Iterative Linear Transformation to Reduce Compound Variables

Tsutomu Sasao
Department of Computer Science, Meiji University, Kawasaki, Japan

Abstract

A classification function is a multi-valued function, where the function values for only a fraction of the input combinations are defined. Many variables in such a function are redundant, and can be eliminated. A variable that can be represented as an EXOR of variables is called a compound variable. Using compound variables, we can further reduce the number of variables. This paper shows iterative methods to reduce the number of variables. It requires memory with the size $O(n k)$, where n is the number of input variables, and k is the number of the registered vectors. Experimental results for various benchmark functions show the effectiveness of the algorithms. These methods are useful for embedded system, where the memory size is limited. Also, they can be used as a pre-processor for other variable minimizers to reduce computation time.

I. Introduction

A classification function is a multi-valued function, where the function values for only a fraction of the input combinations are defined. In such a function, many variables are redundant, and can be eliminated. A variable that can be represented as an EXOR of variables is called a compound variable. By using compound variables, the number of variables to represent a classification function can be further reduced. Fig. 1.1 [3] shows a circuit to represent a classification function, where L realizes linear functions i.e., compound variables, and G realizes general functions. To reduce the number of compound variables, we must find the best linear transformation. Various algorithms [5] have been developed to solve this problem. In general, to obtain a good solution, we need large memory and much CPU time.

In this paper, we consider minimization algorithms of variables in classification functions, which are suitable for an embedded system, where the memory and computation time is limited. We introduce an algorithm called s-MIN that reduces the number of variables by iteratively applying simple linear transformations.

The rest of the paper is organized as follows: Section II shows the definitions and basic properties of classification functions and linear decomposition; Section III introduces collision degree and shows its properties; Section IV shows an iterative method for linear transformations to reduce the number of compound variables; Section V shows an example illustrating the algorithm; SectionVI reviews existing methods to reduce the number of compound variables; Section VII shows experimental results; Section VIII shows a method to use the s-MIN method to reduce CPU time for other minimizers, and

Fig. 1.1. Linear decomposition.

TABLE 2.1

REGistered Vector Table for f						
x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	f
1	1	0	0	1	1	0
0	1	1	0	1	1	0
0	1	0	1	0	0	0
0	0	0	0	1	0	0
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	0	1	1	1
0	0	1	0	1	0	1

finally Section IX concludes the paper.

II. Definitions and Basic Properties

Definition 2.1 Let n be the number of variables, $B=$ $\{0,1\}, D \subset B^{n}, m$ be the number of classes, and $M=$ $\{0,1,2, \ldots, m-1\}$. Then, a classification function is a mapping: $f: D \rightarrow M$.

Example 2.1 Table 2.1 is a registered vector table. It shows the function with $n=6, m=2$, and $|D|=8$. Each vector in the table is a registered vector. There are 2^{6} possible input combinations, but the function is defined for only 8 combinations. For the other $64-8=56$ combinations, function values are undefined.

Next, we show a simple method to reduce the number of variables in classification functions.

Example 2.2 The function f in Table 2.1 can be represented by x_{1}, x_{2}, x_{3} and x_{4}. That is, four variables are sufficient to

TABLE 2.2
f CAN BE REPRESENTED WITH x_{1}, x_{2}, x_{3} AND x_{4}.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	f
1	1	0	0	1	1	0
0	1	1	0	1	1	0
0	1	0	1	0	0	0
0	0	0	0	1	0	0
1	1	0	1	1	1	1
1	0	1	1	1	1	1
1	0	0	0	1	1	1
0	0	1	0	1	0	1

TABLE 2.3
f CANNOT BE REPRESENTED WITH x_{3}, x_{4}, x_{5} AND x_{6}.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	f	
1	1	0	0	1	1	0	$*$
0	1	1	0	1	1	0	
0	1	0	1	0	0	0	
0	0	0	0	1	0	0	
1	1	0	1	1	1	1	
1	0	1	1	1	1	1	
1	0	0	0	1	1	1	$*$
0	0	1	0	1	0	1	

represent the function. As shown in Table 2.2, the first four bits uniquely specify the function values.

