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Abstract— In this paper, we propose interface cir-

cuits between synchronous-asynchronous modules us-

ing Click Elements. Click Elements are used to con-

trol the asynchronous parts in the proposed interface

circuits. In the experiment, compared with the in-

terface circuit based on the two-flop synchronizer, the

proposed interface circuits could reduce the latency

and handshake overhead by up to 4.9 cycles and 17.0

cycles.

I. Introduction

Recently, most of the digital systems are based on the
concept of System-on-a-Chip (SoC). SoCs are composed
of microprocessors, memories, specific circuits, and so on.
These circuits are often controlled by different clock sig-
nals. Therefore, synchronizers are required to reduce the
metastability problem.
To solve the metastability problem, Globally Asyn-

chronous Locally Synchronous (GALS) was proposed in
[1]. GALS systems are composed of several local syn-
chronous modules. Each module is controlled by an inde-
pendent clock signal and communicated with other mod-
ules asynchronously. To satisfy the asynchronous commu-
nication, interface circuits are required between different
synchronous modules. As the interface circuits for dif-
ferent synchronous modules, a two-flop synchronizer [2],
an interface circuit using a pausible clock [3], an inter-
face circuit using a clock gating [4], and a FIFO [5] were
proposed.
Asynchronous circuits may be used to reduce the power

consumption of synchronous modules. Asynchronous cir-
cuits are potentially low power consumption because cir-
cuit components are controlled by local handshake signals
instead of global clock signals. Similar to the communi-
cation of different synchronous modules, interface circuits
are required between synchronous-asynchronous modules
when asynchronous circuits are communicated with syn-
chronous circuits.
To transfer data between synchronous-asynchronous

modules, various interface circuits were proposed in [6,
7, 8, 9, 10, 11, 12]. In [6, 7, 8, 9, 10], FIFOs were used
to transfer data between synchronous-asynchronous mod-
ules to achieve high throughput. Usually, control cir-
cuits of the FIFOs are complex because the decision of
memory addresses and the generation of read/write sig-
nals are required. In [11], communication registers based

on handshake signals were used to support the coherent
communication of multi-bit data between synchronous-
asynchronous modules. However, the timing for writing
data to the registers is not guaranteed because there is
only a read/write clock signal as an input signal from
synchronous modules. In [12], an interface circuit based
on the two-flop synchronizer was used to transfer data
between synchronous-asynchronous modules. However,
data could not be transferred through only the inter-
face circuit because protocol converters are required when
start and end signals are used for asynchronous con-
trollers.
In this paper, we propose interface circuits between

synchronous-asynchronous modules using Click Elements
[13]. The proposed interface circuits are based on hand-
shake protocols. The proposed interface circuits use a
four-phase handshake protocol to control the synchronous
part. In contrast, the proposed interface circuits use
a two-phase handshake protocol to control the asyn-
chronous part. The control of the synchronous parts is
based on a two-flop synchronizer [2] while the control of
the asynchronous parts is based on a Click Element.
The rest of this paper is organized as follows. Section

II describes Click Elements. Section III describes the pro-
posed interface circuits. Section IV describes the experi-
mental results. Finally, section V describes the conclusion
and future work.

II. Click Elements

Click Element [13] is one of the control templates used
in the design of asynchronous circuits with bundled-data
implementation. In bundled-data implementation, N bit
signals are represented by N + 2 signals. Additional two
signals correspond to local handshake signals; the request
signal req and the acknowledgment signal ack. The tim-
ing for writing data to registers is guaranteed by delay
elements on req.
Click Elements are implemented as a data-driven two-

phase handshake protocol. In the two-phase handshake
protocol, only two signal transitions (rising transitions of
req and ack or falling transitions of req and ack) are used
to transfer data. In contrast, in the four-phase hand-
shake protocol, four signal transitions (rising transition
of req, rising transition of ack, falling transition of req,
and falling transition of ack) are used to transfer data.
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Fig. 1. Asynchronous circuits with bundled-data implementation
using Click Elements.

