
Accurate Performance Estimation with BBFDA: Beyond 
Granularity Constraints 

Hsuan-Yi Lin, Ren-Song Tsay 
National Tsing Hua University, Taiwan 

mark126688@hotmail.com, rstsay@cs.nthu.edu.tw

Abstract—In this paper, we present BBFDA, a pioneering 
approach for precise performance estimation in computer 
systems. Conventional time-quantum-based methods often 
encounter granularity limitations, impeding their ability to 
capture program behavior accurately. BBFDA utilizes Basic 
Block Analysis and Recursive Frequency Domain Analysis to 
estimate performance waveforms. This method enables 
dynamic performance tracking without being constrained by 
granularity issues and remains robust in the face of input 
variations. We assess the performance of BBFDA using SPEC 
CPU2017 benchmarks, showcasing its exceptional accuracy and 
resilience, particularly in multi-phase scenarios.  

I. INTRODUCTION 
As system optimization gains importance, understanding an 
application's runtime behaviors becomes crucial, especially 
in dedicated embedded systems. Accurate modeling of 
application behavior is essential for optimizing performance. 
Applications often exhibit repetitive execution phases with 
consistent performance values, as shown in Fig. 1. Numerous 
studies have developed phase prediction techniques [1-3], but 
a clear phase definition remains elusive. 

 
Existing approaches segment execution traces into fixed-

length segments, but this may lead to phase misalignment and 
disregarding shorter phases. We aim to identify fundamental 
program phase building blocks and develop a systematic, 
unambiguous program phase identification approach. 
Our research leverages frequency domain analysis to detect 

repetitive behaviors in applications. We focus on basic blocks, 
loops, and functions as stable code structures for precise 
phase identification. Basic blocks serve as the most 
fundamental execution units, addressing granularity issues 
common in time-quantum methods. 
Our approach offers precise phase identification, including 

phase boundaries and performance characteristics. It 
enhances prediction accuracy by linking program phases to 
loop/function code structures, offering insights for 
optimization, and enabling runtime embedding of analysis 
results into the application code. 
The paper is structured as follows: Sec. II provides a review 

and discussion of related work. Section III outlines our 
precise program phase identification method using 
frequency-domain analysis, and Section IV presents 
experimental results and a brief conclusion.  

II. RELATED WORK 

In the realm of phase identification, two common approaches 
are typically employed. The first approach is known as time-
quantum-based, which entails dividing a program's execution 
into fixed-length intervals, each representing a phase segment 
that is subsequently merged into a phase. The second 
approach is program-structure-based, which relies on 
fundamental program structures like loops or functions to 
delineate program phases. However, both approaches exhibit 
certain limitations, which we will discuss in greater detail. 

A. Time-quantum Approaches 
A time quantum is a fixed-length contiguous interval of 
program execution used to divide an execution trace into non-
overlapping quanta for phase analysis. Typically, a fixed 
number of instructions or basic blocks form an interval for 
evaluation, and quanta with similar performance metrics, 
such as CPI, cache miss rate, and branch miss rate, are 
grouped into one phase. However, the term "similar" is not 
precisely defined, allowing for a certain margin of error. 

One of the most representative time-quantum-based 
techniques is the Basic Block Vector (BBV) method. BBV is 
motivated by the observation that program phase behavior 
highly correlates with patterns of basic blocks [4-6]. Since 
program behavior primarily results from executing program 
code composed of basic blocks, BBV records the footprint of 
basic blocks in the execution trace. It checks if the 
compositions (or named signatures) of consecutive basic 
block vectors (a fixed number of basic blocks) display a 
difference greater than a given threshold value to identify 
phase boundaries. 

However, a common problem with this approach is that 
quanta often span program phase boundaries, resulting in the 
so-called transition phase issue [7]. When the quantum spans 
an actual phase boundary, it's considered a unique phase with 
different performance measures compared to the phases 
before and after the boundary point. Fang et al. [8] observed 
that execution phases should have a hierarchical structure and 
proposed a Multi-Level Phase Analysis method that classifies 
phases into fine-grain (inner-loop) and coarse-grain (outer-
loop or function) phases. Coarse-grain phases consist of 
stably distributed fine-grain phases. While this multi-level 
approach aligns better with practical cases, it still may not 
fully capture general scenarios. In contrast, our approach 
provides a more systematic method to identify the full phase 
hierarchy. 