However, the same function cannot be represented with x_{3}, x_{4}, x_{5} and x_{6}. Note that when $\left(x_{3}, x_{4}, x_{5}, x_{6}\right)=$ $(0,0,1,1)$, the value of f is not unique. In Table 2.3, the rows with asterisks show inconsistency.

Consider the decomposition of the function shown in Fig. 1.1, where L contains a linear function, while G contains a general function. The cost of L is $O(n p)$, while the cost of G is $O\left(q 2^{p}\right)$. When n is large, the cost of L can be neglected. The functions produced by the circuit L in Fig. 1.1 have the form:

$$
y_{i}=a_{1} x_{1} \oplus a_{2} x_{2} \oplus \cdots \oplus a_{n} x_{n}
$$

where $a_{j} \in\{0,1\} . \quad y_{i}$ is called a compound variable. $\sum_{i=1}^{n} a_{i}$ is the compound degree. When the compound degree is one, y_{i} is called a primitive variable.

III. Collision Degree and its Properties

In this section, we introduce collision degree to find a good linear transformation.

Definition 3.1 Let $f(X)$ be a classification function, where $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the set of variables in f. Let $X_{1} \subset X$. Let \vec{X}_{1} be an ordered set of X_{1}. Then, \vec{X}_{1} is a partial vector of X. Suppose that the values of \vec{X}_{1} are set to $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{s}\right)$, where $a_{i} \in B$. Let $N\left(f, \vec{X}_{1}, \vec{a}\right)$ be the number of different specified values of f. Then, the collision
degree is

$$
C D\left(f: X_{1}\right)=\max _{\vec{a} \in B^{s}}\left\{N\left(f, \vec{X}_{1}, \vec{a}\right)\right\},
$$

where s in B^{s} denotes the number of variables in X_{1}.

TABLE 3.1
Classification Function f.

x_{1}	x_{2}	x_{3}	f
1	0	0	1
0	1	0	2
0	0	1	1
0	0	0	3

TABLE 3.2
Classification Function g.

y_{1}	x_{2}	x_{3}	g
1	0	0	1
0	1	0	2
1	0	1	1
0	0	0	3

Fig. 3.1. Maps for Classification Function.

Example 3.1 Consider the classification function f shown in Table 3.1. We have:

$$
\begin{aligned}
& N\left(f:\left(x_{1}, x_{2}\right),(0,0)\right)=|\{1,3\}|=2, \\
& N\left(f:\left(x_{1}, x_{2}\right),(0,1)\right)=|\{2\}|=1, \\
& N\left(f:\left(x_{1}, x_{2}\right),(1,1)\right)=|\varnothing|=0, \\
& N\left(f:\left(x_{1}, x_{2}\right),(1,0)\right)=|\{1\}|=1 .
\end{aligned}
$$

Lemma 3.1 Consider the decomposition chart of $f(X)$, where X_{1} specifies the variables labeling the columns and $X-X_{1}$ denotes the variables labeling the rows. Then, $N\left(f, \vec{X}_{1}, \vec{a}\right)$ shows the number of different specified values in a column, and the collision degree $C D\left(f: X_{1}\right)$ is the maximal number of different values in the columns.

Example 3.2 The map in the left-hand side of Fig. 3.1 can be considered as the decomposition chart of the classification function shown in Table 3.1. In this chart, the column variables are $X_{1}=\left\{x_{1}, x_{2}\right\}$, and blank elements show don't cares. The number of different specified values in each column is, from the left to the right, $2,1,0,1$. Note that the leftmost column has the maximum number of different values, 2 . Thus, $C D(f$: $\left.\left\{x_{1}, x_{2}\right\}\right)=2$.

A classification function $f(X)$ can be represented by a subset X_{1} of X if every assignment of values to the variables X_{1} uniquely specifies the value of f.

TABLE 3.3
Classification Function f.

x_{1}	x_{2}	x_{3}	f
0	0	0	3
1	0	0	1
0	1	0	2
0	0	1	1
1	1	1	3

Fig. 3.2. Maps for Classification Function.

