
stances and PEs, which enables the intra-process compu-
tation parallelization. An ALM is represented by Mal =
(F ,PT ,B,BM ,D,M) as follows:

• F is a set of functional blocks fbi = (Ik, nfbi , npei ,
ffbi , Efbi), which is implemented by nfbi instances of
IP Ik and each instance consists of npei PEs. Efbi =
{e(pj ,fbi)} is execution cycle set, where e(pj ,fbi) rep-
resents the execution cycles of the mapped process
pj on fbi, and ffbi is the operating frequency.

• PT is a set of master or slave ports pti = (fbj , bk,
nq, nr, prpti , ypti , Cpti) connects fbj to a shared bus
bk. The number of receive and transmit buffers are
nq and nr, respectively. The prpti and ypti represents
the protocol and cluster of port pti. Cpti refers to a
set of channels that port pti conducts data transfer.

The set of shared bus, B, bus matrix, BM , DMAC, D,
and memories, M , are defined as in [7].
Fig. 1(b) shows an example of an ALM, where the pro-

cesses of the SLM in Fig. 1(a) are mapped onto fbi. The
fb2 has two instances (nfb2 = 2). The source and desti-
nation of the channels are mapped to the ports of fbi that
undertake their source and destination processes, e.g. c0’s
source and destination (c0s and c0d) are mapped to pt1 of
fb1 and pt2 of fb2, respectively. Bus matrix’s master
layers (L1 and L2) are connected to single- and multiple-
master clusters, and slave layers (L3, L4 and L5) are con-
nected to single- and multiple-slave clusters. The type of
cluster determines the bus matrix configuration. Memory
m1 and DMAC d1 are inserted into c1’s and c3’s commu-
nication path, respectively, to fulfill the master-to-slave
communication regulation of the standard bus [3].

IV. Design Space Exploration Method

Fig. 2 illustrates the proposed DSE. The architecture
exploration decides hardware components, e.g. functional
blocks and bus, to construct ALMs. Then, the design
quality of each ALM is estimated. The ALM is kept in the
ALM candidate pool if it is a Pareto-optimal architecture.
The proposed DSE method enables low DSE complex-

ity with high parallelization ability with two points. First,
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it maps a process (one layer) to a functional block and
optimizes the number of instances and PEs for intra-
process computation parallelization. Second, it optimizes
the multi-layer bus configurations by partitioning masters
and slaves into clusters, each of which connects to a bus
matrix’s layer, through three-step channel mapping.

A. DSE problem formulation

The proposed DSE is formulated as a multi-objective
DSE problem. There are five inputs: (1) IP database in-
cludes gate count, frequency candidates, executable pro-
cess, execution cycle, and available IP’s ports; (2) Bus
database includes bus protocols, bus width and fre-
quency candidates; (3) SLM Msl; (4) Profiling infor-
mation includes processing timings, transfer timings and
the amount of transferred data obtained as described in
[8]; (5) Design constraints include design quality and
architectural constraints, such as mapping constraints
and maximum resources. The objective functions are
(1) performance function T (Mal) is the estimated ex-
ecution time; (2) hardware area function A(Mal) is
the estimated hardware area. The output of the DSE
is Pareto-optimal architectures, and it includes the
ALM (Mal), the execution time and the hardware area.

B. Design quality estimation

B.1. Performance estimation

This paper follows the method in [7] to estimate the per-
formance in terms of execution time with four procedures.
First, system-level profiling gathers profiling informa-
tion using system-level simulation. Then, system-level
execution dependency graph (SL-EDG) construc-
tion makes an execution dependency graph from the pro-
filing information. Next, architecture-level execution
dependency graph (AL-EDG) construction makes
a graph representing ALM-dependent execution orders.
Finally, AL-EDG analysis estimates the execution time
by analyzing system execution of AL-EDG. The AL-EDG
construction and analysis are iterated to evaluate the exe-
cution time of various ALMs. In this paper, they consider
data tiling to parallelize intra-process computation using
multiple functional block instances and PEs.
In AL-EDG construction, the vertices of process pj

that executes on multiple instances of functional block fbi
are partitioned into tiles according to nfbi , npei and Spj

