
Acceleration of Residual Binarized Neural Network

Yan Chen Kiyofumi Tanaka
School of Information Science School of Information Science

Japan Advanced Institute of Science and Technology Japan Advanced Institute of Science and Technology
Nomi, Ishikawa, 923-1292, Japan Nomi, Ishikawa, 923-1292, Japan

chenyan@jaist.ac.jp kiyofumi@jaist.ac.jp

Abstract—In this paper, we discuss a state-of-the-
art method of accelerating the Residual Binarized
Neural Network (ReBNet) [1] by replacing fixed-
point number multiplication with logical shift opera-
tion. We designed an end-to-end framework for train-
ing binary neural networks, on which the conversion
to logical-shift-based multiplication on software and
hardware accelerators implemented on FPGA is per-
formed. Compared to ReBNet [1], we got similar ac-
curacy in several datasets, and our hardware resource
usage in the same degree of parallelism as ReBNet was
much lower. It is concluded that our design can be im-
plemented on a smaller device or with larger degree
of parallelism in the same device.

I. Introduction

With the computing ability of GPU improving, Con-
volutional Neural Networks (CNNs) can be trained in a
reasonable time. CNNs show their high classification abil-
ity and are widely used in many fields in recent years.
The problems to be solved by CNNs are becoming much
more complex, and it is difficult for low-power devices,
especially IoT devices, to run CNNs locally. For some
hard real-time tasks, such as semantic segmentation of au-
topilot, the CNNs have to finish in several microseconds.
Computing on a remote server requires high bandwidth,
low latency and high network connection quality. They
are really difficult problems. Therefore, this type of task
needs to be processed locally.

Modern CNNs’ architecture has become larger and
more complex to perform difficult tasks, and it usually
needs millions of parameters and billions of floating-point
operations to run one picture. For instance, the winner
of the ImageNet Large Scale Visual Recognition Competi-
tion (ILSVRC) in 2015 was ResNet [2], and ResNet-50 has
25.5 million of parameters and needs 3.8 GFlops to infer-
ence one picture. So many parameters and floating-point
operations make it difficult for even high-end GPU to run
the modern CNNs in real-time, and the batch-based ac-
celeration of GPUs results in high average latency.

CNNs’ models should be trained with 32-bit floating-
point precision or 32-bit/16-bit mixed floating-point pre-
cision [3], while the inference process does not require such

high precision. 8-bit integer quantization [4] is popular for
inference in CNNs on embedded or mobile devices. Even
1-bit binarization can achieve high accuracy.

In BinaryNet [5], Courbariaux et al. convert al-
most all floating-point operations to binary operations
where floating-point number multiplication becomes log-
ical XNOR. In a Field Programmable Gate Array
(FPGA), a logical XNOR gate can be implemented as
Look-Up-Table (LUT). LUT is one of main resources in
a modern FPGA. With those LUTs, even small FPGA
devices can perform up to trillions of XNOR operations in
one second. In addition, compared with floating-point or
quantized CNNs, binary weights in binarized neural net-
works (BNNs) spend less memory space to store them.
This means that binary weights can be stored in Block
RAM or Distributed Memory on FPGA devices, and it
takes a few clock cycles to load them. In Xnor-Net [6],
Rastegari et al. added scaling factor to weight, which
makes their design get higher accuracy in the ImageNet
dataset.

FINN [7] is a BNNs’ framework which provides the
fastest processing, and it is flexible so that it can be config-
ured to adapt to various FPGA devices of different sizes
by changing the degree of parallelism. FINN also uses
threshold comparison to avoid multiplications in Batch
Normalization [8].