Theorem 3.1 Let $f(X)$ be a classification function, and X_{1} be a proper subset of X. Then, f can be represented as a function of X_{1}, if

$$
C D\left(f: X_{1}\right)=1 .
$$

Example 3.3 Consider the classification function g shown in Table 3.2. This table is derived from Table 3.1 by replacing x_{1} with $y_{1}=x_{1} \oplus x_{3}$. Since $C D\left(g:\left\{y_{1}, x_{2}\right\}\right)=1, g$ can be represented with only y_{1} and x_{2}. The map in the right-hand side of Fig. 3.1 shows g. For example, g can be represented as

$$
\mathcal{G}=1 \cdot y_{1} \vee 2 \cdot \bar{y}_{1} x_{2} \vee 3 \cdot \bar{y}_{1} \bar{x}_{2},
$$

where the symbol \vee denotes the max operator, and $f\left(x_{1}, x_{2}, x_{3}\right)=g\left(y_{1}, x_{2}\right)$.

However, f in Table 3.1 requires three variables to represent the function:

$$
\mathcal{F}=1 \cdot x_{1} \bar{x}_{2} \bar{x}_{3} \vee 2 \cdot \bar{x}_{1} x_{2} \bar{x}_{3} \vee 3 \cdot \bar{x}_{1} \bar{x}_{2} \bar{x}_{3} \vee 1 \cdot \bar{x}_{1} \bar{x}_{2} x_{3} .
$$

Note that the minterm in the lowest leftmost position of Fig. 3.1 is moved to the rightmost position by the linear transformation: $y_{1}=x_{1} \oplus x_{3}$.

Example 3.4 Consider the classification function f shown in Table 3.3. In this case, f requires three variables. Here, we consider the linear transformation:

$$
y_{1}=x_{1} \oplus x_{3}, \quad y_{2}=x_{2} \oplus x_{3}
$$

Table 3.4 shows the transformed function g.
The original function f is shown by the map in the left-hand side of Fig. 3.2, while the transformed function g is shown in the map in the right-hand side of Fig. 3.2, Since $C D(g$: $\left.\left\{y_{1}, y_{2}\right\}\right)=1$, the function can be represented with only y_{1} and y_{2}. In fact, the function can be represented as

$$
\mathcal{G}=1 \cdot y_{1} \vee 2 \cdot \bar{y}_{1} y_{2} \vee 3 \cdot \bar{y}_{1} \bar{y}_{2}
$$

where $f\left(x_{1}, x_{2}, x_{3}\right)=g\left(y_{1}, y_{2}\right)$. Note that, for this function, the previous transformation $y_{1}=x_{1} \oplus x_{3}$ cannot reduce the number of variables.

Theorem 3.2 Let $f(X)$ be a classification function. Let X_{1} be a proper subset of X. Then, to represent $f(X)$, at least $\left\lceil\log _{2} C D\left(f: X_{1}\right)\right\rceil$ compound variables are necessary in addition to the variables in X_{1}.

Corollary 3.1 Let $f(X)$ be a classification function, and let X_{1} be a proper subset of X. A necessary condition that f be represented by X_{1} and one compound variable is

$$
C D\left(f: X_{1}\right)=2 .
$$

Corollary 3.2 Let $f(X)$ be a classification function, and let X_{1} be a subset of X. A necessary condition that f be represented by X_{1} and a pair of compound variables is

$$
C D\left(f: X_{1}\right) \leq 4
$$

IV. S-Min Method

To find a linear transformation that minimizes the number of compound variables p in a classification function, is very difficult. Various heuristic methods are known [5]. Most methods require a large amount of memory and CPU time.

Here, we use the s-MIN method ${ }^{1}$, where a set of s variables in X_{1} is replaced with a set of $s-1$ compound variables. If the resulting set of variables represents f, perform this replacement. In this section, we show the s-MIN method.

A. Algorithm

For simplicity, we consider only for the cases with $s=2$ and $s=3$.