The two-phase handshake protocol is generally low la-
tency compared with the four-phase handshake protocol.
In addition, Click Elements can transfer control and data
at the same time.
Figure 1 represents the circuit model of asynchronous

circuits with bundled-data implementation using Click El-
ements. This circuit model consists of a data-path circuit
and a control circuit. The data-path circuit is almost the
same as the one used in synchronous circuits. The con-
trol circuit consists of control modules ctrli (0≤i≤n− 1)
assigned for each pipeline stage stagei.
ctrli consists of a Click Element, a delay element sdi

to satisfy the setup constraint of registers, and a delay
element hdi to satisfy the hold constraint of registers. The
Click Element consists of a D Flip-Flop (DFF) DFFi and
a logic to generate a local clock signal lclki.
ctrli starts its operation when a rising or falling transi-

tion of reqi arrives at ctrli. The rising transition of reqi
generates a rising transition of lclki through sdi. Then,
lclki controls DFFi in ctrli and registers regk in the data-
path circuit. Finally, DFFi generates a rising transition
of acki to pass the control to ctrli+1. In addition, the ris-
ing transition of acki arrives at ctrli−1 through hdi to ac-
knowledge that the operation of ctrli is completed. Note
that the behavior of ctrli for the falling transition of reqi
is the same as the behavior of ctrli for the rising transition
of reqi.
Global Cycle Time. In this paper, we define a local

cycle time (lct) and a global cycle time (gct) to evalu-
ate the performance of asynchronous circuits. lcti is the
maximum delay of control-paths for stagei while gct is
the maximum value of lcti.
Figure 2 represents paths related to lcti. lcti and gct

can be obtained by the following equations.

lcti = max(tmaxcpi,0 − tmaxdpi,0 ,

· · · , tmaxcpi,m−1
− tmaxdpi,m−1

)
(1)

gct = max(lst0, · · · , lstn−1) (2)

Fig. 2. Paths related to a local cycle time.

p (0≤p≤m−1) represents the identifier of paths. tmaxcpi,p

represents the maximum delay of a path cpi,p from lclki−1

to the destination register. tmaxdpi,p represents the maxi-
mum delay of a path dpi,p from lclki−1 to the source reg-
ister. lcti is the largest value of tmaxcpi,p

minus tmaxdpi,p
.

gct is the maximum value of lcti.

III. Proposed Interface Circuits

In this paper, we propose interface circuits between
synchronous-asynchronous modules using Click Elements.
We assume that synchronous modules are controlled by
clock signals while asynchronous modules are controlled
by local handshake signals.

We propose two interface circuits based on handshake
protocols. One is the StoA circuit to transfer data from
the synchronous module to the asynchronous module.
Another is the AtoS circuit to transfer data from the
asynchronous module to the synchronous module.

StoA and AtoS circuits consist of a synchronous part
and an asynchronous part. StoA and AtoS circuits use
the two-flop synchronizer to control the synchronous part
because the two-flop synchronizer can reduce the metasta-
bility problem with a simple circuit structure when data
are transferred between different timing modules. In con-
trast, StoA and AtoS circuits use the Click Element to
control the asynchronous part because the Click Element
is also a simple structure that can transfer control and
data at the same time.

Figure 3 represents the overview of StoA and AtoS cir-
cuits. LS and LA represent a local synchronous module
and a local asynchronous module, respectively. For LS
(LA), Sreq (Areq) and Sack (Aack) represent a request
signal and an acknowledgment signal, respectively. StoA
and AtoS circuits transfer data between different timing
modules using these signals.
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Fig. 3. Overview of the proposed interface circuits: (a) StoA
circuit to transfer data from a synchronous module to an
asynchronous module and (b) AtoS circuit to transfer data from
an asynchronous module to a synchronous module.

Fig. 4. Handshake protocols: (a) StoA circuit and (b) AtoS
circuit.

A. Handshake Protocols of the Proposed Interface Cir-
cuits

StoA and AtoS circuits use the four-phase handshake
protocol to control the synchronous part. In contrast,
StoA and AtoS circuits use the two-phase handshake pro-
tocol to control the asynchronous part. From here, we
represent a rising transition of a signal as signal+ and a
falling transition of a signal as signal−.

StoA and AtoS circuits transfer data between
synchronous-asynchronous modules like a pipeline circuit.
However, to guarantee the timing for writing data to regis-
ters, the writing data to the registers must be waited until
the acknowledgment signal is returned to the sender.