BNNs with 1-bit activation and 1-bit weights lead to
very limited accuracy. On the other hand, Residual Bi-
narized Neural Network (ReBNet) [1] which has multiple-
bit activation and 1-bit weights gets much better ac-
curacy, and is comparable with floating-point precision.
ReBNet [1] introduces multiple-bit activation in FINN’s
framework by getting the sign of the difference between
the residuals and the binarize factors. When bit width
of activation is supposed to be M , this is called M lev-
els of residual binarization, and M binarize factors for
activation are required. Here, the scaling factors which
are fixed-point values need to be multiplied with accu-
mulated values in the next layer. Multiplication of fixed-
point numbers is basically mapped to DSP48 resources
which are embedded multiply-accumulate calculators in
Xilinx FPGA families. However, since the number of
DSP48 resources in a device is limited, this results in
that ReBNet easily runs out of DSP48s, and therefore

SASIMI 2021 ProceedingsR3-1

- 126 -

needs a great amount of LUTs to make up for the lack of
DSP48s. This imbalance limits the maximum degree of
parallelism, makes place-and-route processes hard in im-
plementing the whole design, and degrades the maximum
clock frequency.

In this paper, we resolve the problems mentioned above.
We achieve similar accuracy to ReBNet [1], while our
hardware accelerator takes only 1

M+2 DSP48s of ReBNet
in each processing element (PE). As a result, our design
does not run out of DSP48s and saves many LUTs so
that we can apply throughput optimization and increase
the degree of parallelism. In addition, we apply optimiza-
tion to the Pooling Unit to decrease LUT and BRAM
usage. For the same resource-limited FPGA device, our
design achieves 8× higher throughput on average, lower
power usage per FPS, and higher running frequency than
ReBNet.

In section II, we describe existing techniques in BNNs
and hardware design. Section III proposes our accelera-
tor which improves ReBNet. In section IV, our design is
compared with ReBNet in different settings. Finally, we
conclude the paper in Section V.

II. Preliminaries

In this section, we show the techniques used in BNN and
explain residual binarization in ReBNet [1] in particular.
In addition, we present how the FINN framework [7] im-
plements BNN in parallel on FPGA efficiently. For more
details, refer to the original papers.

A. Residual-Binarization Activation

ReBNet proposed a multiple-level binarize activation
function. To binarize an input in multiple levels, bina-
rize factor γe = {γe1 , γe2 , · · · , γei} is necessary. Figure 1
shows how to convert a fixed-point input x to an approxi-
mate binary value ei and encode them to a binary output
bi. First, we get the sign of the input r1(= x) as the Level
1’s encoded bit b1. If the sign is positive, b1 is 1, otherwise
0. Next, r1 is added by γe1 when the sign is negative or
subtracted by γe1 when sign is positive. The residual re-
sult r2 is the input to the Level 2. Repeating this process,
we obtain the results in Levels 2, . . . ,M . Consequently,
e =

∑M
i γei × sign(ri) is the approximate binary value

for input x, and the relationship between input x and e is
illustrated in Figure 2. γe is learned during the training
phase.

B. XNOR-based dot product

The main calculation in the neural network is the dot
product in the fully-connected layers and convolution lay-
ers. In a fully-connected layer, it calculates dot products
between input vector x⃗ and weight vector w⃗. In a con-
volution layer, it calculates dot products between input

Fig. 1. Encoding multiple-level residual-binarized bits.

Fig. 2. Relationship between input x and approximate binary
value e when M=2.

feature map vector x⃗ and kernel vector w⃗. These dot
products operations are as follows.

dot(x⃗, w⃗) =
∑

x⃗i × w⃗i (1)

In BNNs, {x⃗, w⃗} are restricted to binary values which
are {±γx,±γw}. According to [5], dot products of bi-
narlized {⃗bx, b⃗w} can be calculated via XNOR popcount
(XnorPopcount). In XnorPopcount, after XNOR opera-
tion, the number of positive bits is doubled and then sub-
tracted by the bit width, N (Figure3). Let x⃗ = γxs⃗x and
w⃗ = γws⃗w, while {γx, γw} are scalar values and {s⃗x, s⃗w}
are sign vectors which only contains ±1. We replace
−1 values in sign vectors {s⃗x, s⃗w} by 0s and then obtain
{⃗bx, b⃗w}. We can get:

dot(x⃗, w⃗) = γxγwdot(s⃗x, s⃗w)