,
and then, divided into groups of each functional block
instance. The vertices and edges of the processes and
channels related to pj are also partitioned accordingly.
The AL-EDG analysis determines a vertex of a data

tile to be analyzed on each instance of fbi, so that vertices
of the process undertaken by multiple instances can be an-
alyzed simultaneously, which conforms with intra-process
parallelism. Vertex’s processing time, tp, is calculated ac-
cording to data tiling as follows:

tp = α× e(pj ,fbi)

ffbi
, (1)

where α is the processing time factor, and it depends on
IP and data tiling. The α of the vertices that do not
involve data tiling is 1.

B.2. Hardware area estimation

Area of an architecture, A(Mal), is the summation of ar-
eas of all the hardware components in Mal as in Eq. 2.

A(Mal) =
∑

fbi∈F

(nfbi ×A(fbi)) +
∑

pti∈PT

A(pti) +
∑

di∈D

A(di)

+
∑

mi∈M

A(mi) +
∑

bi∈B

A(bi) +A(BM).

(2)
The area of functional block fbi, A(fbi), which is an in-
stance of IPj , is estimated as in Eq. 3.

A(fbi) = (gipj
+ gpej × npei)×Anand, (3)

where gipj
and gpej are the gate counts of IP Ij and PE

of IP Ij , respectively, and Anand is the NAND gate area.
The area of port, A(pti), DMAC, A(di), and memory,
A(mi), are estimated from the product of the number of
buffers/storage blocks and the area of SRAM that can
store all the data for one process execution. The area of
shared bus, A(bi), and bus matrix, A(BM), are estimated
with the wire area and the bus logic area from the bus area
library.

C. Architecture exploration

The proposed DSE explores the design space to con-
struct ALMs using a depth-first traversal through a pa-
rameter set search tree, which is composed of architec-
ture selection trees and parameter mapping trees by con-
catenating the root of a tree to the leaves of the preceding
tree as shown in Fig. 3. The architecture exploration tra-
verses the architecture selection trees first because the pa-
rameters depend on the components. The proposed DSE
prunes the tree branches to shorten exploration time.

C.1. Architecture selection trees

The architecture selection trees determine the hardware
components and their organization. The proposed DSE
explores bus matrix configurations [3] of the bus architec-
ture through channel mapping, and DMAC and memory
placement. The order of architecture selection trees comes
from the dependencies in organizing the architecture, e.g.
channel mapping depends on the functional blocks, so pro-
cess mapping proceeds before channel mapping.
First, process mapping tree maps each process to a

functional block of an IP. In Fig. 3, pj → fbi(Ik) denotes
that the process pj is mapped to functional block fbi,
which is the implementation of IP Ik. Assuming that IP
I0 to Ik can undertake p0 and p1 of the SLM in Fig. 1(a).
First, p0 is mapped onto a new functional block fb1 of
IP I0 (node A) to Ik (node B). Then, from node A, p1
can be mapped onto the existing fb1 (node C) or a new
functional block fb2 of I0 to Ik (node D).
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Second, channel mapping tree maps the source and
destination of each channel to ports and buses in three
steps. First, the channel-to-port subtree maps each
channel to a port of the mapped functional block. For
example, in Fig. 3, the source of channel c0, represented
by c0s, can be mapped to either a master port, pt1m (node
E), or slave port, pt1s (node F ). Then, the channel-to-
cluster subtree maps each channel to a cluster, which
implies the cluster of each port. Finally, the channel-to-
bus subtree maps each channel to a shared bus, which
implies the bus connected to each port. A channel can
be mapped only to a bus in the same cluster or a new
bus. The structure of the latter two trees is similar to the
channel-to-port subtree.
Third, cluster-to-bus matrix mapping tree selects

a shared bus from each cluster to connect to bus matrix’s
master and slave layer. Fourth, DMAC and mem-
ory placement tree inserts a DMAC or memory into
the communication path of the channels to fullfil the
master-to-slave communication regulation. Finally, pro-
tocol mapping tree selects a protocol of the bus matrix,
shared buses, and ports.

