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Abstract— A rapid single-flux-quantum (RSFQ)

matrix multiplication circuit utilizing bit-level pro-

cessing is presented. The proposed circuit utilizes

characteristics of pulse logic used in RSFQ circuits

and utilizes bit-level processing. The circuit carries

out multiplications and additions by counting pulses

on signal lines. It uses fewer gates compared with

previously proposed parallel processing designs and

could be realized in small layout area. A layout for

4-bit 4× 4 matrix multiplication was designed and its

correct operation was verified in simulation.

I. Introduction

Superconducting computing devices have been consid-
ered as potential alternative devices of mainstream semi-
conductor computing devices [1]. The rapid single flux
quantum (RSFQ) circuit [2] and its energy efficient deriva-
tives such as eSFQ [3], ERSFQ [4], and LV-RSFQ [5] are
promising digital circuit technologies for high-speed and
low-power operations. RSFQ circuits use Josephson junc-
tions, which are superconductive devices working based
on Josephson effect, and they work at up to 100 GHz [6, 7].
In RSFQ circuits, voltage pulses are used to represent
logic values. Namely, pulse logic is used.
In this paper, an RSFQ matrix multiplication circuit is

proposed. Matrix multiplication is a computational ker-
nel operation used commonly in a wide variety of signal
processing applications and neural network applications.
Matrix multiplication involves many multiplication opera-
tions. Because multipliers are large components, an area-
efficient design for matrix multiplication is necessary. The
matrix multiplication circuit to be proposed is designed
with consideration for area efficiency.
The matrix multiplication circuit proposed in this pa-

per utilizes characteristics of pulse logic and bit-level pro-
cessing proposed in [8] to save circuit area. Because
RSFQ circuits use pulse logic, there are RSFQ-specific
gates other than basic logic gates, such as AND, OR, and
EXOR. Those specific gates are utilized to realize the cir-
cuit in small area. The circuit carries out multiplications
and additions by counting voltage pulses. Therefore, the

circuit treats 1-bit signals for calculation like stochastic
computing [9, 10]. Wiring in RSFQ circuits occupies large
circuit area because active devices are necessary for signal
wires and a limited number of routing layers is available.
The characteristic of the proposed circuit is suitable for
RSFQ circuit realization.
The matrix multiplication circuit is suitable for appli-

cations which tolerate small error. It performs truncated
multiplications internally and its result can contain small
error. When a design for n-bit m × m matrix multipli-
cation is implemented based on the proposed circuit, it
performs the matrix multiplication with m3 multiplica-
tions every (2n−1)×m2 clock cycles. Thus, it is suitable
for applications using calculations of narrow bit-width.
Some applications such as neural network applications

tolerate small error in arithmetic operations. For designs
using semiconductor devices, this property has been lever-
aged in approximate computing [11] and stochastic com-
puting. Matrix multiplication circuits which can be used
for low-precision such as [12] have been proposed. Thus,
the RSFQ matrix multiplication circuit is useful for vari-
ous applications.
There has been research on designing RSFQ matrix

multiplication circuits. In [13], designs of a 32-bit 4 × 4
matrix multiplication circuit have been shown. The ma-
trix multiplication circuit in [13] uses bit-slice processing
with bit-slice adders. The estimated amount of resources
for designs of the circuit is very large, and they could not
be implemented in a single chip. Though our proposed
circuit is not suitable for applications requesting high-
precision, it can be realized with drastically fewer gates
compared with the designs in [13].
A layout of a design for 4-bit 4 × 4 matrix multiplica-

tion was performed for evaluation of the proposed matrix
multiplication circuit. It was designed with the cell li-
brary developed for AIST advanced process (ADP2) [14].
The functionality of the designed layout was confirmed
by simulation. It can perform a matrix multiplication
with 64 multiplications every 240 clock cycles. The esti-
mated maximum clock frequency of the designed circuit
was 33 GHz. By comparison with the previously proposed
matrix multiplier, it is suggested that the proposed circuit
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can be implemented in smaller area.
This paper is organized as follows. In the next section,

a brief review of matrix multiplication, RSFQ circuits,
and the truncated multiplier in [8] which is utilized for
the proposed circuit are shown. In Section III, an RSFQ
matrix multiplication circuit is proposed and its operation
is described. In Section IV, a layout design for 4-bit 4 ×
4 multiplication is shown, and its evaluation results are
shown. In Section V, this paper is concluded.

