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Abstract—In this work, we propose a system to construct the
trajectory of punch for boxers. This system can plot trajectories
of three kinds of punches including straight punch, hook, and
uppercut via a single IMU sensor. A quaternion-based approach
is utilized to identify rotations on collected data in three-
dimensional space. Furthermore, we apply ellipsoid fitting as
our calibration method to remove the built-in offsets inside the
IMU sensor effectively. The experimental results show that the
proposed system achieves reliable trajectories compared to the
professional motion capture product, VICON Motion Systems.
The root mean square error (RMSE) of trajectory in straight
punch, hook, and uppercut are 0.041m, 0.078m, and 0.117m,
respectively.

I. INTRODUCTION
In recent years, sport performance monitoring is becoming

increasingly important for athletes. One of the focuses in
sport performance monitoring is motion analysis. Correct and
smooth movements lead athletes to achieve better results.
Traditionally, a camera-based motion analysis system, such as
VICON Motion Systems [20], is utilized to capture trajectories
for different kinds of sports, which allows athletes to recognize
their motions instantaneously. Furthermore, when coaches
want to adjust the posture of players, they have evidence based
on the real-time trajectories.

With such precise motion capture systems, we obtain accu-
rate 3D trajectory of any movements. However these systems
have some drawbacks. First, they suffer from environmental
restrictions, such as a spacious room, and setup angles of
multiple cameras. Second, they require pre-calibration and
post-processing, which is time-consuming, to obtain the final
trajectory result. Last, they are quite expensive. These draw-
backs restrict the motion capture systems to be popular in
sports.

An inertial measurement unit (IMU) is usually composed of
an accelerometer, a gyroscope, and a magnetometer. People
mostly use these portable devices for gait analysis [4] [11]
[12] [17], activity classification [6] [10] [14] [15] [17] [18]
[19], rehabilitation monitoring [2] [7], etc. Moreover, due to
IMU sensors’ compact size and low cost, they have gained
widespread usage in sport performance monitoring. Among
them, 3D trajectory construction is a significant component
in sport performance monitoring. In fact, there have been
some works about the construction of trajectory with the
aid of IMU sensors [1] [3] [5] [9] [16]. In [5], the authors
introduced a deep learning model to estimate the lower limbs’
trajectory while the person is walking. In [9], an algorithm
was developed to construct the handwriting trajectory using a
single IMU sensor. In [3], a study was proposed to obtain a
trajectory of people walking in indoor environment by a deep
neural network framework.

By reading the trajectories of the movements, athletes can
have a better understanding of the fluency of their movements.
Additionally, it is easier for coaches to give guidance on
movements and modify the details of movements when nec-
essary. Hence, there are some studies about the 3D trajectory
construction of different sports, which are more related to our

work. In [1] and [16], the authors proposed to calculate the
swing trajectory in golf and kicking trajectory in soccer with
the data collected from IMU sensors. Both of these studies
[1] [16] utilized quaternion techniques to calculate rotations
in the space.

Compared to the aforementioned sports of golf [1] and
soccer [16], boxing is a relatively fast-paced sport. Every
sequence of punches happens in a short period of time at high
speed. As a result, unlike the two studies mentioned above,
when plotting the trajectories of punches, we need to first
segment the collected data. Once the data is segmented into
individual punch, we can then proceed with the construction
of trajectories. On the contrary, the reason why [1] [16] do not
require data segmentation is that they do not involve continu-
ous high-speed movements. Therefore, they can directly plot
the trajectories without cumulative errors. Another difference
in plotting trajectories of punches is that the range of motion
is relatively small such that we cannot tolerate significant
errors. To address this issue, we propose to employ different
calibration methods on the accelerometer and gyroscope to
remove the IMU sensor’s offsets and noises effectively.

In this paper, we take boxing as the target sport, and
propose a motion-tracking algorithm using accelerometer and
gyroscope data. Our goal is to construct a precise trajectory
while throwing punches. We aim to achieve similar results as a
professional motion camera system, VICON Motion Systems
[20], using just one IMU sensor.