Algorithm 4.1 (2-MIN)

1. Let X be a set of variables on which f depends.
2. For all possible pairs of variables in $X,\left\{x_{i}, x_{j}\right\}$, perform the following operations while the number of variables can be reduced.
3. Let $X_{1}=X \backslash\left\{x_{i}, x_{j}\right\}$. When $C D\left(f: X_{1}\right)>2$, discard this pair.
4. Let $X_{3}=X_{1} \cup\left\{y_{1}\right\}$, where $y_{1}=x_{i} \oplus x_{j}$. If $C D(g$: $\left.X_{3}\right)=1$, then g can be represented as $g\left(X_{3}\right)=f(X)$, and Stop. Otherwise, discard this pair.

Algorithm 4.2 (3-MIN)

1. Let X be a set of variables on which f depends.

[^0]2. For all possible triples of variables in $X,\left\{x_{i}, x_{j}, x_{k}\right\}$, perform the following operations while the number of variables can be reduced.
3. Let $X_{1}=X \backslash\left\{x_{i}, x_{j}, x_{k}\right\}$. When $C D\left(f: X_{1}\right)>4$, discard this triple.
4. Let $X_{3}=X_{1} \cup\left\{y_{i}, y_{j}\right\}$, where
$$
y_{i}=x_{i} \oplus x_{k}, \quad y_{j}=x_{j} \oplus x_{k}
$$

If $C D\left(g: X_{3}\right)=1$, then g can be represented as $g\left(X_{3}\right)=f(X)$, and Stop. Otherwise discard this triple.

Note that the solutions produced by Algorithms 4.1 and 4.2 are local optimal.

B. Amount of Memory and Computation Time

Since Algorithms 4.1 and 4.2 use registered vector tables as a data structure, the necessary memory size is $O(n k)$, where n is the number of variables, and k is the number of registered vectors.

The total number of combinations to select s variables out of n variables is $\binom{n}{s}$. In the computation of the collision degrees, the registered vectors are sorted. Using quick sort, the average time to sort k objects is $k \log _{2} k$. Thus, the CPU time ${ }^{2}$ is proportional to $k \log _{2} k$. Let s be a small constant (i.e., $s=2$ or $s=3$). Recall that $\binom{n}{2}=\frac{n(n-1)}{2}$, and $\binom{n}{3}=\frac{n(n-1)(n-2)}{6}$. Thus, the total CPU time is $O\left(n^{s} k \log k\right)$.

V. Examples

This section illustrates the algorithm for 2-MIN.

TABLE 5.1
Original function.

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	f
0	1	1	1	0	1
1	0	1	0	1	1
1	0	1	1	0	1
1	1	1	0	0	1
1	1	1	0	1	1
0	0	0	0	1	2
0	0	0	1	0	2
0	0	1	0	0	2
0	0	1	1	1	2
0	1	0	0	1	3
1	0	1	1	1	3
1	1	0	0	1	3
1	1	0	1	0	3

TABLE 5.2

AFTER LINEAR TRANSFORM.				
x_{1}	x_{2}	x_{3}	y	g
0	1	1	1	1
1	0	1	1	1
1	0	1	1	1
1	1	1	0	1
1	1	1	1	1
0	0	0	1	2
0	0	0	1	2
0	0	1	0	2
0	0	1	0	2
0	1	0	1	3
1	0	1	0	3
1	1	0	1	3
1	1	0	1	3

Example 5.1 Consider the 5-variable classification function shown in Table 5.1. Note that no variable is redundant in the table. Let $X=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. Let the pair of variables be $\left\{x_{4}, x_{5}\right\}$. $X_{1}=X \backslash\left\{x_{4}, x_{5}\right\}$. Note that when

[^1]$\left(x_{1}, x_{2}, x_{3}\right)=(1,0,1), f$ can take two different values 1 or 3. For other combinations, f takes a unique value. Thus, $C D\left(f: X_{1}\right)=2$. By Corollary 3.1, there is a possibility to reduce the variables. Let $X_{3}=X_{1} \cup\{y\}$, where $y=x_{4} \oplus x_{5}$. Note that $C D\left(g: X_{3}\right)=1$. Thus, g can be represented by X_{3} as shown in Table 5.2. However, after this, we cannot reduce the number of variables.