C.2. Parameter mapping trees

The parameter mapping trees determine the parameters
of functional blocks, buses, and memories. The proposed
DSE parallelizes intra-process computation by optimizing
the number of functional block instances and PEs. To
take advantage of pruning the search trees earlier based
on hardware area, the DSE traverses the trees that affect
area first, and then, the tree of frequency. The number
of buffers is explored last because its tree tends to be the
highest, which leads to a larger number of nodes.

First, number of functional block instance map-
ping tree selects the number of functional block in-
stances, nfbi , of each fbi. In Fig. 3, this tree maps nfb1

to the candidates of each IP, which are Cnd0 (node G)
to Cndj (node H). The structure of the other parameter
mapping trees are similar to this tree.
Second, number of PE mapping tree selects the

number of PEs, npei , within each functional block fbi
from the candidates of each IP. Noted that sometimes,
npei is configured as different parameters that indicate
npei according to the PE organization of the target IPs.
The other parameter mapping trees are as follows:

number of memory’s storage block mapping tree
selects the number of storage blocks for each memory in-
serted during the DMAC and memory placement; bus
width mapping tree selects a data and address bus
width of the bus matrix and shared buses; frequency
mapping tree selects an operating frequency of each
functional block, bus matrix and shared bus; number
of buffer mapping tree selects the number of buffer,
nq and nr, in each port in the same way as in [2].

D. Pruning the parameter set search tree

Pruning non-optimal architecture earlier results in a
shorter exploration time. The pruning eliminates tree
branches and all descendants in the parameter mapping
trees that do not produce Pareto solutions using the
branch and bound algorithm. It takes place when one
of the following conditions is met.
• Lower bounds of either execution time or hardware
area of the current search node exceed the design
constraints or the explored optimal architecture.

• The child nodes that do not yield the smallest hard-
ware area when the lower and upper bound of the
execution time are equal.

• A deadlock incurs in the performance estimation.

V. Case Study

The case study shows an IP parameterization and the
effectiveness of the proposed DSE in terms of the dis-
covered Pareto-optimal architectures and time for explo-
ration. Here, it should be noted that the design space
of the proposed DSE is significantly extended for CNN-
based AI platform with parameterized IP and multi-layer
bus, and it is incompatible with other methods such as [2].
Therefore, quantitative comparisons are not performed.

A. Modeling a parameterized IP

As a case study, we parameterize only the IP for convo-
lutional layers using the parallelism-flexible convolution
core [9]. It specifies the PE organization with the num-
ber of PEs per group, nNi

, the number of group per PE
bank, nGi

, and the number of PE banks, nMi
, so we define

npei = nNi
× nGi

× nMi
and explore npei of fbi as these

three parameters. The gpek is defined as the gate count
of IP Ik’s basic components including the gate count of a
PE bank, gMk

, a PE group, gGk
, and a PE, gMk

.
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TABLE I: IP database specifies IPs and design constraint specifies (1) fbi ∈ F that are implemented from each IP and mapped
processes; (2) pti ∈ PT (Type M : AHB master, S : AHB slave) of each fbi together with cluster ID, ypti , and mapped channels.

IP database Design constraint

IP
Area
(gate)

IP Param.
(Candidate)

F
Mapped process

(cycle)
PT (Type,
nq,nr)

ypti
Mapped
channel

IP1 3.3k - fb1 pLdImg(20) pt1(M,0,1) 1 c0s
IP2 45.5k - fb2 pData1(1), pDataFC1(1) pt2(S,1,1) 2 c0d, c2s, c12d, c13s

fb3 pData2(1), pDataFC2(1) pt3(S,1,1) 3 c6d, c7s, c17d, c18s

IP3 300 - fb4
pLdW1(20), pLdW2(20),
pLdW3(20), pLdW4(20)

pt4(S,1,1) 4 c3s, c8s, c14s, c19s

IP4 gip4
: 10k nfbi (1,2) fb5 pCONV 1(330), pt5(M,2,0) 5 c2d, c7d

gM4 : 3k nMi (8,16) pCONV 2(150) pt6(M,2,0) 6 c3d, c8d
gG4 : 500 nGi (4) pt7(M,0,2) 7 c4s, c9s
gN4

