

Energy Efficient Approximate Storing to MRAM
for Deep Neural Network Tasks in Edge Computing

Yoshinori Ono

Graduate School of Science and Engineering
Shibaura Institute of Technology

Tokyo, Japan
ma19013@shibaura-it.ac.jp

Kimiyoshi Usami
Department of Computer Science and Engineering

Green Innovation Center
Shibaura Institute of Technology

Tokyo, Japan
usami@shibaura-it.ac.jp

Abstract - On-chip learning is gaining attention in edge devices.
In addition, a magnetic RAM (MRAM) is a promising memory
technology for edge devices because of low leakage energy.
However, the high write energy is a disadvantage of MRAM. For
minimizing the write energy, we propose an approximate storing
approach to MRAM for learning tasks of deep neural networks
(DNN). The proposed approach writes the weight and bias data
to NVM approximately on each epoch with the fine-grained
adjusted write time. Simulation results with image recognition
DNN applications have demonstrated the write energy can be
reduced range from 9% to 37% while negligible (< 0.5%)
accuracy loss.

I. Introduction

Edge computing devices are spreading world-wide at
tremendous speed because of developing Internet of Things
(IoT), smartphones and wearable devices. In addition, the
effectiveness of machine learning (ML) such as deep neural
network (DNN) has led to developing a lot of systems and
services featuring DNNs. This trend also has led to increasing
the researches to perform DNN tasks on edge computing
devices.

DNN tasks are divided into two main categories: learning
and inference. Learning task on edge devices (on-chip
learning) was considered unsuitable compared with inference
task because of their high computational cost and enormous
energy dissipation. Most of the researches did training task in
cloud servers and did inference task on edge devices by
transferring a training model from the cloud server. However,
sending the private data to servers poses a security problem. In
addition, transferring the input data captured at the edge device
to the server and sending back the training model to the edge
device consumes energy dissipation. Because of this,
researches on on-chip learning with domain specific and
private data have begun to emerge recently [1-2].

On-chip learning at edge devices requires more energy-
efficient technologies than the learning at the server, because
the edge devices need to operate with limited energy. Another
challenge is the memory capacity in on-chop learning. Since
the learning tasks require the memory system for error
propagation and weight updating, the memory capacity
required for learning task is significantly greater than that for
inference task [2]. Modern convolutional neural networks
(CNN) which is one of the DNNs use millions of weights and

activations, leading to critical challenges for both computation
and data transmission [3].
 Under these circumstances, the memory system becomes
more important in on-chip learning processors. In most
computer systems, SRAM and DRAM are used for the
memory systems. However, these have to be kept powered-on
to keep the data, resulting in consuming energy. Dynamic
energy for refresh operations in DRAMs and leakage energy
in SRAMs are consumed during the power-on state. Due to the
spread of IoT and mobile devices, lower energy dissipation is
required, and hence new memory systems that consume less
energy have been studied.
 Among new memory systems, a non-volatile memory
(NVM) especially employing a magnetic tunnel junction
(MTJ) is promising technology [4]. MTJ has the property that
the resistance value changes by manipulating the orientation
of electron’s spin in magnetic materials. By taking the
advantage of this property, MTJ can store data. In addition,
MTJ can reduce leakage current compared to SRAM because
data in MTJ is not lost even with power-off. As MTJ-based
memory systems, a spin transfer torque magnetic RAM (STT-
MRAM) technology has been studied so far. However, MTJ
has a disadvantage that the write operation consumes
significantly larger energy than the read operation [5]. Hence,
it is required to reduce the write energy in various aspects such
as circuit structures, architecture and operation methods.
 Approximate computing (AC) techniques reduce energy
and execution time by allowing incorrect results using the
property that information can be recognized in spite of noisy
data. AC has been gaining traction as a computing paradigm
for a wide range of cognitive applications that aim to extract
deep insight from vast quantities of data. Since DNNs have
robustness to noise and resiliency to numerical errors,
researches on the application of AC to DNNs have been
reported [6-7]. AC is also effective for memory systems. In
particular, “precision scaling” is a well-known AC technique
to be applied to memory systems. It allows us to reduce
computation and storage resources by tailoring the bit width of
data [8-9]. AC technique based on the precision scaling, which
is related to the proposed approach, is discussed in Section 2.
 In this paper, we propose an approach to augment the
capability of the precision scaling to reduce the write energy
of MRAM for DNN applications. The contributions of this
paper are summarized as follows:

SASIMI 2021 ProceedingsR4-5

- 207 -

- We proposed a new energy-efficient approximate storing
approach for MRAM. By employing precision scaling
ideas, we split bits of the floating-point (FP) fraction part
into groups and perform the write operation to each group
with different write times to MRAM to minimize the write
energy.