Note that in Table 5.1, all the registered vectors are distinct. However, in Table 5.2, identical registered vectors appear. For example, $\left(x_{1}, x_{2}, x_{3}, y\right)=(0,0,0,1)$ appears twice. Thus, the linear transformation not only reduces the number of variables, but also reduces the number of distinct registered vectors.

VI. Review of Existing Methods

Various methods to reduce the number of (compound) variables in classification functions have been developed [5]. In this part, we briefly review three methods.

A. Minimization of Primitive Variables

This method reduces the number of primitive variables. Impurity measure [5] is used to select important variables. A reduction of variables corresponds to reduce the depth of the classification tree [1]. The impurity measure is used to order the variables in the classification tree.

Algorithm 6.1 (A reduction of primitive variables)
Given a classification table of a classification function f.

1. Compute the impurity measure $\mu\left(\vec{e}_{i}\right)$ for $i=1,2, \ldots, n$. Note that \vec{e}_{i} denotes the unit vector, where only the i-th element is 1 , and other elements are 0 s.
2. Assume that $\mu\left(\vec{e}_{i}\right)$ is the minimum. Let $\vec{a} \leftarrow e_{i}$. \vec{a} shows the set of selected variables.
3. Select a variable x_{j} from the remaining set of variables, so that the measure is minimized for the resulting classification tree. Let $\vec{a} \leftarrow \vec{a} \vee \vec{e}_{j}$.
4. If $\mu(\vec{a})>0$, then go to step 3 , else stop.

The method is very fast. The memory size for the algorithm is $O(n k)$, where n is the number of input variables, and k is the number of registered vectors.

B. Minimization of Compound Variables with Degree Two

This algorithm first generates all the compound variables with degree two, and then selects necessary variables using the impurity measure. The number of compound variables is $n(n-1) / 2$. The size of memory for the algorithm is $O\left(n^{2} k\right)$.

Algorithm 6.2 This algorithm is similar to Algorithm 6.1. In the registered vector table, append the compound variables with degree two. Thus, the total number of variables is $n+\binom{n}{2}=\frac{(n+1) n}{2}$.

C. Iterative Linear Transformation using Difference Vectors

This algorithm first generates the set of difference vectors D_{f}, and then select linear transformations using D_{f}, iteratively.

Definition 6.1 In a classification function f, let $f(\vec{a}) \neq f(\vec{b})$, where $\vec{a}, \vec{b} \in D, \vec{a} \neq \vec{b}$, and D is the set of registered vectors. Then, the vector $\vec{d}=\vec{a} \oplus \vec{b}$ is a difference vector, where \oplus denotes the bitwise EXOR operator. The set of all difference vectors is denoted by D_{f}.

Lemma 6.1 Let $f: D \rightarrow M, M=\{0,1, \ldots, m-1\}$ be a classification function. Let $\left|D_{f}\right|$ be the number of distinct difference vectors. Then,

$$
\left|D_{f}\right| \leq \sum_{(i<j)} k_{i} k_{j}
$$

where $i, j \in\{1,2, \ldots, m\}$, and k_{i} is the number of vectors $\vec{a} \in D$, such that $f(\vec{a})=i$.

Algorithm 6.3 (Reduction of Compound Variables)

1. Derive the set of difference vectors D_{f} of an n-variable function.
2. If $\left|D_{f}\right|=2^{n}-1$, then stop, since reduction is impossible.
3. Obtain a non-zero vector $\vec{d} \in B^{n} \backslash D_{f}$ with the minimum weight ${ }^{3}$.
4. Remove one variable from \vec{d}, and apply the linear transformation to the function.
5. Let $n \leftarrow n-1$, and go to step 1 . If $n=1$, Stop.

The number of distinct difference vectors is $O\left(k^{2}\right)$. Thus, the size of memory for the algorithm is $O\left(n k^{2}\right)$. It produces very good solutions, but requires large memory size and much CPU time.