A significant challenge of fixed time-quantum-based 
approaches is that the fixed quantum length may not align 
with the irregular rhythm of program behavior. These 
approaches may not accurately capture actual program phases 
and fail to account for the dynamic nature of real program 
phases. Therefore, in this paper, we propose an effective 
approach that identifies the natural rhythm of program 
behavior. 

Fig. 1: An illustrative example of a program with three 
distinct execution phases, each exhibiting a unique CPI value. 

SASIMI 2024 ProceedingsR2-9

- 131 -



B. Program-structure Approaches 
Another approach to identifying program execution phases 
focuses on loops and functions, common program structures 
with consistent performance behavior, making them suitable 
for defining program phases. This method assumes that loops 
and functions are the basic components of a phase, and the 
goal is to identify the transitions that connect phases. For 
instance, Huang et al. [1] applied this idea to configure 
combinations of function calls (or subroutines) for 
performance or energy consumption improvements. 

Lau et al. [9] employed a Hierarchical Call-Loop Graph 
analysis technique to identify program phases based on loops 
or functions (or named procedures). In this technique, each 
node represents a loop or a function, and each edge represents 
an execution path from one node to another, associated with 
a call count and average and standard deviation of instruction 
count across various invocations. Edges with lower deviation 
numbers represent code segments of relatively consistent 
performance behaviors, marked as phases. In contrast, Jiang 
et al. [10] did not explicitly identify program phases but 
aimed to find correlations among repeatedly executed loops 
and functions under various inputs. For instance, the analysis 
may reveal that a certain function's call count consistently 
maintains a fixed ratio to a loop's trip count under different 
tested inputs, which is then applied to predict runtime 
program behavior. 

A common challenge with these program-structure-based 
approaches is the difficulty in calculating precise 
performance values (e.g., CPI) due to variations in different 
execution runs. Existing approaches rely on pre-conceived 
phase patterns, such as fixed phase length, fixed basic block 
vector size, or connections to loops or functions, to determine 
program phases, which may not necessarily match the natural 
program phase patterns. In contrast, our approach is based on 
identifying program phases using the inherent characteristics 
of basic blocks with hints from program code structure.  

Next, we will present our proposed frequency-domain-
based approach, offering a more systematic method of 
identifying program phases. 

II. FREQUENCY-DOMAIN PHASE ANALYSIS METHOD 
Recognizing program phases in waveforms is intuitive, but 
automating this process challenges us. To address this, we 
introduce a novel frequency-domain analysis method for 
phase detection. Our practical approach precisely identifies 
phase start, length, and average performance. It 
accommodates program loop and function structures for 
accuracy. While we use CPI as a performance metric, our 
method is versatile and not limited to this metric. 
In practice, our approach transforms a program execution 

trace into a time-domain waveform with instruction counts as 
the time index and performance values for the waveform 
amplitudes. This waveform reveals the dominant program 
phase. By converting it into the frequency domain using the 
Fourier Transform, the major phase emerges as the main 
spectrum in the low-frequency region, representing repeated 
program patterns. 
The proposed phase identification process involves 

analyzing the frequency domain spectrum (Fig. 2). We locate 
the main spectrum, i.e., the spectrum with the highest 

dynamic performance value, corresponding to the primary 
program phase, and calculate its length using the spectrum's 
occurrence value. For instance, if the main spectrum occurs 
four times with a total execution length of 4,500 instructions, 
the main phase's length is precisely 1,125 instructions 
(L=D/X, where L is the phase length, D is the total execution 
length, and X is the occurrence frequency). We then combine 
this length with code structure components like basic blocks, 
loops, and functions to pinpoint the phase's starting point. Our 
approach adopts a recursive method to explore hierarchical 
phase structures. Special cases include identifying high and 
low-phase boundaries and handling flat waveforms. 