- We applied the proposed approach to the learning task of
DNNs on edge devices. The weight and bias data are
stored in MRAM and repeatedly updated at every epoch
by using the proposed approach.

- We executed simulations using a statistical model for the
write time of MRAM and three different network types of
DNN. Through this simulation, we quantitatively
investigated the trade-off between the write energy and
accuracy when changing the write time and the bit groups.

- We demonstrated that the proposed approach allows us to
reduce the write energy by 25% in CNN and by 9% in
MobileNetV2 with less than 0.5% accuracy loss as
compared to a non-AC technique. By relaxing the
accuracy loss to 7.5%, the write energy can be reduced by
38% in CNN and by 19% in MobileNetV2 by the
proposed approach.

The rest of the paper is organized as follows: Section 2
introduces the prior works. Section 3 describes a proposed
precision scaling approach of FP numbers for MRAM. Section
4 shows the application of the proposed approach to weights
and bias data of DNNs. Section 5 describes the simulation
setup for the evaluation. The results of simulation are
presented in Section 6. Section 7 concludes the paper.

II. Prior Works

A. Precision Scaling for Floating-Point Number

Nowadays most embedded applications involving
numerical computations with large dynamic range are
performed using binary64 (double-precision: “FP64”) or
binary32 (single-precision: “FP32”) FP formats, described by
the IEEE 754 standard. However, the execution of FP
operations emerges as a major contributor to the energy
dissipation. To provide a compromise between energy cost and
dynamic range, IEEE 754 introduces a 16-bit format referred
to as binary16 (half-precision: “FP16”).

In recent ML researches, bfloat16 (16-bits brain floating
point: “BF16”) was introduced as new FP types (Fig. 1 and
Table I). The paper [10] described that its chief advantages are
(i) ease of replacing FP32 by BF16 in DNNs while retaining
correct DNNs operation, (ii) improved performance relative to
FP32 due to greater memory bandwidth, (iii) software can
easily implement BF16 with existing FP32 instructions using
zero-padding for converting BF16 numbers to FP32 or
masking and shifting for converting FP32 numbers to BF16.
Although BF16 offers less precision than FP16, it is better
suited to support deep learning tasks due to enough dynamic
range [11].

Fig. 1 Floating-Point Formats

TABLE I Dynamic Range of Floating-Points

FP Type Min. Max.
BF16 ≈ 9.2 × 10!"# ≈ 3.4 × 10$%
FP16 ≈ 5.9 × 10!% ≈ 6.5 × 10"
FP32 ≈ 1. 4 × 10!"& ≈ 3.4 × 10$%

B. Quality-Configurable Non-volatile Memory

Studies of employing bit precision AC technique for
reducing energy of NVM systems have been reported. Ranjan
et al. explored structures and characteristics of STT-MRAM
and studied how to apply AC effectively [12]. They proposed
a quality-configurable memory (QCMEM) which can control
read/write current and period automatically by detected quality
with the extended instruction set architecture. In [12], several
approximate techniques for read/write operations have been
described. Among them, we focus on the write energy in this
paper. This is because the results in [12] showed that the write
energy is one to two orders of magnitude larger than the read
energy.

To mitigate write energy, they experimented to reduce the
write time in exchange for some write failures. In the
experiment, they introduced an automatic tuning framework
which can control output quality using the bit groups and the
quality field and applied to ML processes. The bit group is a
set of bit data obtained by dividing one data into several groups.
For example, if there is 8-bit data, we can divide into 4 groups
each of which has 2 bits. Needless to say, there are many
positions for dividing bits. The quality field is designated to
set the error probabilities for each bit group. They reported that
the number of bit groups is an important parameter for
controlling trade-off between the output quality and overhead
to write. Although they set 4-bit groups in their experiment,
the best way to divide bit groups was not discussed.