The remainder of the paper is structured as follows. We
introduce the IMU sensor we used and the background of
quaternion in Section II. In Section III, we present the pro-
posed approach. In Section IV, the experimental results are
presented. Finally, we conclude this work in Section V.

II. PRELIMINARIES

A. IMU Sensor
We develop a motion-tracking system with an IMU sen-

sor designed and developed by Sea Land Technology, Inc
[21]. The IMU sensor is comprised of several components,
including a tri-axis accelerometer, a tri-axis gyroscope, a tri-
axis magnetometer, a 3.3V lithium-ion battery, a wireless USB
receiver, and a Micro USB connector for charging. The sensor
is with dimensions of 20mm x 38mm x 8.5mm and weighs
approximately 5g. The sampling rate is 400 Hz, which means
400 data will be received in 1 second. Additionally, the IMU
sensor will be attached to one wrist of boxer for collecting
data.

B. Quaternion
Euler angle and quaternion are two frequently used methods

for calculating rotation in 3D space. Euler angle describes
a rotation by multiplying three rotation matrices together.
These rotation matrices are derived from the rotation angles
around the X, Y, and Z axis, respectively. However, it is
important to note that the order of multiplying these rotation
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matrices is crucial, and different orders will result in different
rotation effects. Although the Euler angle is easy to use, it
would encounter a problem called singularity, which loses one
dimension of rotation under a certain angle. In that case, we
cannot express the rotation we have achieved. Thus, in this
work, we use quaternion instead to express the rotation in 3D
space.

Quaternion q is a vector that contains one real number a
and three imaginary numbers bi, cj, dk, as shown in EQ(1),

q = a+ bi+ cj + dk (1)

where i2 = j2 = k2 = ijk = −1. The aforementioned
relationship is established in quaternion world. This is because
when an i, j, or k is multiplied, it represents a rotation in a
4D space. This relationship cannot be viewed directly with
the ordinary definition of imaginary number. Moreover, the
quaternion possesses its distinctive rules of multiplication, e.g.,
the multiplication of the quaternion’s imaginary units is non-
commutative, as expressed in EQ(2).

{
ij = k, ji = −k
jk = i, kj = −i
ki = j, ik = −j

(2)

Additionally, a quaternion q can be represented as EQ(3),

q = cos(
θ

2
) + sin(

θ

2
)u (3)

where it rotates θ◦ around the rotation axis, u-axis. We only
need one quaternion to achieve a rotation in 3D space. More-
over, when it comes to rotating the coordinate p = (px, py, pz)
in 3D space by θ◦ with the quaternion q, we can achieve the
rotation by using EQ(4),

p
′
= qpq̄ (4)

where p
′
= (p

′
x, p

′
y, p

′
z) represents the new coordinate after

the rotation, and q̄ is the conjugate of q.

III. PROPOSED APPROACH

In this section, we present our approach. We explain the
methods of collecting data, calibrating the IMU sensor, and
plotting the trajectories of punches. The considered punches
includes straight punch, hook, and uppercut.

A. Data Segmentation
This subsection discusses how we segment a sequence of

punches. When a boxer executes a sequence of punches, each
punch will be segmented with the corresponding trajectory. We
use several criteria to determine whether a boxer is moving or
not. Then, the data representing movement will be utilized to
plot the corresponding trajectory.

Here are several parameters that are used in this work. First,
we set a baseline threshold thresholdx for X-axis, defined as
EQ(5).

thresholdx =
1

400

400∑

j=1

αsteady
x (j) (5)

This parameter is used to determine whether the boxer is in
motion or not. To find this threshold, we place the IMU sensor
in a stationary state for one second, and average the collected
data. We take the data of the X-axis as an example in EQ(5).
However, in fact, the acceleration data of the Y-axis and Z-
axis can be used as well. In that case, the threshold is set
as thresholdy and thresholdz , respectively. Next, the initial
difference diff1 refers to the difference between the first data
point ax(1) in a segment and the thresholdx. Then, diffi

represents the difference between the ith data point ax(i) in
a segment and the thresholdx.

diff1 = αx(1)− thresholdx (6)

diffi = αx(i)− thresholdx (7)

Last, we have Max, Min, and n, which refers to the
maximum, minimum value, and the number of data, in the
current segment, respectively.