 
To address the limitations of time-quantum approaches, it is 

observed that program phases can be fully decomposed into 
basic blocks, as the transition point between any two program 
phases is always a branch instruction. Since there are no 
branch instructions within a basic block, the number and 
types of instructions are fixed, resulting in relatively 
consistent performance measures. To calculate the practical 
performance value, 𝑝!, of a basic block b, which considers 
factors like cache hit-miss and other optimization effects, we 
compute a weighted average of the performance values 
associated with the time quanta in which the basic block b is 
executed. This is expressed by the formula: 𝑝! = (∑ 𝑛"𝑣"" )/
(∑ 𝑛"" ), where vq is the performance value of time quantum 
q, and 𝑛" is the number of times basic block b occurs in time 
quantum q. Our method's accuracy is verified to align well 
with actual values. 
To efficiently identify basic blocks as phase starting points 

at runtime, we simply trace branch instructions, eliminating 
the need for complex control flow graph analysis. When the 
memory address of the first instruction within a basic block 
is used as the unique identifier for that basic block, phase 
detection involves identifying the starting point by comparing 
consecutive basic blocks using their performance values. We 
identify potential phase starting points by marking pairs of 
basic blocks with performance value differences exceeding a 
predefined threshold, derived from the main phase's dynamic 
performance value. We then use this information along with 
the length of the main phase obtained from frequency domain 

Fig. 2: An example demonstrating the proposed Frequency 
Domain Analysis method for systematic phase identification. 

(a) 

(b) 

(c) 

- 132 -



analysis to precisely identify program phases in the execution 
trace. 
Our basic block information serves a dual purpose: it aids in 

identifying not only phases but also loops and functions. 
Loop starting points are detected by checking if branch 
instructions point backward, while function starting points 
are identified by recognizing function call instructions, like 
jump-and-link or JAL in MIPS. Since loops and functions 
share branch instruction identification, their starting points 
align with certain basic blocks. We annotate each basic block 
to indicate if it's the starting point of a loop, function, or 
neither. This information helps relate identified program 
phases to loops or functions, which can lead to more effective 
system optimization. 
In practice, we create a hierarchical program phase table 

during recursive frequency domain analysis, recording head 
basic blocks, lengths, and performance values for each phase. 
Basic blocks are marked with their associated phases. This 
information simplifies runtime phase-detection for 
scheduling and optimizations. When executing a new basic 
block, we check if it's a phase head. If so, we access the phase 
table for its performance value (CPI) and code structure (loop 
or function). 
Alternatively, we can embed phase information into the 

application code using custom instructions. These 
instructions are placed at the start of the head basic blocks 
and include performance and code structure details, 
functioning like NOP instructions, signaling the start of a new 
phase during runtime. We summarize the algorithm below. 
BBFDA Algorithm 
1. Profile the target program (by execution or simulation). 
2. Apply frequency-domain analysis on the time-domain 

waveform to generate the frequency spectrum. 
3. Calculate the phase length by the spectrum. 
4. Scan the profiling trace to find basic blocks that match 

the phase length. 
5. Check if there are minor phases in this major phase. 
6. If yes, go to step 2; otherwise, the process is completed. 
Basically, we profile the target application through 

execution or simulation, obtaining basic block traces, CPI 
values, and the time-domain performance waveform. Next, 
we use frequency domain analysis on the waveform to 
identify the main spectrum and calculate the phase length. We 
then search for the main phase's head basic block in the 
waveform. If there's only one occurrence of the main 
spectrum, we identify high and low-performance phases. We 
stop if the waveform is flat; otherwise, we recursively analyze 
the phase segment. Our method, implemented and verified, 
yields promising results discussed in the next section. 