C. Fine-Grained Splitting Bit Groups and Implementation

To resolve the problem of [12], Authors of [13] proposed a
new splitting bit groups for fine-grained precision scaling.
They defined the “bit split position” (BSP) to realize fine-
grained and freely adjusting the position of the dividing bits in
the integer value. By employing the precision scaling concept,
they allowed the different write times for the bit groups split

- 208 -

by BSP. In addition, to implement the BSP approach to an LSI
chip with non-volatile flip-flops (NVFFs), they also proposed
the “store-domain” for setting the different write time for each
group with simpler peripheral circuits than [12] and fit to the
bit groups. The concept of store-domain was originally
introduced in [14] to divide NVFFs into some groups and
control them independently. Each store-domain can perform
read/write (restore/store) operation independently. However,
the target application in [13] was image data and image
processing.

III. Proposed Approach for Floating Point Numbers

A. Splitting bit groups in Floating Point Fraction Part

 First, we extend the BSP ideas to the fraction part in
floating point numbers for DNN processes (Fig. 2). Like the
approach in [13], there are only two groups of bits, the left
group (Group L) and the right group (Group R), but we can
adjust the position where to separate into groups. In Fig. 4,
dotted arrows are the candidates of BSP. In this paper, the BSP
is defined as the number of bits of Group R. With this splitting
method, we investigated how adjusting the position of dividing
the groups and the NVM’s write time for each group affects
the trade-off between energy and test accuracy of DNNs.

The main difference from [13] is the data types. Although
they only considered the integer values for image processing,
we propose an extension for FP for the DNN processes in this
paper. From [11], the exponent part is more important than the
fraction part in order to maintain dynamic range. Therefore,
we apply BSP only to the fraction part.

Fig. 2 Bit split position (BSP) for FP values

B. Non-volatile Memory with Store Domain

Because modern CNNs use millions of weights and
activations [3], DNN processors especially treating the modern
CNNs require a large-scale memory. Hence, in this paper, we
chose STT-MRAM instead of non-volatile flip-flops as the
memory system. However, The basic structure of STT-MRAM
is depicted in Fig. 3.

First, we allow it to control the write time for each store-
domain. Next, we assign a bit group to each store-domain. By
these approaches, we can easily realize the bit groups and
different write time for each bit group. Fig. 4 shows the

conceptual diagram of assigning bit groups to store-domains.
When Nf -bit fraction of FP data are store into NVFFs, it is
divided into Group L and Group R. Data assigned to Group L
are written to one of the store-domains (e.g. store domain No.
0) to use the “long write time”, while data assigned to Group
R are written to another store-domain (e.g. store domain No.
1) to use the “short write time”.

Fig. 3 Spin transfer torque (STT) MRAM

Fig. 4 Assigning bit groups to store domains

IV. Application of Proposed Approach to DNNs

 In this chapter, we describe how to achieve low energy
dissipation using the proposed approach for DNN
applications. We also describe the advantage of applying
this approach to DNNs.

A. Learning vs. Inference

In this paper, we focus on the learning tasks rather than
the inference tasks in DNNs. In DNN processes, memory
accesses for the inference tasks are mainly reading weights
and biases. There is few write operation to update them.
Meanwhile, the learning tasks perform the write operation
at backpropagation and updating weights. In addition, even
if an instantaneous power surge occurs during the training,

- 209 -

the updated weight data are retained in the NVM and does
not volatilize. It is advantageous to allow us to resume the
training from the timing of the power surge. Therefore, we
chose the learning tasks as a target of the proposed approach.

B. Target Data for Approximate Storing

We restrict the data stored in MRAM to the weight and

bias data in this paper. The capacity of MRAM is not
enough to store all neural data while learning tasks. [15]
reported the implementation of 1Gbit (≈128Mbyte) STT-
MRAM in 28nm FDSOI technology. However, all neural
data of modern DNNs require the memory capacity on the
order of gigabytes depending on the input data size and the
batch size. The weight and bias data are in the order of
megabytes.