: 30 nNi
(8,16)

IP5 2k - fb6 pPOOL1(3), pPOOL2(1) pt8(M,1,1) 8 c4d, c6s, c9d, c11s
IP6 500 - fb7 pReshape(1) pt9(S,1,1) 9 c11d, c12s
IP7 3.3k - fb8 pFC1(16), pFC2(10) pt10(M,1,1) - c13d, c14d, c15s, c18d, c19d, c20s
IP8 1.5k - fb9 pRELU (16) pt11(S,1,1) - c15d, c17s
IP9 3k - fb10 pSM (10) pt12(S,1,0) - c20d

One convolutional layer is modeled as one SLM’s pro-
cess. The AL-EDG construction partitions the AL-EDG
vertices of the convolutional layer to handle data tiling ac-
cording to nfbi , nNi

, nGi
, nMi

, and Spj
. The processing

time of each AL-EDG’s process vertex is calculated using
Eq. 1 with α = 1

P , where P is the degree of inter-output
parallelism according to [9] and e(pj ,fbi) is the time for
computing all output channels from one input channel of
one tile. The candidates of P are 1, 2, 4, 8, 16.

B. Target system

The experiment performs the DSE for LeNet-5 [10],
shown in Fig. 4. The process’ name also specifies its
type. Process pLdImg loads a 28 × 28-pixel image from
an external memory. Process pDatak

writes data to a
storage. Process pLdWk

loads the weights of a convolu-
tional and a fully-connected layer. Process pCONVk

is a
convolutional layer, and pPOOLk

is a max-pooling layer.
Process preshape reshapes the input into a vector. Process
pFCk

computes a fully-connected layer, and pReLU applies
ReLU function. Process pSM applies softmax function
and outputs ten probability values.
The channels perform inter-process data transfers.

Noted that c1, c5, c10, c16, and c21 are dedicated one-bit
signals, each of which indicates that the preceding layer
is done, and are omitted in the exploration.

C. Experimental setting

The target library is the CMOS 0.18 μm process tech-
nology. The Anand is 9.8μm2.

The bus database includes a AHB-shared bus and a
AHB-multi-layer bus. Table I shows the IP database and
design constraint during architecture exploration. The
design constraint specifies fbi ∈ F , pti ∈ PT , 256-bit bus
width, 200-MHz operating frequency. Here, the experi-
ment focuses on exploring the parameters of IP4 (fb5),
which is the IP in [9], and ypti of pt10, pt11, and pt12.
The experiment was conducted on a 2.3GHz Intel Xeon,

1TB RAM and 64-bit CentOS 6.1 machine. The SLM was
implemented with SystemC 2.3.1a. The proposed DSE
was implemented with C and compiled with gcc 4.4.7.

D. Varieties of Pareto-optimal architectures

Fig. 5 shows a trade-off relationship between execu-
tion time and area of 17 Pareto-optimal architectures
with different nfb5 , nM5

, nG5
, and nN5

of fb5. The
architectures which contain more PEs (Total PEs =
nfb5 × nM5 × nG5 × nN5) consume more area, but exe-
cute the LeNet-5 faster because multiple instances and
PEs of fb5 parallelize intra-process computation of the
convolutional layers. The architectures containing the
same fb5’s parameters have different area and execution
time because pt10, pt11, and pt12 are in different clusters.
Fig. 6 shows two examples of the Pareto-optimal architec-
tures. The master and slave layers of their multi-layer bus
are connected to single-master, subsystem, single-slave
and multiple-slave clusters, which shows heterogeneous
multi-layer bus configuration. The two architectures have
different multi-layer bus configurations for parallelizing
data. The result shows that the proposed DSE customizes
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Fig. 5.: Pareto-optimal architectures from the experiment.

the parameters of functional blocks and explores several
multi-layer bus configurations, and hence, provides vari-
eties of Pareto-optimal architectures.