Figure 4(a) represents the handshake protocol for StoA
circuit. First, LS sends DATA with Sreq+ to StoA cir-
cuit. Next, the synchronous part of StoA circuit sends
DATA with a request signal R+ to the asynchronous part
of StoA circuit. Then, the asynchronous part of StoA
circuit sends DATA with Areq+ to LA. In addition, the
asynchronous part of StoA circuit sends A+ to the syn-
chronous part of StoA circuit. Finally, the synchronous
part of StoA circuit sends Sack−. After receiving Sack−,
LS can send the next DATA with Sreq+ to StoA circuit.
Note that the behavior of StoA circuit for R− is the same
as the behavior of StoA circuit for R+.

Figure 4(b) represents the handshake protocol for AtoS
circuit. The handshake protocol is similar to the hand-
shake protocol of StoA circuit. On the other hand, to
guarantee the timing for writing data to registers, the
synchronous part of AtoS circuit sends A+ to the asyn-
chronous part of AtoS circuit after the synchronous part
of AtoS circuit is received Sack+ from LS.

Fig. 5. Proposed interface circuits: (a) circut model of StoA
circuit, (b) FSM of StoA circuit, (c) circut model of AtoS circuit,
and (d) FSM of AtoS circuit.

B. Circuit Models

StoA and AtoS circuits use the two-flop synchronizer
for the synchronous part. In contrast, StoA and AtoS
circuits use the Click Element for the asynchronous part.

Figure 5(a) represents the circuit model of StoA cir-
cuit. The synchronous part of StoA circuit consists of
a finite state machine (FSM) Sfsm, a register Sreg, a
two-flop synchronizer (A1 and A2), an XOR gate, and a
multiplexer. Figure 5(b) represents the state transition
graph of Sfsm. Sfsm generates R+ (R−) after receiv-
ing Sreq+ (Sreq−) from LS. We use the two-flop syn-
chronizer to receive A+ (A−) which is an asynchronous
input. In addition, we use the XOR gate and multiplexer
to distinguish the generation of Sack+ from Sreq+ and
the generation of Sack− from A+ (A−). On the other
hand, the asynchronous part of StoA circuit consists of
ctrli based on the Click Element and a register Areg. In
the asynchronous part of StoA circuit, any synchronizer
is not required for the request signal R because the timing
for writing data to Areg is guaranteed by sdi.

Figure 5(c) represents the circuit model of AtoS circuit.
The synchronous part of AtoS circuit is almost the same
as the one used in StoA circuit. In the state transition
graph of Sfsm as shown in Fig. 5(d), Sfsm generates
A+ (A−) from Sack+ to guarantee the timing for writing
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Fig. 6. Paths related to setup constraints for registers: (a) in the
asynchronous part of StoA circuit and (b) in the synchronous part
of AtoS circuit.

data to Sreg. In addition, we use a DFF and an XOR gate
to generate an enable signal of Sreg because R is a two-
phase handshake protocol. In contrast, the asynchronous
part of AtoS circuit is the same as the one used in StoA
circuit.

C. Timing Constraints

In StoA and AtoS circuits, it is necessary to satisfy
setup and hold constraints for the internal registers of
StoA and AtoS circuits to operate the circuits correctly.
Note that we assume that the clock cycle time (CT ) of
the synchronous part and gct of the asynchronous part
are fixed.
There are setup and hold constraints for each regis-

ter in StoA and AtoS circuits. The setup and hold con-
straints for Sreg in the synchronous part of StoA circuit
can be guaranteed by satisfying the traditional setup and
hold constraints used in the design of synchronous cir-
cuits. Similarly, the setup and hold constraints for Areg
in the asynchronous part of AtoS circuit is guaranteed
by satisfying the setup and hold constraints used in the
design of asynchronous circuits in [14]. In this paper, we
define the setup and hold constraints for Areg (Sreg) in
the asynchronous (synchronous) part of StoA (AtoS) cir-
cuit.
Setup Constraints. The input data for Areg (Sreg)

in the asynchronous (synchronous) part of StoA (AtoS)
circuit must be stable before the setup time to write the
input data to the registers. This is called the setup con-
straint for Areg (Sreg).
Figure 6(a) represents paths related to the setup con-

straint for Areg in the asynchronous part of StoA circuit.
sdpi,p (sdp0,0) represents a data-path from the clock signal
to the destination register Areg through the source regis-
ter Sreg. In contrast, scpi,p (scp0,0) represents a control-