Max = max{αx(i)|i = 1, ..., n} (8)

Min = min{αx(i)|i = 1, ..., n} (9)

With these defined parameters, we have three criteria to de-
termine whether the boxer’s hand is moving or not. According
to the preliminary experiments, the first criterion is set as that
the difference between diffi and diff1 is smaller than or
equal to 0.15g (1g is defined by 9.81 m/s2) as shown in
EQ(10).

|diffi − diff1| <= 0.15 (10)

The remaining two criteria are shown in EQ(11) and EQ(12).
We examine the differences between the ith data point and the
maximum or minimum value within the current segment.

|αx(i)−Max| <= 0.1 (11)

|αx(i)−Min| <= 0.1 (12)

When the above three criteria are met simultaneously for
60 times consecutively, the boxer is considered as not moving;
otherwise, he/she is moving. An example of data segmentation
is illustrated in Fig. 1. It segments a sequence of punchings
into four punches based on the criteria mentioned above. The
gray dashed lines indicate that the boxer is moving. On the
contrary, the black solid lines are determined as not moving.

B. Sensor Calibration
Every IMU sensor has built-in offsets due to different

processes of manufacturing. Hence, we need to calibrate the
IMU sensor after the data segmentation. The way to calibrate
a gyroscope is as follows: Each axis should read 0◦ when
the IMU sensor is not moving. However, we do not get such
ideal data because of built-in offset. This offset is obtained by
using EQ(13), i.e., we collect gyroscope data in a stationary
state for 10 seconds (400 data points) and average them as the
gyro offset of each axis i.

gyro offseti =
1

4000

4000∑
j=1

ωsteady
i (j) (13)

After having the offset in each axis i, we remove the offset
from the gyroscope raw data ωraw

i for obtaining the calibrated
gyroscope data ωcal

i , as shown in EQ(14).

ωcal
i = ωraw

i − gyro offseti (14)

Next, when it comes to the accelerometers, our calibration
method is different from the above. We applied Ellipsoid
Fitting [8] as a calibration method for the accelerometer.
According to Ellipsoid Fitting, the summation of the squares
of X, Y, and Z axis acceleration data should be equal to one
under a static state, expressed as EQ(15),

(
x− x0

Rx
)2 + (

y − y0
Ry

)2 + (
z − z0
Rz

)2 = 1 (15)

where x0, y0, and z0 represent the center point of the ellipsoid
and can be interpreted as offset. Furthermore, Rx, Ry , and
Rz represent the radii of the ellipsoid’s three axes and can be
viewed as scaling factors. EQ(15) means that acceleration data
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Fig. 1: The demonstration of data segmentation. The x-axis represents the data points collected during the period, and the
y-axis represents the value of collected data.

collected at different stationary positions will be projected on
an ellipse surface and form an ellipse sphere with a radius
of one. Since we know that offsets Oi and scaling factors Si
exist in each sensor, the calibration problem can be expressed
as EQ(16),

[
Xtrue
Ytrue
Ztrue

]
=

[
S0 S1 S2
S3 S4 S5
S6 S7 S8

][
Xraw
Yraw
Zraw

]
+

[
O0
O1
O2

]
(16)

where Xtrue, Ytrue, Ztrue represent the true acceleration
value and Xraw, Yraw, Zraw represent the raw data readings
collected by the IMU sensor.

Next, we have to find out these calibration parameters, i.e.,
scaling factors S0 ∼ S8, and offsets O0 ∼ O2. EQ(16) can
be written as EQ(17) by changing the order of the matrix
multiplication.

[Xtrue Ytrue Ztrue] = [Xraw Yraw Zraw 1]
[S0 S3 S6

S1 S4 S7
S2 S5 S8
O0 O1 O2

]

(17)
It will be more convenient to solve all these calibration pa-

rameters when they are in one matrix. Currently, this problem
can be reformulated as EQ(18),

R = a ·K (18)

where R is the matrix of true acceleration value, a is the
matrix of raw data collected by the sensor at its six different
stationary positions, and K is the matrix of 12 calibration
parameters that need to be determined.