II. Preliminaries

A. Matrix Multiplication

We consider matrix multiplication C = AB where each
of A, B, and C is an m×m matrix as follows:







C0,0 · · · C0,m−1

...
. . .

...
Cm−1,0 · · · Cm−1,m−1






=







A0,0 · · · A0,m−1

...
. . .

...
Am−1,0 · · · Am−1,m−1













B0,0 · · · B0,m−1

...
. . .

...
Bm−1,0 · · · Bm−1,m−1






.

Each element of input matrices is an n-bit fixed point
number, i.e., Ai,j = [0.ai,j,1 · · · ai,j,n]2 and Bi,j =
[0.bi,j,1 · · · bi,j,n]2. In other words, range of each element
is 0(= [0.0 · · · 0]2) ≤ Ai,j , Bi,j ≤ 1− 2−n(= [0.1 · · · 1]2).
Each element of the output matrix Ci,j(0 ≤ i, j < m)

is calculated as follows:

Ci,j =
∑

0≤k<m

Ai,kBk,j .

Therefore, a matrix multiplication can be performed by
m3 multiplications.

B. RSFQ Circuits

In RSFQ circuits, voltage pulses are used for represent-
ing logic values and are transmitted on signal lines. Most
of RSFQ gates including basic logic gates such as AND,
OR and XOR have a clock input terminal and work syn-
chronized with clock pulses. As an example, the symbol
and the behavior of an RSFQ AND gate are shown in
Figs. 1(a) and (b), respectively. The value of an input sig-
nal is determined with clock pulses as shown in Fig. 1(b).
When a pulse arrives at a data input of a gate during
an interval between adjacent clock pulses, the input value
corresponding to the interval is considered as “1”. If no
pulse arrives during the interval, the input value is con-
sidered as “0”. During the interval, it is prohibited to
feed plural pulses to a data input of basic logic gates.
The output of a basic gate is synchronized with the clock
pulse.
In addition to the basic logic gates, there are several

RSFQ-specific gates. Some of those gates are shown

clock

o

clock

o

i0

i1

i0

i1

(a) (b)

1

1

1

0

1

1

1 0 1

time

vo
lta

ge

Fig. 1. RSFQ AND gate(a) and its behavior(b).
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Fig. 2. RSFQ-specific gates and their behavior (Non-destructive
read-out (NDRO) gate (a), confluence buffer (b), and T1 gate (c)).

in Fig. 2. In the figure, the symbol of each gate and
its behavior are presented. A non-destructive read-out
(NDRO) gate has two internal states, i.e. ST0 and ST1,
as shown in Fig. 2(a). It outputs a pulse at dout only
when its internal state is ST1 and a pulse arrives at its
clk terminal. A confluence buffer (CB) in Fig. 2(b) out-
puts a pulse when a pulse arrives at its input. It can
merge pulses on two signal lines. A T1 gate in Fig. 2(c)
works as a counter of pulses. When internal state of a T1
gate is ST1, it outputs a pulse at carry or sum terminal
once a pulse arrives at din or clk terminal, respectively.

In RSFQ circuits, signal lines are realized by Joseph-
son transmission lines (JTLs) or passive transmission
lines (PTLs). JTLs are composed of active devices, i.e.,
Josephson junctions, and have relatively large size and
delay. Though delay of a PTL is smaller than delay of
a JTL with the same length, a pair of a driver and a re-
ceiver is necessary in its both ends and it can connect
a pair of pins without fanouts. In AIST advanced pro-
cess (ADP2) [14], two PTL wiring layers are available.
Splitters containing active devices are necessary to feed a
signal to plural inputs. A splitter is depicted by symbol •
in schematic. Because various components containing ac-
tive devices are necessary for realizing signal lines, signal
lines consume large area in a layout.