VII. Experimental Results

To investigate the performance of the s-MIN method, we reduced the compound variables for various benchmark functions [5]. Table 7.2 shows the results. The first four column shows the properties of the function. The column headed with Name shows the function name; the column headed with n shows the number of variables in the original function; the column headed with m shows the number of classes; and the column headed with k shows the number of the registered vectors. The fifth column headed with ALG1 shows the number of the primitive variables obtained by Algorithm 6.1. The sixth column headed with ALG2 shows the number of the compound variables with degree two obtained by Algorithm 6.2.

The next three columns headed with ALG3 show the result of Algorithm 6.3. The column headed with Vari shows
the number of compound variables; the column headed with Max shows the maximum compound degree; and the column headed with AVG shows the average compound degree.

The next three columns show the results for 2-MIN. The last three columns show the results for 3-MIN.

The boldface numbers in the bottom row of Table 7.2 show the total numbers of variables. From these, we can observe the tendency:

$$
\text { ALG1 > 2-MIN }>\text { ALG2 > 3-MIN }>\text { ALG3 }
$$

Note that 3-MIN produces solutions with fewer variable than 2-MIN. However, 3-MIN produces compound variables with higher degrees. Note that some entries do not satisfy the above relation.

TABLE 7.1
Complexity of Reduction Algorithms

Algorithm	Degree	CPU Time	Memory
Algorithm 6.1	1	$O(n k \log k)$	$O(n k)$
Algorithm 6.2	2	$O\left(n^{2} k \log k\right)$	$O\left(n^{2} k\right)$
Algorithm 6.3	$3+$	$O\left(n k^{2}\right)$	$O\left(n k^{2}\right)$
2-MIN	$3+$	$O\left(n^{2} k \log k\right)$	$O(n k)$
3-MIN	$3+$	$O\left(n^{3} k \log k\right)$	$O(n k)$

Table 7.1 compares complexities of minimization algorithms, where n is the number of variables in the original function, and k is the number of registered vectors. Algorithm 6.1 requires the shortest CPU time, while Algorithm 6.3 requires the longest CPU time, when k is large.

VIII. An Application as a Pre-Processor

Table 7.2 shows that Algorithm 6.3 obtains the best solutions. Unfortunately, it is time-consuming for functions with large k, as shown in Table 7.1. In this part, we use 3-MIN to reduce the total CPU time for the MNIST28 $\times 28$ function for illustration. The function implements a handwritten digits recognition circuit [2]. It has $n_{0}=784$ variables, $k=59981$ registered vectors, and $m=10$ classes. Algorithm 6.1 yields $n_{1}=37$-variable solution in 57 seconds. While, Algorithm 6.3 yields an $n_{3}=25$-variable solution in 2718 seconds, which is very time-consuming.

However, we can reduce the CPU time by using 3-MIN as shown in Fig. 7.1. First, we apply Algorithm 6.1 to obtain an

Fig. 7.1. Reduction of CPU time for MNIST 28×28.