V. Simulation Settings

A. Device-level Settings

In a pre-processing, we evaluated the write energy
dissipation per an MTJ by SPICE simulation in a 65nm process
technology. The supply voltage VDD was assumed to be 1.2V.
All memory data was initialized to “0” in preprocessing. In
addition, we specified the distribution function for Tth

variations. We defined Tth as the threshold time for the
successful write operation to MTJ. If the write time is longer
than Tth, we assumed that data are successfully stored,
otherwise it fails. Among proposed distribution functions for
the write time of STT-MRAM, we chose the simplest model
[16] to use a normal distribution in our experiment. We
assumed that Tth varies in a normal distribution with the
average value of 8ns and the standard deviation σ of 3ns.

It is also important to set candidates of long and short write
times. TL is defined as the long write time for Group L and TR
is defined as the short write time for Group R. Fig. 5 shows the
error rate of an STT-MRAM as a function of the write time.
The error rate is 0.004% when it is set to 15ns. By considering
recent MRAM papers [17-18], we assume that an MRAM is
made to operate at the clock frequency of 200MHz. Since the
clock cycle time is 5ns, we control TL and TR in multiples of
5ns. TL requires 20ns as reported in [13] to maintain lower
error rates for higher bits in data. In addition, because the error
rate of 15ns is very close to that of 20ns (Fig. 5), we omitted
15ns for the candidate of TR. Therefore, we chose 20ns for TL
and [10ns, 5ns, 0ns (No write)] for TR.

Fig. 5 Write time vs. error rate of an STT-MRAM

B. System-level Settings and Application Benchmarks

We employed TensorFlow to perform DNN applications.
TABLE II summarizes the application benchmarks of image
recognition that we used in this paper. We prepared 60,000
training data and 10,000 test data at every benchmark. The
total epoch count was set to 20 and the batch size was set to
128. We simulated the system on an Intel i9-10900K CPU and
two Nvidia GeForce RTX 2080 Super GPUs (linked by
Scalable Link Interface) with the Ubuntu 20.04 LTS Operating
Systems.

The flow of approximate storing is the following: (i) we get
the weight and bias data of the model for each epoch, (ii) the
data are decomposed into bit data, (iii) the success or failure of
the store are determined based on the write time and BSP
settings, (iv) writing back the weight and bias data to the model.
We built this flow into the TensorFlow processes and
performed it on every epoch.

In addition, our target is on-chip learning. We require a data
format with low energy even if we ignore some accuracy
degradation. Because of this, we set FP type to BF16 when
getting weight and bias data in the simulation. Therefore, the
fraction part has 7 bits (Nf = 7 bits).

TABLE II Application Benchmarks

Network Type Layers Dataset Params*

Multi-layer Perceptron (MP) 3** MNIST 118K
CNN 4*** CIFAR-10 122K

MobileNetV2 (MN) [3, 19] 16**** Fashion-MNIST 719K
* Parameters include weights and biases

** The number of Fully Connected layers
*** The number of Convolutional layers
**** The number of Residual bottleneck layers [19]

VI. Results

A. BSP vs. Test Accuracy

Fig. 6 shows the test accuracy for BSP. The basic trend of
all network types is that the test accuracy becomes higher
when BSP gets closer to the MSB side (7) and that becomes
lower when BSP gets closer to the LSB side (0).

The accuracy shows a similar trend for Multi-layer
Perceptron (MP) and CNN. When TR = 0ns (blue dots) and 5ns
(green square), the accuracy of MP and CNN at BSP = 6 or 7
is decreased. Meanwhile, those of MobileNetV2 (MN) is
different. When TR = 0ns (blue dots) and 5ns (green square),
decreasing the accuracy occurs at BSP = 4 to 7. In addition,
when TR = 10ns (pink triangle), it occurs at BSP = 5 to 7.

Moving BSP to the MSB side and the fewer TR mean that
the low-precision bits are not accurately stored and truncated.
Therefore, for MP and CNN models, we have estimated that
the accuracy is maintained without writing correct data
because they have a common thing that they have fewer layers,
fewer parameters and a simple model structure. In contrast,
MN model, which has a lot of parameters and a complex

0%
20%
40%
60%
80%

100%

0 2 4 6 8 10 12 14 16 18 20

Er
ro

r R
at

e

Write time [ns]

- 210 -

structure, seems to be required the more precision. The LSB-
side bits require to be written precisely for complex network
types.

The dataset type is related to the range of the test accuracy.
Meanwhile, by comparing with MP and CNN, MNIST is a
simple dataset, but CIFAR-10 is a complex dataset. Hence, the
dataset type may not affect the trend of BSP. However, it
should be noted that the image size of datasets affects BSP
since the large image size leads to large parameters and a
complex model. In addition, it also should be noted that FP32
may be required for more complex network types and the large
size datasets.