For correct operation of a designed circuit, JTLs are
inserted on signal lines as delay elements to keep up order
of pulse arrivals to the expected order at each gate.
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Fig. 3. Structure of the truncated multiplier based on bit-level
processing [8].
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Fig. 4. Partial product bits used in the truncated multiplier.

C. RSFQ Truncated Multiplier Based on Bit-Level Pro-

cessing

The matrix multiplication circuit proposed in this pa-
per is based on the truncated multiplier proposed in
[8]. The structure of the truncated multiplier is shown
in Fig. 3. Its inputs are X(= [0.x1x2 · · ·xn]2), Y (=
[0.y1y2 · · · yn]2), clock, and reset. Its output is Z(=
[0.z1z2 · · · zn]2). The resultant value Z is calculated as
follows:

Z =
∑

j+i≤n

xjyi2
−(i+j) +

∑

j+i=n+1

xjyi2
−n.

The former term corresponds to the bits to be summed
up in Fig. 4, and the latter term is the compensation term
using the bits for compensation in Fig. 4. The truncated
multiplier treats those compensation bits whose weight is
2−n−1 as bits of the twice weight, i.e., 2−n, in other words,
it rounds each partial product toward its nearest value.
The multiplier calculates one multiplication every 2n−1

clock cycles. The linear feedback shift register (LFSR)
whose period is 2n−1 in the multiplier feeds an n-bit pat-
tern every clock cycle for the bit generators. The bit or-
dering of the connection from LFSR to one bit-generator
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Fig. 5. Design of the bit generator.

is different from that of the other. The two generators
output two one-bit signals and they are fed to the AND
gate. The output pulses of the AND gate are counted by
the pulse counter realized with n T1 gates.
In Fig. 5, the detailed design of the bit generator com-

posed of the weighted-bits generator and the “selector and
merger” is shown. CBs and NDROs are utilized to realize
it in compact area. The upper row of NDROs forms the
weighted-bits generator, and the following row of NDROs
forms the selector. The CBs in the bottom in the figure
form the merger of pulses.
For NDROs of the upper row, the orders of pulse

arrivals are depicted using the inequalities [15]. The
weighted-bits generator feeds wi signals and the output
value of wi is represented as ri ∧ (ri−1 ∧ · · · ∧ r1). Dur-
ing the period of the LFSR, i.e., 2n − 1 clock cycles, 2n−i

pulses appear at wi.
Pulses need to be fed to NDROs in the selector to set

their internal states before a calculation starts. When the
internal state of an NDRO is preset through qi, the NDRO
outputs a pulse once a pulse arrives at wi. As a result, the
merger outputs [q1 . . . qn]2 (= 2n−1q1 + · · · + qn) pulses.
As connections between the LFSR and two bit-generators
are different, the AND gate outputs the result of trun-
cated multiplication like multiplication using stochastic
computing [9, 10]. Note that the multiplications in the
proposed circuit utilize the correlation of the shared LFSR
though correlation between operands may degrade results
in multiplications in stochastic computing. The LFSR is
not utilized as an random number generator. Thus, the
sharing of the LFSR is not a problem in the circuit.

III. RSFQ Matrix Multiplication Circuit

Utilizing Bit-Level Processing

We propose an RSFQ matrix multiplication circuit uti-
lizing the idea of the truncated multiplier discussed in
Section II.C. The circuit calculates each column of the
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resultant matrix, sequentially. For calculating a column,
the circuit carries out m multiplications and additions for
its rows simultaneously.

A. Structure

The structure of the proposed RSFQ matrix multiplier
is shown in Fig. 6. In the figure, several control signals
such as clock and reset are omitted. The components of
the matrix multiplication circuit are almost the same as
those of the multiplier in Section II.C.

The circuit is designed to carry out the following cal-
culation.







C0,i

...
Cm−1,i






=







A0,0

...
Am−1,0






B0,i+· · ·+







A0,m−1

...
Am−1,m−1






Bm−1,i.

For each Bk,l (0 ≤ k, l < m), m multiplications are neces-
sary and the circuit performs the m multiplications simul-
taneously. Though it carries out multiple multiplications
simultaneously, only one LFSR is used.