We sequentially rotate the IMU sensor to six known sta-
tionary positions, as shown in Fig. 2.

At each position, ai will be collected from the IMU sensor,
expressed as EQ(19),

ai = [axi ayi azi 1], i = 1 ∼ 6 (19)

where ai is a 1x4 vector that represents the output readings of
the accelerometer in one position. At the same time, Ri, which
is a 1x3 vector, will be recorded as the true acceleration value
at a specific position. For example, if the sensor is placed as
Fig. 2(a), R will be recorded as EQ(20) due to the collection
of 1g of gravity along the Z-axis in that specific position.

R = [0 0 1] (20)

Fig. 2: The IMU sensor’s three-axis defined directions at
six different positions. The solid dot represents the positive
direction of axis is facing outward. Conversely, the crossed
dot indicates the positive direction of axis is facing inward.

After flipping the IMU sensor to all six positions, we
combine all six ai and Ri and have EQ(21).

R6×3 = a6×4 ·K4×3 (21)

Now, the desired calibration parameter matrix K can be
determined by EQ(22).

aT ·R = (aT · a) ·K
(aT · a)−1 · aT ·R = K

(22)

In the later experiments, we have to apply the calibration
on the raw acceleration data araw using the matrix K. Then,
we can get the calibrated acceleration data acal like EQ(17).
The equation is shown as EQ(23).

[
acalx acaly acalz

]
= [arawx arawy arawz 1] ·K (23)
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C. Verification on Calibration

After calibrating the IMU, we carry out another verification
step to ensure that the calibration is effective. We verify the
calibration of the gyroscope by integrating angular velocity
data under a known rotation angle. For example, we rotated
the IMU sensor for 180◦ on the X-axis. Then, we will integrate
uncalibrated and calibrated angular velocity on X-axis from
the gyroscope to obtain the rotation angles. According to
the comparison from the experimental results, our calibration
improves the preciseness, which will be shown in the experi-
mental results.

For the verification of calibrated accelerometer data, we
use the similar method mentioned above. We integrate the
uncalibrated and calibrated accelerometer values twice under a
known distance. For example, we slid the IMU sensor toward
+Y direction for 0.5m. Experimental result section will show
the effectiveness of this calibration as well.

D. Orientation Adjustment

In general, to obtain the trajectory of a moving object,
we just integrate the acceleration data collected from IMU
sensor twice to get the object’s displacement, and then com-
bine these displacements at every time point. However, the
punching trajectory cannot be calculated in this way. This
is because the punching trajectory will be affected by both
linear acceleration and angular acceleration in the raw data.
If we directly integrate the collected acceleration data twice,
the constructed trajectory might contain a significant error. In
fact, the coordinate system of the IMU sensor will change
as time goes on during the punching process. The collected
data will not be in the same coordinate system such that the
acceleration data cannot be integrated directly. Therefore, we
have to rotate the acceleration data to the same reference
coordinate system first. As mentioned in Section II.B, we use
quaternion to consider rotation in 3D space.

We update the quaternion at every time point as shown in
EQ(24),

qt = qt−1 + q̇ (24)

where quaternion at time t will be equal to quaternion at time
t-1 plus the delta of quaternion over this period of time. The
delta of the quaternion q̇ can be written as EQ(25).

q̇ =
1

2




0 −ωcal
x −ωcal

y −ωcal
z

ωcal
x 0 −ωcal

z −ωcal
y

ωcal
y −ωcal

z 0 ωcal
x

ωcal
z ωcal

y −ωcal
x 0


 · qt−1 (25)

In EQ(25), we utilize the calibrated gyroscope data ωcal
i to

compute the delta of the quaternion. After gaining quaternion
q at every time point, we can perform a rotation on calibrated
acceleration data acali to obtain the acceleration data after
rotation aroti . The purpose of the rotation is to make all
calibrated acceleration data acali into the same coordinate
system. EQ(26) describes how we rotate it,

aroti = q · acali · q̄ (26)

where acali is the calibrated acceleration data mentioned in
Section III.B and can be viewed as the original coordinate; q
is the quaternion at this moment, and q̄ denotes the conjugate
of q. Last, aroti represents the new coordinate after the rotation.
At this moment, we can confirm that all acceleration data are
in the same coordinate system.