= γxγwXnorPopcount(⃗bx, b⃗w).
(2)

In ReBNet [1], dot products between an M-level
residual-binarized feature vector e⃗ and weight vector w⃗
are calculated in M subprocesses, and the result is the
summation of the subprocesses. When i is the level num-
ber, The dot product in ReBNet becomes:

dot(e⃗, w⃗) =

M∑

i

γeiγwdot(s⃗ei , s⃗w)

=
M∑

i

γeiγwXnorPopcount(⃗bei , b⃗w),

(3)

Fig. 3. Dot-Product and XnorPopcount, where p is the number of
positive bits and N is the bit width of input.

- 127 -

where s⃗ei is the binarize factor vector of e⃗ and b⃗ei is the
vector of binary encoded e⃗.

C. Threshold-based Batch Normalization

CNNs generally include a batch normalization layer be-
tween fully-connected layer or convolution layer and ac-
tivation function. There are typically four parameters
in batch normalization layers: moving-mean µ, moving-
variance σ2, γ and β. Moving-mean µ and moving-
variance σ2 are updated by feeding data when the model
is being trained. γ and β are updated by back propaga-
tion during learning. Processing in batch normalization
is:

output =
x− µ√
σ2 + ϵ

· γ + β, (4)

where ϵ is a fixed value which is close to 0, and x is
the input value. Software implementation of the batch
normalization needs multiplication twice. According to
FINN, we can find a threshold τ such that if the input is
lager than τ , the output is 1, otherwise, the output is 0,
when batch normalization runs on a hardware accelerator.
FINN shows that we can calculate τ = µ − (β×

√
σ2+ϵ)
γ .

RebNet uses τ to get a difference D with input x, and
then uses this difference D to multiply a scaling factor
α = γ√

σ2+ϵ
, and put the product to residual-binarization

activation function.

D. MVTU and SWU

Since ReBNet inherited the design of FINN, a fully-
connected layer uses a Matrix Vector Threshold Unit
(MVTU), and a convolution layer uses a Sliding Window
Unit (SWU) and an MVTU. SWU is for sampling the
input to convolution layers. There are several process-
ing elements (PE) in an MVTU, and each PE contains
M XNOR modules, a popcout module, M accumulators
to store popcounted values in M levels, a MAC module,
and an encode module. A MAC module contains M + 2
DSP48s, M of which are for accumulated values to mul-
tiply γei and 2 of which are for multiplying α and differ-
ence D. The encoding module consists of M comparators,
M − 1 adders, and subtractors. The PE in ReBNet is il-
lustrated in Figure 4. Each PE can process multiple 1-bit
data in parallel, and the number of data pairs is “SIMD
width”. The number of PE and the SIMD width decide
the degree of parallelism. The processing in each PE be-
fore encoding is:

∑
(
M∑

i

(γei · γw ·XnorPopcount(⃗bei , b⃗w))) ·α− τ ·α, (5)

where the outer summation is to process all neurons which
are divided to SIMDs, and the inner summation is to pro-
cess multiple levels input. γei · γw and τ ·α are calculated
in advance and stored as constant in memory.

Fig. 4. Processing Element in ReBNet [1]. While index1 is PE
index, index2 is layer index. S is data width of input (SIMD
width), P is data width of popcount accumulator, T is data width
of all of the fixed-point values, and M is the number of
residual-binarization levels.

III. Improvement of ReBNet

In this section, we discuss how we resolve the problems
in ReBNet. First, we show the difference in the compu-
tation processes. Then we explain the modifications to
the hardware accelerator and how to optimize the perfor-
mance and reduce resource usage.