E. Time for exploration

Table II shows the number of leaves, the number of
design quality estimation, and the total runtime of the
proposed DSE for exploring the architectures of LeNet-
5. The exhaustive exploration traverses every leave in the
parameter set search tree and estimates their design qual-
ities, so the number of leaves implies the size of the design
space. The exploration with pruning takes shorter time
because it discards the branches of the tree that do not
yield Pareto-optimal solutions. The number of estimation
is more than the number of leaves because additional es-
timation is required for tree pruning. The result shows
21% (3 hours) of time reduction thanks to pruning. The
time reduction will be more significant when exploring a
large number of candidates and less design constraints.
The design space becomes larger and the DSE consumes

longer time when the design constraints are removed. For
example, when the ports are not constrained to any clus-
ter, the design space becomes about 15.7 times larger and
the exploration with pruning may take up to 7.6 days.
Furthermore, when the AI system grows larger, it may
consume weeks or months to explore a larger number of
functional blocks and ports, which is barely acceptable
in the early design stage. Therefore, the proposed DSE
still needs improvements in terms of the time to explore a
large design space. The improvements can be achieved by
introducing incremental computation for successive archi-
tectures with a small difference, more aggressive pruning,
and parallel traversal of the parameter set search tree.

VI. Conclusions and Future work

The proposed DSE is suitable for discovering high-
performance SoC architecture for CNN-based AI platform
with two features: (1) it explores optimal parameters of
IPs to leverage intra-process parallelism; (2) it explores
optimal configurable multi-layer bus for parallelizing data
transfer. The result shows that the proposed DSE discov-
ers varieties of architecture including varieties of func-
tional blocks and multi-layer bus configuration. The fu-
ture works include energy consumption estimation and
additional acceleration techniques of the DSE.
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Fig. 6.: Examples of the Pareto-optimal architectures.

TABLE II: Runtime of the proposed DSE

Method # of leaves # of est. Total time
Exhaustive 2,140,577 2,139,768 14.5 hours
Pruning 917,893 1,657,035 11.5 hours

References

[1] J. Matai, D. Lee, A. Althoff, and R. Kastner, “Com-
posable, parameterizable templates for high-level
synthesis,” Proc. of DATE2016, pp. 744–749, 2016.

[2] K. Ueda, K. Sakanushi, N. Yoneoka, Y. Takeuchi,
and M. Imai, “Optimal bus architecture exploration
for IP-based design,” IPSJ Journal, vol. 46, no. 6,
pp. 1374–1382, 2005.

[3] ARM, “Multi-layer AHB overview,”
[Online] http://infocenter.arm.com, 2004.

[4] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deep-
Burning: Automatic generation of FPGA-based
learning accelerators for the neural network family,”
Proc. of DAC2016, pp. 1–6, 2016.

[5] F. Tsimpourlas, L. Papadopoulos, A. Bartsokas, and
D. Soudris, “A design space exploration framework
for convolutional neural networks implemented on
edge devices,” IEEE Trans. Comput.-Aided Des. In-
tegr. Circuits Syst., vol. 37, no. 11, pp. 2212–2221,
2018.

[6] A. Cilardo, E. Fusella, L. Gallo, and A. Mazzeo, “Ex-
ploiting concurrency for the automated synthesis of
MPSoC interconnects,” ACM Trans. Embed. Com-
put. Syst., vol. 14, no. 3, pp. 57:1–57:24, 2015.

[7] S. Sombatsiri, Y. Takeuchi, and M. Imai, “An ef-
ficient performance estimation method for config-
urable multi-layer bus-based SoC,” IPSJ T-SLDM,
vol. 8, pp. 26–37, 2015.

[8] K. Ueda, K. Sakanushi, Y. Takeuchi, and M. Imai,
“Architecture-level performance estimation method
based on system-level profiling,” IEE P-COMPUT
DIG T, vol. 152, no. 1, pp. 12–19, 2005.

[9] S. Sombatsiri et al., “Parallelism-flexible convolu-
tion core for sparse convolutional neural networks on
FPGA,” IPSJ T-SLDM, vol. 12, pp. 22–37, 2019.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner,
“Gradient-based learning applied to document recog-
nition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.

- 13 -



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