Fig. 3: The flowchart of our proposed system.

E. Gravity Removal

When we place an IMU sensor on an ideally flat surface,
the acceleration data it collects should be (X, Y, Z) = (0, 0,
1) due to the gravity on the Z-axis. However, our IMU sensor
may not be placed on a perfectly flat surface in practice such
that the gravity contributes to the other axes. Since we need
to eliminate the influence of gravity, we propose a method
of gravity removal. We collect acceleration data in a steady
state for one second and subtract the mean of these 400
acceleration data from aroti to obtain acceleration data with
removing gravity aremi .

aremi = aroti − 1
400

∑400
j=1 a

steady
i (j) (27)

After completing this process, the acceleration data aremi
can be doubly integrated to obtain correct position information.

F. Overall Flow

The flowchart of the proposed system is shown in Fig. 3.
First, our IMU sensor is connected to the computer. Once
receiving the data from the IMU sensor, we divide the boxer’s
punchings into moving segments. Then, these moving segment
data are used to construct the trajectories. We calibrate the
acceleration and gyroscope data with different calibration
methods. Next, we rotate the acceleration data into the same
coordinate system via quaternion operations and remove the
influence of gravity. Last, we integrate the acceleration data
once with respect to time to get the velocity, and integrate
the velocity again for having the position information of the
trajectory. Furthermore, we upload the results into a database
for any further applications.

IV. EXPERIMENTAL RESULTS

In this section, we conduct three experiments and present
the results. The first experiment is to show the accuracy of
data segmentation. The second experiment is to demonstrate
the trajectories of three types of punches, including straight
punch, hook, and uppercut. The last experiment is to show
the effectiveness of calibration. The results are summarized in
TABLE I, TABLE II, and TABLE III, respectively.
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A. Data Segmentation
For the first experiment, we invited 5 participants to throw

any types of punches consecutively within a certain period
of time in 10 punching trials. Then, we count the number
of punches identified. We used a camera to record the whole
punching process such that the ground truth can be obtained by
examining the video. We use mean absolute percentage error
(MAPE) as a metric to evaluate the accuracy of data segmen-
tation. The MAPE is calculated as EQ(28) where c(i), c(g),
and n are the number of identified punches, ground truth, and
the number of participants, respectively. In TABLE I, it records
the punch counts in all 10 trials with the form of (c(i)/c(g))
from Column 2 to Column 11. The last column shows the
MAPE in data segmentation, which is 3.6%. According to
the experimental result, our approach can effectively segment
a sequence of punchings into punches.

MAPE =
1

n

n∑

j=1

|
c
(g)
j − c

(i)
j

c
(g)
j

| × 100% (28)

B. Trajectory
For the accuracy of trajectories, we tie the IMU sensor

and motion marker on the boxer’s wrist. The data collected
from the IMU sensor will be used to calculate the punching
trajectory by the proposed algorithm, and the motion marker
will be used with VICON Motion Systems to obtain mea-
surements as ground truth. We calculate the root mean square
error (RMSE) of the position of the punches. The RMSE is
calculated as EQ(29) where n, p(s), and p(v) are the number
of data point in one punch, the trajectory obtained by the
sensor in our approach, and by VICON Motion Systems,
respectively. According to TABLE II, the RMSE of the
straight punch, hook, and uppercut are shown in Column 2,
Column 3, and Column 4, respectively. The last row record
the average RMSE in straight punch, hook, and uppercut,
which is 0.041m, 0.078m, and 0.117m, respectively.

RMSE =

√∑n
i=1(p

(s)
i − p

(v)
i )2

n
(29)

Figs. 4(a), 4(b), 4(c) show 3D trajectories of straight punch,
hook, and uppercut, respectively. On the right-hand side of
the figures, two trajectories are plotted. The green solid line
represents the trajectory obtained by our approach while the
blue line is the ground truth obtained by the VICON Motion
Systems. Additionally, the red circle indicates the starting
point of the punches. To have a better illustration of the
trajectory results, Figs. 4(a), 4(b) can be viewed from a bird’s-
eye perspective, and Fig. 4(c) can be viewed from a side angle.
Furthermore, we provide a picture of a person on the left-hand
side of the figures demonstrating the corresponding punch.