A. Isometric Residual-Binarization

We found that most elements of γe in the hidden layers
of models which have been well-trained form a geomet-
ric sequence with a common ratio of 1

2 . Therefore, we
redesigned the Residual-Binarization activation function,
reduced the elements of binarize factor γe form M to 1,
and decided to reuse the γe to express binarize factor vec-
tor γei = 1

2i−1 γe of multiple levels. where the γe could
be decided via training, and approximate binary value
becomes e =

∑M
i

1
2i−1 γe × sign(ri). Assumme that L

is loss function, that it uses full-precision in backpropa-
gation, and that sign function causes vanishing gradient.
According to the literature of BinaryNet [5], sign function
should be approximated to clip(x,−1,+1) in backpropa-
gation, meaning that if the absolute value of input x is
over 1, it should be cut off. The derived function of clip
is:

clip′(x,−1,+1) = 1|x|≤1 =

{
1 |x| ≤ 1
0 otherwise (6)

and e =
∑M

i
1

2i−1 γe×clip(ri,−1,+1) in backpropagation.
The derivatives of cost function L with respect to γ is
computed by chain rule as:

∂L
∂γe

=
∂L
∂e

∂e

∂γe
=

M∑

i

1

2i−1
clip(ri,−1,+1), (7)

and for input x:

∂L
∂x

=
∂L
∂e

∂e

∂x
=

M∑

i

1

2i−1
γe × 1|ri|≤1. (8)

We can update the parameters in the Isometric Residual-
Binarization activation function and pass the gradient to
the previous layer on a full-precision system.

- 128 -

Fig. 5. Processing Element in our design. While index1 is PE
index, S is data width of input (SIMD width), P is data width of
popcount accumulator, T is data width of all of the fixed-point
values, and M is the number of residual-binarization levels.

B. Integer scaling of binarize factor

Since we use single trainable γe, we need to scale almost
all of the parameters and make it easier for hardware to
run it. In ReBNet or FINN, there are two ways to input
data: 1) For simple datasets in monochrome like MNIST,
data is inputted as binary bits (sign(2 × x − 255)). 2)
For datasets like CIFAR-10 or SVHN, data is inputted
as 8 bits fixed-point number (2×x−255

255), where the first
bit is sign, and the remaining 7 bits are decimal part.
For case 1), we don’t change the input format, while, for
case 2), we use RAW RGB values as input and process
2 × x − 255 in the first layer, so as to project the RGB
value x ∈ [0, 255] to x ∈ [−255, 255]. This makes software
simulation and hardware output the same values, so that
we can predict the behavior of the hardware easily. We
need a scaling factor γr = 2M−1

γe
. In case 1), γrprev in the

previous layer is initialized with 1, and in case 2), it is
initialized with 255.

First, we have to correct γ which has a negative
value in the batch normalization, which makes residual-
binarization in inversely proportional. The weights in the
previous layers, moving-means µ, and γ are element-wise-
multiplied with the sign vectors of the γ. Then, after
calculating the current γrcur

, the parameters in batch nor-
malization are updated as:

γ′ = γ · γrcur

β′ = β · γrcur

µ′ = µ · γrprev
σ′ =

√
(σ2 + ϵ) · γ2

rprev ,

(9)

where {γ, β} are multiplied by the current scaling factor,
{σ, µ} are dependent on the previous layer’s output, and
thus they are multiplied by the previous scaling factor.
Finally, τ and α are calculated by the scaled parameters,
and we can use the integer γe(= 2M−1) in hardware im-
plementation.