Fig. 7. Paths related to hold constraints for registers: (a) in the
asynchronous part of StoA circuit and (b) in the synchronous part
of AtoS circuit.

path from the clock signal to Areg through ctrl0. We
define the maximum delay of sdpi,p as tmaxsdpi,p , the mini-
mum delay of scpi,p as tminscpi,p

, the margin for tmaxsdpi,p

as tsdpmi,p
, and the setup time of Areg as tsetupi,p

. The
setup constraint can be represented by the following in-
equality.

tminscpi,p
> tmaxsdpi,p

+ tsdpmi,p
+ tsetupi,p

(3)

If the setup constraint is violated, we must adjust the
number of cells for sdi (sd0).
Figure 6(b) represents paths related to the setup con-

straint for Sreg in the synchronous part of AtoS circuit.
This setup constraint is similar to the inequality (3). How-
ever, we consider the number of cycles (num) of the path
from R1 to Sreg because the path delay from R1 to Sreg
depends on CT . Therefore, the minimum delay of scpi,p
is the minimum delay of scpi,p except for the path from
R1 to Sreg. The setup constraint can be represented by
the following inequality.

tminscpi,p
+CT×num > tmaxsdpi,p

+tsdpmi,p
+tsetupi,p

(4)

If the setup constraint is violated, we must adjust the
number of cells for sdi (sd1).
Hold Constraints. The data must be stable for the

hold time after the next input data are written to Areg
(Sreg) in the asynchronous (synchronous) part of StoA
(AtoS) circuit. This is called the hold constraint for Areg
(Sreg).
Figure 7(a) represents paths related to the hold con-

straint for Areg in the asynchronous part of StoA cir-
cuit. hdpi,p (hdp0,0) represents a data-path from lclki to
the destination register Areg through the source register
Sreg. In hdpi,p, we consider the number of cycles (num)
of the path from A1 to Sreg. In cotrast, hcpi,p (hcp0,0)
represents a control-path from lclki to Areg. We define
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the minimum delay of hdpi,p except for the path delay
from A1 to Sreg as tminhdpi,p , the maximum delay of
hcpi,p as tmaxhcpi,p

, the margin for tmaxhcpi,p
as thcpmi,p

,
the hold time of Areg as tholdi,p

. The hold constraint can
be represented by the following inequality.

tminhdpi,p
+CT×num > tmaxhcpi,p

+thcpmi,p
+tholdi,p

(5)

If the hold constraint is violated, we must adjust the num-
ber of cells for hdi (hd0).
Figure 7(b) represents paths related to the hold con-

straint for Sreg in the synchronous part of AtoS circuit.
This hold constraint is the same as the inequality (5).

IV. Experimental Results

In the experiment, we verify the functional correctness
of the proposed interface circuits. In addition, we evalu-
ate the latency and handshake overhead of the proposed
interface circuits. The latency represents the number of
cycles until the receiver receives the data after the sender
sends the data to the receiver. The handshake overhead
represents the number of cycles until the sender can send
the next data to the receiver.
First, by referring to the design flow of asynchronous

circuits for commercial Field Programmable Gate Arrays
(FPGAs) in [14], we synthesized the proposed interface
circuits using Quartus Prime 21.1. The target device was
EP4CE115F29C7 (Cyclone IV E). For the synchronous
part, we used clock constraints to satisfy the target CT .
For the asynchronous part, we used maximum delay con-
straints for control-paths and local clock constraints for
lclki to satisfy the target gct. CT and gct were 10 ns, 20
ns, and 30 ns. In addition, we used Design Partitions and
LogicLocks for asynchronous control modules and delay
elements to reduce the number of delay adjustments by
fixing the placement of them.
As a reference, we prepared the extended interface cir-

cuit (StoS circuit) based on the two-flop synchronizer [2]
as shown in Fig. 8. The interface circuit is based on the
four-phase handshake protocol. The sender sends DATA
with R to the receiver. Then, the receiver sends A to the
sender.
To verify the functional correctness of the proposed in-

terface circuits, we performed a gate-level (GL) simulation
using Questa 2021.1 for the synthesized interface circuits.
In the GL simulation, the voltage and the temperature
were set to 1.2 V and 85°. We think that the GL simula-
tion is comprehensive enough for the evaluation because
we synthesized the interface circuits to satisfy the timing
constraints by a delay adjustment based on Static Timing
Analysis (STA) results. We prepared test patterns for the
simulation by giving arbitrary values. After the simula-
tion, we confirmed that all output data of the proposed
interface circuits were the same as the input data from
the sender.
Figure 9(a), (b), and (c) represent the waveforms of