(a) Multi-layer Perceptron (MP)

(b) CNN

(c) MobileNetV2 (MN)

Fig. 6 BSP vs. test accuracy for each network

B. Epoch vs. Test Accuracy

Fig. 7 shows the test accuracy of each epoch. In MP and
CNN, the accuracy has improved with progression of epochs
and has been converged. In addition, the accuracy is affected
by BSP and TR and decreases from the original (i.e. writing all
bits with 20ns) in particular when BSP gets closer to the MSB

and TR gets closer to 0. In contrast, the accuracy of MN when
BSP = 4 and TR = 0ns or 5ns moves up and down and does not
converge. Complex models require the carefully settings of
BSP and the write time.

We tried the simulation to investigate whether toggling
on/off of the approximate storing by epochs could further
improve energy efficiency. However, it did not lead to
improvements in the write energy.

(a) Multi-layer Perceptron (MP)

(b) CNN

(c) MobileNetV2 (MN)

Fig. 7 Epoch vs. test accuracy for each network

C. Energy Dissipation

 TABLE III shows BSP and the write time to minimize the
write energy in BF16 and Fig. 8. shows the total write energy
when using BF16. The described energy is normalized to the
case with no approximation. Accuracy Constraints is defined
the difference of the test accuracy from no approximation.
 Across all benchmarks, the proposed approach achieves
total energy benefits ranging from 9%-38% for virtually no
loss (< 0.5%) in the test accuracy. When the accuracy

0.97

0.972

0.974

0.976

0.978

0.98

0.982

7 6 5 4 3 3 1 0

Te
st

 A
cc

ur
ac

y

BSP

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

7 6 5 4 3 3 1 0

Te
st

 A
cc

ur
ac

y

BSP

0

0.2

0.4

0.6

0.8

1

7 6 5 4 3 3 1 0

Te
st

 A
cc

ur
ac

y

BSP

0.94

0.95

0.96

0.97

0.98

0.99

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Te
st

 A
cc

.

Epoch

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Te
st

 A
cc

.

Epoch

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Te
st

 A
cc

.

Epoch

- 211 -

constraints are relaxed to < 2.5% and < 7.5%, the energy
benefits further increase to 13%-44% and 19%-44%
respectively. The proposed approach achieves 21-86% write
energy reduction in only the fraction part for virtually no loss
(< 0.5%).
 The majority of settings for energy minimization are TR =
0ns. Meanwhile, to achieve accuracy constrains < 0.5% in MN,
we require to set BSP = 2 and TR = 5ns. We found that some
low-precision bit writing is necessary for complex models.

TABLE III BSP and Write Time for Energy Minimization

Type MP CNN MN
Acc.

Const.* <0.5% <2.5% <7.5% <0.5% <2.5% <7.5% <0.5% <2.5% <7.5%

BSP 6 7 7 5 6 7 2 2 3
TR (ns) 0 0 0 0 0 0 5 0 0

Fig. 8 Minimum Write Energy on BF16

VII. Conclusions and Future Works

For on-chip DNN learning, MTJ-based NVM systems

are a promising component on future edge devices.
However, MTJ-based NVM has a problem that the write
energy is high. Therefore, we proposed an energy efficient
approximate storing approach to reduce the write energy of
NVM. We used the concept of precision scaling for the
floating-point fraction part and applied it when writing weights
and biases to NVM in the DNN learning tasks. We clarify that
a lot of write energy can be reduced maintaining the test
accuracy by applying the appropriate settings to each network
type. As the future work, we will make an actual chip
implementation of this system. In addition, we will investigate
the advantage of preparing more than 2 BSPs, which could
lead to further improvement in energy dissipation.

Acknowledgements

 This work was supported by SIT Research Center for Green
Innovation.
 This work was also supported by VLSI Design and
Education Center (VDEC), the University of Tokyo with the
collaboration with SYNOPSYS Corporation.

References

[1] J. Lee, et al., "LNPU: A 25.3TFLOPS/W Sparse Deep-Neural-

Network Learning Processor with Fine-Grained Mixed Precision of
FP8-FP16", ISSCC 2019, pp. 142-144, Feb. 2019.