C. Processing Element

As mentioned above, we reduced the components in
PE in Figure 5. Before adding the popcounted value to
the accumulator, we process the logical left shift simply
by wire connections and use adder-tree to sum different

levels’ shifted values. We not only remove the M − 1
DSP48s for γe and popcounted values, but also reduce
the amount of DSP48s for α. ReBNet needs two DSP48s
to multiply T -bit fixed-point value which is the output of
the MAC module and T -bit fixed-point α. Our design, on
the other hand, only requires a DSP48 to multiply P -bit
integer accumulated value and T -bit fixed-point α, where
T is supposed to be 24, and P is the width of the integer
part of T , i.e., 16. In most cases, since α is a small value,
it is desirable to allocate more bits to the decimal part,
e.g., 12 bits for the integer part and 12 bits for the decimal
part. Then, the calculated, temporary value is subtracted
by τ ·α which can be pre-calculated. The computation so
far is shown as:
∑

(
M∑

i

(XnorPopcount(⃗bei , w⃗) << (M − i))) ·α− τ ·α. (10)

Then we deliver the result of Formula (10) to the en-
coder. Different from ReBNet which needs to input all of
the bits for getting the correct result from comparing the
very close values, we only need M + 2 bits, which are a
sign bit, the least significant M bits in the integer part,
and 1-bit decimal part, to encode correctly. If there is
valid information in not-selected (or higher) bits in the
integer part, we need to set the maximum or minimum
value to the least significant M bits: 1) When the sign is
positive, the least significant M bits are to be the maxi-
mum if there is at least 1 in the unselected (higher) bits
in the integer part. We can check it by element-wised OR
gate; 2) When the sign is negative, the least significant
M bits are the minimum if there is at least 0 in the un-
selected integer part. We can check it by element-wised
AND gate. The decimal part has a constant value of 1,
which is 0.5 in decimal since this can avoid comparison
between the same values.

In addition, we apply throughput optimization in the
processing element so that the initiation interval of each
PE decreases from M to 1 . This means that the through-
put of the design increases by M . In ReBNet, they input
the data in the interleaved manner, while, in our design,
data are inputted in parallel. This brings overhead of
M − 1 more popcount modules and larger dataflow con-
trol logic between layers.

IV. Experiments

We use Keras [9] with TensorFlow [10] backend to train
our models with methods in BinaryNet. We apply our
method to the open-sourced library of ReBNet and use
Vivado HLS in Vivado Design Suite [11] to perform high-
level-synthesis for the IP core of the accelerator we de-
signed. Then, logic synthesis, implementation, and bit-
stream generation are done on Vivado.

We implemented different accelerators for several data
sets: MNIST, CIFAR-10, and SVHN, and compare them
with ReBNet for the same data sets. We target several

- 129 -

TABLE I
Target FPGAs.

FPGA device LUT FF DSP48 BRAM
xc7z020-clg484-1 53,200 106,400 220 140
xc7z100-ffg1156-2 277,400 554,800 2,020 755

TABLE II
Neural Network Architectures For Each Dataset.

Name Architecture
Arch 1
(MNIST)

input(768)-FC(256)-BN-RB-FC(256)-BN-RB-
FC(256)-BN-RB-FC(10)-Softmax

Arch 2
(CIFAR-10

&
SVHN)

input(3× 224× 224)-Conv(64)-BN-RB-Conv(64)-
BN-RB-MP-Conv(128)-BN-RB-Conv(128)-
BN-RB-MP-Conv(256)-BN-RB-Conv(256)-
BN-RB-FC(512)-BN-RB-FC(512)-BN-RB-
FC(10)-Softmax

FPGA devices with different sizes. The resources of the
target devices are presented in TABLE I where 7z020 is a
resource-limited device and 7z100 is a large device which
provides a large amount of DSP48s. The highest degree
of parallelism described in FINN can be implemented on
the large device 7z100. However, the same degree is im-
possible on the the resource-limited device 7z020. Instead,
we tried to find the possibly highest degree of parallelism
for M = 2 and M = 3 on the resource-limited device
7z020.