StoS circuit, StoA circuit, and AtoS circuit, respectively.
CT was 10 ns and gct was 20 ns. Red arrows represent the

Fig. 8. Extended interface circuit based on [2].

Fig. 9. Waveforms: (a) StoS circuit, (b) StoA circuit, and (c)
AtoS circuit.

behavior of the latency of the interface circuits. Blue ar-
rows represent the behavior of the handshake overhead of
the interface circuits. In all circuits, we confirmed that 32-
bit data were sent with Sreq1 (Sreq or Areq) and 32-bit
data were received with Sreq2 (Areq or Sreq) correctly.
Table I represents the latencies and handshake over-

heads of the proposed interface circuits. SCT (Sgct),
RCT (Rgct), Name, Latency, and Overhead represent
CT (gct) of the sender, CT (gct) of the receiver, interface
circuits, latencies, and handshake overheads, respectively.
The latency and handshake overhead were obtained from
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TABLE I
Latencies and handshake overheads of the interface

circuits．
SCT (Sgct) RCT (Rgct) Name Latency Overhead

StoS 5.0 14.0
10.0 StoA 3.1 5.0

AtoS 4.0 5.1
StoS 7.5 16.0

10.0 20.0 StoA 5.2 6.0
AtoS 7.5 10.1
StoS 12.0 24.0

30.0 StoA 7.1 7.0
AtoS 12.0 15.1
StoS 2.8 10.0

10.0 StoA 2.1 4.0
AtoS 2.8 2.5
StoS 5.0 14.0

20.0 20.0 StoA 3.1 5.0
AtoS 5.0 5.1
StoS 6.8 15.0

30.0 StoA 4.1 5.0
AtoS 6.8 7.6
StoS 2.4 10.0

10.0 StoA 1.8 4.0
AtoS 2.4 1.7
StoS 3.5 10.0

30.0 20.0 StoA 2.4 4.0
AtoS 3.5 3.4
StoS 5.0 14.0

30.0 StoA 3.1 5.0
AtoS 5.0 5.0

the GL simulation.
Table I represents that the latency of the proposed in-

terface circuits depends on the cycle time of the receiver.
Compared with StoS circuit, StoA circuit could reduce
the latency by up to 4.9 cycles because the asynchronous
part of StoA circuit did not use the synchronizers. In
contrast, compared with StoS circuit, AtoS circuit did
not have a significant impact on the latency because the
synchronous part of AtoS circuit used the two-flop syn-
chronizer.
In addition, the proposed interface circuits could reduce

the handshake overhead by up to 17.0 cycles compared
with StoS circuit. This reduction comes from two fac-
tors. One is that the asynchronous part used only two
signal transitions for each data transfer because it uses
the two-phase handshake protocol. Another is that the
asynchronous part reduced two cycles because it did not
use the two-flop synchronizer.
On the other hand, AtoS circuit could reduce the hand-

shake overhead compared with StoA circuit if the cycle
time of the receiver was smaller than the cycle time of
the sender. This is because the synchronous part of AtoS
circuit completes the signal transitions for the four-phase
handshake protocol in a short cycle time.

V. Conclusion

In this paper, we proposed interface circuits between
synchronous-asynchronous modules using Click Elements.
In the experiment, the proposed interface circuits could
reduce the latency and handshake overhead by up to 4.9

cycles and 17.0 cycles compared with the interface circuit
based on the two-flop synchronizer. As our future work,
we are going to evaluate the proposed interface circuits
for the connection of processors and accelerators. In ad-
dition, we are going to compare the proposed interface
circuits and other interface circuits between synchronous-
asynchronous modules.
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