[^2]TABLE 7.2
RESULTS OF LINEAR TRANSFORMATIONS

RESULTS OF LINEAR TRANSFORMATIONS														
					Exist	g Met					ropose	Meth		
Function	Data			ALG1	ALG2		ALG3			2-MIN			3-M	
Name	n	m	k	Vari	Vari	Vari	Max	AVG	Vari	Max	AVG	Vari	Max	AVG
4350WORDS	75	14	4,350	43	25	18	14	3.94	21	10	2.05	20	16	4.85
CHEMICAL ELEMENTS	60	7	118	11	9	9	3	1.44	11	13	2.55	9	29	5.60
CHESS3196	75	2	3,196	30	21	15	11	3.67	18	6	1.67	16	11	4.06
CIFAR32 $\times 32$	1024	2	9, 930	58	30	19	22	7.47	25	10	2.32	22	22	8.05
COMPANIES	30	9	3, 700	21	19	18	3	1.39	20	4	1.40	19	9	3.21
CONNECT-4	126	3	67,557	61	38	22	23	11.82	34	6	1.79	28	22	7.43
COUNTRIES	60	6	197	15	10	10	4	2.30	12	15	3.17	11	33	12.91
LETTER-RECOG.	256	26	20, 000	51	32	21	17	9.05	36	6	1.42	28	17	5.36
LYMA	59	4	147	11	8	8	3	1.62	9	3	1.22	8	3	1.62
MNIST14 $\times 14$	196	10	58, 191	45	29	25	10	4.00	32	5	1.41	28	11	3.46
MNIST28 $\times 28$	784	10	59, 981	37	29	25	7	2.88	30	3	1.23	28	4	1.82
MNIST2CLASS	784	2	59, 984	35	25	24	9	3.08	31	3	1.13	27	6	2.00
MNIST 8×8	64	10	3, 686	23	19	17	5	2.24	20	10	2.10	19	22	13.05
POKER	85	10	25, 010	61	37	21	23	11.95	43	5	1.42	23	23	9.39
RANDOM4000	30	4	4,000	21	20	18	4	1.72	20	2	1.47	19	9	3.11
SPAM MAIL FILTER	128	2	20, 000	23	22	22	2	1.36	23	1	1.00	23	1	1.00
SPLICE	240	3	3,174	18	17	15	4	2.00	18	1	1.00	17	2	1.12
Total				564	391	307		71.93	403		28.35	345		88.04

$n_{1}=37$-variable solution. Second, we apply 3-MIN to obtain an $n_{2}=28$ variable solution in 42 seconds. And, finally we apply Algorithm 6.3 to obtain an $n_{3}=25$-variable solution in 747 seconds. In this way, the CPU time for Algorithm 6.3 can be reduced to less than one third.

The 3-MIN reduced both the number of input variables n, and the number of distinct registered vectors k. This reduced the number of distinct difference vectors. The number of distinct difference vectors in the result of Algorithm 6.1 is $1,226,244,862$. However, after applying 3-MIN, the number of distinct difference vectors is reduced to $259,485,042$. Also the number of variables is reduced from 37 to 28 , and the number of the iterations is reduced from 12 to 3 . These account for the reduction of the CPU time.

We used a computer with an INTEL Core i7, $7700,3.65 \mathrm{GHz}$ CPU, and 64 GB main memory, on Windows 10.

IX. Conclusion

This paper presented minimization algorithms for (compound) variables to represent classification functions. They require small memory and time complexities.

The main results are as follows:

1. 2-MIN performs a linear transformation with type

$$
x_{i} \leftarrow x_{i} \oplus x_{j}
$$

iteratively, to reduce the number of variables.
2. 3-MIN performs a linear transformation with type

$$
x_{i} \leftarrow x_{i} \oplus x_{k}, \quad x_{j} \leftarrow x_{j} \oplus x_{k}
$$

iteratively, to reduce the number of variables.
3. They are fast and require small memory size.
4. Experimental results using various benchmark functions show that $3-\mathrm{MIN}$ produces solutions with fewer compound variables than $2-\mathrm{MIN}$, on the average. However, 3-MIN tends to produce solutions with higher compound degrees.
5. These algorithms are suitable for embedded systems and pre-preprocessing for further minimization.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research of the JSPS. The author thanks Prof. Jon T. Butler and Dr. Alan Mishchenko for discussion.

References

[1] C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[2] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, " Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324, November 1998.
[3] E. I. Nechiporuk, "On the synthesis of networks using linear transformations of variables," Dokl. AN SSSR, vol. 123, no. 4, Dec. 1958, pp. 610-612 (in Russian).
[4] T. Sasao, "A reduction method for the number of variables to represent index generation functions: s-Min method," ISMVL, May 1820, 2015, Waterloo, Canada, pp. 164-169.
[5] T. Sasao, Classification Functions for Machine Learning and Data Mining, Springer Nature, Aug. 2023.

[^0]: ${ }^{1}$ This method was originally developed for index generation functions [4]. We found this method is also effective for classification functions.

[^1]: ${ }^{2}$ Here, we assume that each object is represented by one word in the com puter.

[^2]: ${ }^{3}$ The weight of a vector is the number of 1 's in the vector.