A. Accuracy

We adopt neural network architectures similar to ReB-
Net [1] as those in TABLE II, where RB represents
Residual-Binarization. MNIST was trained on Arch 1
which only contains fully-connected layers. CIFAR-10
and SVHN are trained on Arch 2, in which all of the
convolution layers have a kernel size of 3 × 3 and stride
of 1, and maxpooling layers have a kernel size of 2 × 2
and stride of 2. While the training in ReBNet performs
batch normalization after the last full-connected layer, our
training method cuts the batch normalization, since after
this batch normalization, there is no binarize activation
function and it cannot be implemented as a threshold sub-
traction. In fact, this batch normalization does not help
the model to get higher accuracy but has effects of speed-
ing up the accuracy improvement in the early training
stages. As for inference by hardware, the hardware im-
plementation of ReBNet skips this batch normalization,
causing the accuracy to be undulated. Considering this
problem, we use the architectures without this batch nor-
malization in both training and inference.

The accuracy of a neural network is dependent on ar-
chitecture and training epochs. We fix the training epochs
to 200 for all of the datasets during model training, and
TABLE III summarizes the highest accuracy for each
dataset in different residual-binarize levels. The accuracy
of our design is from the simulation of the post-convert

TABLE III
Accuracy Comparison on Each Method.

FP32 FINN M ReBNet This Work

MNIST 0.9822 0.9583
2 0.9799 0.9803
3 0.9799 0.9793

CIFAR-10 0.8903 0.8010
2 0.8469 0.8497
3 0.8618 0.8632

SVHN 0.9765 0.9490
2 0.9677 0.9645
3 0.9690 0.9670

model which is based on threshold subtraction run on
Keras, and the precision of parameters is limited to that
on our hardware. It is found that our method of iso-
metric residual-binarization achieves accuracy similar to
ReBNet. We carefully considered the range of each pa-
rameter and made sure the hardware produces the same
intermediate data and output as the simulation on Keras
in testbench, while ReBNet on hardware may have some
errors with models run on Keras.

B. Hardware Implementation

According to FINN [7], we use Fold to describe the
degree of parallelism, where Fold means iterations of an
MVTU process for one picture. The Fold can be cal-
culated by Synapses×Neurons

PECount×SIMDWidth for the MVTUs of fully-
connected layers, and it should be multiplied by sampling
cycles of SWU for convolutional layers On the other hand,
in ReBNet, Initiation Interval (II) of PE is M , which takes
Fold×M iterations to process one picture. The layer with
the largest Flod can be the bottleneck of the dataflow.
TABLE IV shows the maximum Fold with which our de-
sign and ReBNet can be implemented on 7z020 and 7z100
for each architecture. As for 7z100, we implemented the
designs with the FINN [7] framework’s maximum degree
of parallelism. As mentioned before, the MaxPooling in
ReBNet runs out of Block RAMs (or Distributed RAMs)
in 7z020, and cannot be implemented in any parallelism
setting. Thus, we disabled the parallel processing in Max-
Pooling for ReBNet on 7z020. However, this change does
not become bottleneck in implementations on small de-
vices.

Figure 6 shows the resource usages on each degree of
parallelism and TABLE IV includes maximum frequency,
maximum throughout calculated via the maximum fre-
quency according to FINN [7], and power usage of chip.
All of the results are from reports of Vivado HLS or Vi-
vado with target frequency of 200MHz.

Our design reach much higher degrees of parallelism
in resource-limited device, 7z020, and each PE consumes
fewer resources on average because of our efficient de-
sign and optimization. Since our design does not run out
the DSP48, extra LUTs are not necessary to implement
multipliers, which leads to higher maximum frequency,
especially compared with RebNet in Arch 2 when M = 3.
Because of higher degree of parallelism and partitioned

- 130 -

(a) Arch 1 on 7z020 (b) Arch 1 on 7z100 (c) Arch 2 on 7z020 (d) Arch 2 on 7z100

Fig. 6. Normalized hardware utilization compared to ReBNet. Where results with frame are post-placement results due to routing failed.