Each term in the right-hand side of the above formula
is carried out in 2n − 1 clock cycles, and the left-hand
side, i.e., a column of the resultant matrix, is obtained in
m× (2n− 1) clock cycles. For calculation of each term in
the right-hand side of the above formula, elements of A
are fed through Ain0, . . . , Ainm−1 inputs, and an element
of B is fed through Bin input. Accumulation of terms is
realized by counting pulses without resetting the pulse
counters in the circuit. Total number of clock cycles for
m×m matrix multiplication is m2 × (2n − 1).

Because one of two operands in multiplications is fixed
to Bin in each term in the formula, components re-
ceiving elements of A are duplicated from the origi-
nal truncated multiplier. Weighted-bits generation for
Ain0, · · · , Ainm−1 are the same, and we use only one
weighted-bits generator for Ain0, · · · , Ainm−1. We du-
plicate components other than the weighted-bits genera-
tor, i.e., the selector, the merger, the AND gates, and the
counter. Thus, circuit area is not enlarged significantly
though the circuit performs m multiplication simultane-
ously.

B. Operation

The steps for calculating matrix multiplication using
the proposed circuit are shown in Algorithm 1.

In each interval of 2n − 1 clock cycles, the circuit cal-
culates Ain0 · Bin, · · · , Ainm−1 · Bin. We need to feed
inputs for Ain0, · · · , Ainm−1, and Bin every 2n− 1 clock
cycles. The pulse counters accumulate results of m mul-
tiplications to calculate a column of the resultant matrix.
Thus, we reset the pulse counters at the beginning of cal-
culation of each column, and observe the result at pulse
counters after m× (2n − 1) clock cycles.
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Fig. 6. Structure of the RSFQ matrix multiplication circuit
utilizing bit-level processing.

Algorithm 1 Calculation of matrix multiplication with
the proposed circuit

for j = 0 . . .m− 1 do

Reset the pulse counters
for k = 0 . . .m− 1 do

Feed operands into Ain0, . . . , Ainm−1, and Bin

Aini ← Ai,k(0 ≤ i < m)
Bin← Bk,j

Feed 2n − 1 clock pulses
end for

Values of Ci,j(0 ≤ i < m) are calculated at Couti
end for

The multiplication result obtained by the truncated
multiplier is n bit. Thus, each element of resultant ma-
trix C is (n + ⌈log2 m⌉) bits. Namely, each element is
composed of n-bit fraction part and ⌈log2 m⌉-bit integer
part.

IV. Layout Design and Evaluation

We show a layout of a 4-bit 4 × 4 matrix multiplica-
tion circuit for evaluation of the proposed matrix multi-
plication circuit. We used Cadence Virtuoso and the cell
library designed for AIST advanced process (ADP2) [14]
for layout design. In the design flow using the cell library,
a layout is composed by tiling cells in the schematic edi-
tor. We can easily convert a designed layout in schematic
editor to a physical layout for fabrication.
We show the layout designed with schematic editor in

Fig. 7. The four components in the right side of the figure
correspond to the components rounded by broken lines in
Fig. 6. The circuit area is 2.68 mm2 (1.40 × 1.92 mm2),

- 102 -



Fig. 7. Layout of a 4-bit 4× 4 RSFQ matrix multiplication circuit.

and the number of Josephson junctions (JJs) in it is 2,711.
The number of JJs in designs of the previously proposed
32-bit 4 × 4 matrix multiplier [13] was estimated from
30,000 to 1,000,000. Though the designed layout was 4-
bit, the number of JJs in the layout is drastically fewer
than that of the previously proposed one, and layout de-
signs of the previously proposed circuit have not been
shown.
We have carried out logic simulation of the designed

layout considering delay of each component with Cadence
Verilog-XL. With the simulation result, the functionality
of the layout was verified and it was estimated to work at
up to 33 GHz.

V. Conclusion

We proposed an RSFQ matrix multiplication circuit
utilizing bit-level processing. The circuit utilizes RSFQ-
specific gates aggressively, and carries out internal trun-
cated multiplications and additions by counting pulses on
signal lines. The circuit requires small amount of gates
and wires compared with parallel processing circuits, and
could be realized in small area. The circuit is suitable for
applications which tolerates small error.
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