[2] J. Park, et al., "A 65nm 236.5nJ/Classification Neuromorphic
Processor with 7.5% Energy Overhead On-Chip Learning Using
Direct Spike-Only Feedback", ISSCC 2019, pp. 140-142, Feb. 2019.

[3] Z. Yuan, et al., "A 65nm 24.7µJ/Frame 12.3mW Activation-
Similarity-Aware Convolutional Neural Network Video Processor
Using Hybrid Precision, Inter-Frame Data Reuse and Mixed-Bit-
Width Difference-Frame Data Codec", ISSCC 2020, pp. 232-234,
Feb. 2020.

[4] L. Torres, et al., “Trends on the application of emerging nonvolatile
memory to processors and programmable devices”, ISCAS 2013, pp.
101-104, Aug. 2013.

[5] D. Chabi, et al., “Ultra low power magnetic flip-flop based on
checkpointing/power gating and self-enable mechanisms”, IEEE
Trans. on Circ. and Sys., Vol. 61, No. 6, pp.1755-1765, Jun. 2014.

[6] C. Chen, et al., "Exploiting approximate computing for deep learning
acceleration," DATE 2018, pp. 821-826, Mar. 2018.

[7] M. Masadeh, et al., "Using Machine Learning for Quality
Configurable Approximate Computing," DATE 2019, pp. 1575-
1578, May 2019.

[8] M. A. Breuer, “Multi-media applications and imprecise
computation”, 8th Euromicro Conference on Digital System Design
(DSD’05), pp. 2-7, Sep. 2005.

[9] K. Cho, et al., "eDRAM-based Tiered-Reliability Memory with
applications to low-power frame buffers", ISLPED 2014, pp. 333-
338, Aug. 2014.

[10] N. Burgess, et al., "Bfloat16 Processing for Neural Networks",
ARITH 2019, pp. 88-91, Jun. 2019.

[11] G. Henry, et al., "Leveraging the bfloat16 Artificial Intelligence
Datatype For Higher-Precision Computations", ARITH 2019, pp.
69-76, Jun. 2019.

[12] A. Ranjan, et al., “Approximate storage for energy efficient
spintronic memories”, DAC 2015, June 2015.

[13] Y. Ono, et al., “Energy Efficient Approximate Storing of Image Data
for MTJ Based Non-volatile Memory”, NVMSA 2020, Aug. 2020.

[14] K. Usami, et al., "Energy Efficient Write Verify and Retry Scheme
for MTJ Based Flip-Flop and Application", NVMSA 2018, pp. 91-
98, Aug. 2018.

[15] K. Lee, et al., "1Gbit High Density Embedded STT-MRAM in 28nm
FDSOI Technology", IEDM 2019, pp. 2.2.1-2.2.4, Dec. 2019.

[16] Y. Zhang, et al., "Electrical modeling of stochastic spin transfer
torque writing in magnetic tunnel junctions for memory and logic
applications", IEEE Trans. Magn., vol. 49, no. 7, pp. 4375–4378, Jul.
2013.

[17] M. Natsui, et al., "An FPGA-Accelerated Fully Nonvolatile
Microcontroller Unit for Sensor-Node Applications in 40nm
CMOS/MTJ-Hybrid Technology Achieving 47.14μW Operation at
200MHz", ISSCC 2019, pp. 202-204, Feb. 2019.

[18] Y. Chih, et al., "A 22nm 32Mb Embedded STT-MRAM with 10ns
Read Speed, 1M Cycle Write Endurance, 10 Years Retention at
150°C and High Immunity to Magnetic Field Interference", ISSCC
2020, pp. 222-224, Feb. 2020.

[19] M. Sandler, et al., "MobileNetV2: Inverted Residuals and Linear
Bottlenecks", CVPR 2018, pp. 4510-4520, Jun. 2018.

0

0.2

0.4

0.6

0.8

1

O
rig

.

<0
.5

%

<2
.5

%

<7
.5

%

O
rig

.

<0
.5

%

<2
.5

%

<7
.5

%

O
rig

.

<0
.5

%

<2
.5

%

<7
.5

%

MP CNN MN

N
or

m
. W

rit
e

E
ne

rg
y

Acc. Const. / Network Type

Sign Exponent Fraction

- 212 -