TABLE IV
Flod, Frequency, Throughput and Power Usage.

Max
M

Freq Thr.put Pchip
Fold (MHz) (kFPS) (W)

Arch1

7z020
96 ours

2 145.31 1513.61 1.353
3 143.74 1497.29 1.529

208 ReBNet
2 106.85 256.85 1.052
3 99.52 159.49 1.994

7z100 16
ours

2 200.92 12577.77 5.083
3 193.91 12119.45 4.905

ReBNet
2 124.30 3884.40 8.121
3 - - -

Arch2

7z020
32768 ours

2 134.28 4.10 1.41
3 129.03 3.94 1.473

65536 ReBNet
2 136.44 1.04 1.188
3 53.70 0.27 1.61

7z100 8192
ours

2 200.64 24.49 3.868
3 200.40 24.46 3.961

ReBNet
2 200.44 12.23 4.774
3 192.31 7.83 5.916

weights, our design uses more BRAMs in Arch 1. In con-
trast, in Arch 2, our design uses less BRAMs as a re-
sult of optimization on the buffering method in SWUs
and MaxPooling, even though the design is implemented
with two-fold degree of parallelism. Our design achieves
8 times higher throughput than ReBNet on average with
7z020.

In implementations of the large device, 7z100, Arch 1 of
ReBNet with M = 3 fails to complete Initial Routing due
to high congestion. Instead, we use post-placement uti-
lization information, which is depicted with a red frame
in Figure 6. No frequency or throughput information is
obtained for this scenario. Although ReBNet does not
exhaust DSP48s in 7z100, the scenario with the highest
usage of 99% requires 2,002 out of the total 2,020 DSP48s
in 7z100. We can see that, as mentioned before, our de-
sign uses around 1

M+2 DSP48s of ReBNet, and usage of
the other components is also lower. The throughput of our
design is M times higher than ReBNet in each residual-
binarization levels. In addition, the usages between re-
source types are well balanced in our method and the
power usage in our design is much lower than ReBNet.

V. Conclusion and Future Work

This paper showed that, while our method, isomet-
ric residual-binarization, obtains similar accuracy to the
baseline work, ReBNet, our hardware design reaches
higher degree of parallelism in resource-limited devices
and gets higher through-put. In the future, we will ap-
ply our method to complex CNN architectures for larger
datasets, and implement them on FPGAs. In addition,
we will try to use our method in difficult tasks such as
object detection and semantic segmentation.

References
[1] M. Ghasemzadeh, M. Samragh, and F. Koushanfar. Rebnet:

Residual binarized neural network. In 2018 IEEE 26th An-
nual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 57–64, 2018.

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. CoRR,
abs/1512.03385, 2015.

[3] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F.
Diamos, Erich Elsen, David García, et al. Mixed precision
training. CoRR, abs/1710.03740, 2017.

[4] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew G. Howard, et al. Quantization and
training of neural networks for efficient integer-arithmetic-only
inference. CoRR, abs/1712.05877, 2017.

[5] Matthieu Courbariaux and Yoshua Bengio. Binarynet: Train-
ing deep neural networks with weights and activations con-
strained to +1 or -1. CoRR, abs/1602.02830, 2016.

[6] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. CoRR, abs/1603.05279, 2016.

[7] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella,
Michaela Blott, Philip Leong, Magnus Jahre, et al. Finn: A
framework for fast, scalable binarized neural network inference.
In Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, FPGA ’17, pages
65–74. ACM, 2017.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Ac-
celerating deep network training by reducing internal covariate
shift. CoRR, abs/1502.03167, 2015.

[9] François Chollet et al. Keras. https://keras.io, 2015.
[10] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, et al. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems, 2015. Software avail-
able from tensorflow.org.

[11] Xilinx. Vivado design suite. https://www.xilinx.com/
products/design-tools/vivado.html.

- 131 -