C. Effectiveness of Calibration
As we mentioned in Section III.C, we integrated uncali-

brated and calibrated angular velocity once to check which
rotation angles is closer to 180◦. From the experimental
results, both rotation angles are very close to 180◦. Although
there is not a significant difference between two rotation
angles, there are improvements in RMSE when calculating
trajectories with the calibrated gyroscope data. In TABLE
III, the RMSE without gyroscope calibration and with gy-
roscope calibration are recorded from Column 2 to Column
4, and Column 8 to Column 10, respectively. According to
the experimental results, the average RMSE is lower when
gyroscope calibration is applied compared to that not applied,
which shows the effectiveness of gyroscope calibration.

(a)

(b)

(c)

Fig. 4: 3D trajectory of different punches. (a) Straight Punch.
(b) Hook. (c) Uppercut.

For the effectiveness of calibration in accelerometer, we
integrated uncalibrated and calibrated accelerometer data twice
to compare the distance of 0.5m. From the experimental
results, using uncalibrated accelerometer data yielded 0.37m,
while using calibrated accelerometer data yielded 0.48m. In
comparison, integrating calibrated accelerometer data twice
obtain a result closer to 0.5m, which shows the importance
of this calibration. Moreover, TABLE III shows the RMSE
without accelerometer calibration and with accelerometer cali-
bration from Column 5 to Column 7, and Column 8 to Column
10, respectively. According to the experimental results, the
average RMSE is lower when accelerometer calibration is
applied, which shows the effectiveness of accelerometer cali-
bration as well.

V. CONCLUSION

In this paper, we present an IMU-based system to construct
the trajectory of boxer’s punches. This system can be used for
sport performance monitoring. According to the experimental
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TABLE I: The MAPE in data segmentation.

Subject

Trial
1 2 3 4 5 6 7 8 9 10 Absolute Error Rate

of Punch Count

A 4/4 4/5 5/5 5/6 6/6 14/15 13/13 13/11 14/15 15/15 0.02
B 3/3 2/2 4/3 3/3 2/2 11/11 10/9 11/11 10/10 12/12 0.03
C 4/5 11/11 5/5 6/6 12/13 6/7 6/6 11/9 8/9 4/6 0.05
D 4/6 8/8 9/9 5/6 7/7 7/9 11/13 23/20 5/5 7/8 0.05
E 5/6 7/8 4/6 6/6 11/9 11/12 7/7 8/9 17/16 17/17 0.03

MAPE ––– 3.6%

TABLE II: The RMSE of trajectory in straight punch, hook, and uppercut.

Subject Straight Punch Hook Uppercut

A 0.030 0.067 0.097
B 0.039 0.095 0.117
C 0.023 0.076 0.089
D 0.064 0.082 0.134
E 0.053 0.071 0.148

Average 0.041 0.078 0.117

TABLE III: The RMSE of trajectory in straight punch, hook, and uppercut under different calibration conditions.

Subject Without Gyro Calibration Without Acc Calibration With Gyro & Acc Calibration
Straight
Punch Hook Uppercut Striaght

Punch Hook Uppercut Staight
Punch Hook Uppercut

A 0.037 0.083 0.124 0.048 0.112 0.151 0.030 0.067 0.097
B 0.044 0.108 0.142 0.053 0.139 0.196 0.039 0.095 0.117
C 0.031 0.085 0.103 0.050 0.119 0.176 0.023 0.076 0.089
D 0.051 0.099 0.156 0.088 0.146 0.203 0.064 0.082 0.134
E 0.055 0.087 0.167 0.091 0.154 0.258 0.053 0.071 0.148

Average 0.043 0.092 0.138 0.066 0.134 0.196 0.041 0.078 0.117

results, our system can construct reliable trajectories compared
with a professional motion camera system.
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