III. RESULTS AND CONCLUSIONS 
We used SPEC CPU2017 benchmarks [11], conducted 
simulations on an Intel Core i5-3320m 3.30GHz machine, 
and modified SimpleScalar [12] to gather basic block traces 
and CPI values. We applied recursive frequency domain 
analysis to extract hierarchical program phases for evaluation. 
We compared our BBFDA method with time-quantum-

based (TQ) approaches (TQ-100M and TQ-1B) using CPI 
estimation errors. BBFDA showed an average error rate of 
4.45%, significantly better than TQ-100M (7.88%) and TQ-

1B (12.54%). BBFDA can be practically used for system 
optimization. The maximum error was 18.4% for mcf, while 
the least error was 0.42% for gromacs due to varying 
performance patterns. 
We also verified that our approach maintained minimal 

variations when different inputs were used across benchmark 
cases, confirming its effectiveness in identifying program 
phases with varying input data through basic block 
information. 
We compared CPI waveforms for mcf and gromacs cases. 

The time-quantum-based approach suffered in cases with 
higher CPI variations, while BBFDA effectively tracked 
dynamic performance behaviors using basic block analysis. 
BBFDA precisely captured phase lengths, while determining 
an appropriate quantum size remained challenging for time-
quantum methods. 
In summary, the proposed BBFDA has been verified to be 

highly effective in the identification of program phases and 
the estimation of performance waveforms. Notably, the 
BBFDA method maintains its robustness when confronted 
with diverse input data, accurately capturing phase durations, 
making it an excellent choice for program performance 
prediction and system optimization. 

References 
[1] Michael C. Huang, J. Renau and J. Torrellas, “Positional adaptation of 

processors application to energy reduction,” Proceedings of the 30th 
annual international symposium on Computer architecture (ISCA), 
ACM, 2003. 

[2] A. Sembrant, D. Black-Schaffer ,E. Hagersten, “Phase guided profiling 
for fast cache modeling,” Proceedings of the Tenth annual IEEE/ACM 
international symposium on Code generation and optimization (CGO), 
ACM, 2012. 

[3] S. Padmanabha, A. Lukefahr, R. Das, S. Mahlke, “Trace based phase 
prediction for tightly-coupled heterogeneous cores,” Proceedings of the 
46th Annual IEEE/ACM International Symposium on 
Microarchitecture (MICRO), ACM, 2013. 

[4] T. Sherwood, E. Perelman and B. Calder, “Basic block distribution 
analysis to find periodic behavior and simulation points in application,” 
Proceedings of 2001 International Conference on Parallel 
Architectures and Compilation Techniques (PACT), IEEE, 2001. 

[5] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically 
characterizing large scale program behavior,” Proceedings of the 10th 
international conference on Architectural support for programming 
languages and operating systems (ASPLOS), ACM, 2002. 

[6] T. Sherwood, S. Sair and B. Calder, “Phase tracking and prediction,” 
Proceedings of the 30th annual international symposium on Computer 
architecture (ISCA), ACM, 2003. 

[7] J. Lau, S. Schoenmackers and B. Calder, “Transition phase 
classification and prediction,” Proceedings of 11th International 
Symposium on High-Performance Computer Architecture (HPCA), 
IEEE, 2005. 

[8] Z. Fang, J. Li, W. Zhang, Y. Li, H. Chen, B. Zang, “Improving dynamic 
prediction accuracy through multi-level phase analysis” Proceedings of 
the 13th ACM SIGPLAN/SIGBED International Conference on 
Languages, Compilers, Tools and Theory for Embedded Systems 
(LCTES), ACM, 2012. 

[9] J. Lau, E. Perelman and B. Calder, “Selecting software phase markers 
with code structure analysis,” Proceedings of the International 
Symposium on Code Generation and Optimization (CGO), ACM, 2006. 

[10] Y. Jiang, Eddy Z Zhang, K. Tian, F. Mao, M. Gethers, X. Shen, Y. Gao, 
“Exploiting statistical correlations for proactive prediction of program 
behaviors,” Proceedings of the 8th annual IEEE/ACM international 
symposium on Code generation and optimization (CGO), ACM, 2010. 

[11] John L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM 
SIGARCH Computer Architecture News 34.4 (2006): 1-17.  

[12] D. Burger, Todd M. Austin, “The SimpleScalar tool set, version 2.0,” 
ACM SIGARCH Computer Architecture News 25.3 (1997): 13-25. 

 

- 133 -


