
Active Learning-based Practical Power Estimation Considering
Multi-Cycle Paths

Shao-Min Liu1, Shao-Yun Fang1, Hsiang-Wen Chang2, Ming-Chao Lee2, and Peter Wei2
1National Taiwan University of Science and Technology, Taipei, Taiwan

2Synopsys Inc., Taiwan

Abstract—In order to meet the design requirements of low-
power products, how to provide an accurate power estimation
in early stages of the design flow has become more and more
important. A previous research method uses the toggle rates of
registers to perform design-dependent RTL power estimation
based on machine learning (ML) techniques. However, the
runtime speedup claimed by the previous work ignores the
huge runtime obtaining the labels for training data, making the
ML-based approach insufficiently efficient for general designs.
In this paper, we adopt active learning to query the labels of
most representative training data and propose a new feature
representation approach to enhance the model accuracy given
that the training data are deficient. A recurrent neural network
(RNN)-based autoencoder is also adopted, which makes the
proposed model able to handle the designs with multi-cycle
paths. Experimental results show that compared to the existing
work, the proposed training flow can greatly improve the power
estimation accuracy with much fewer training data.

I. INTRODUCTION

Currently, power analysis in later design stages mainly uses various
netlist characteristics and physical layout information that have been
designed to calculate the power consumption of a circuit. However,
as the demand of low-power products and the design complexity
dramatically increase, gate-level power analysis becomes so time-
consuming that only thousands out of millions or cycles can be
simulated in reasonable runtime. Therefore, a fast yet sufficiently
accurate register transfer level (RTL) power analysis approach is
required to first obtain the power profile over millions of cycles,
and then the identified critical cycles with higher estimated power
are further simulated in gate-level power analysis.

Previous research mainly focuses on a key element that greatly
determines dynamic power consumption of a circuit, that is, switching
activities. The switching activity of a circuit node is the number of
toggles per clock cycle on the signal, averaged across many clock
cycles. The switching transitions of the registers in a design are
usually regarded as the main index of circuit power consumption.
The power estimation problem is usually divided into two stages:
the training stage and the estimation stage. In the training phase,
the actual power consumption is calculated by observing the activity
of a certain part of a circuit and simulating a certain number of
cycles. The goal is to find the relationship between the switching
activities of registers and the corresponding power trace. Therefore,
the coefficient of each register can be trained to represent the
contribution of this register to the overall power consumption. [1]
and [2] respectively use linear regression and regression tree methods
to characterize the power consumption of a circuit module (IP) or a
small entire circuit by considering all registers. [3] uses a feature
selection technique based on singular value decomposition (SVD) to
characterize the power consumption of an entire circuit after selecting
the key registers.

Fig. 1. The key idea of the state-of-the-art work [4]. (a) A sample
netlist. (b) The switching waveforms of the five registers. (c) Switch-
ing encoding and the ML-based power estimation approach.

The state-of-the-art studies [4] and [5] use machine learning (ML)-
based methods to further enhance the efficiency and accuracy of
power estimation. [4] proposes a fast ML-based power estimator
called PRIMAL, which adopts several ML models such as multi-
layer perceptron (MLP) and convolutional neural network (CNN)
for average power and cycle-by-cycle power estimation at RTL
or behavior level. It is reported in [4] that cycle-by-cycle power
estimation suffers from larger prediction errors than average power
estimation. [5] develops a GPU-accelerated graph neural network
(GNN) model to perform average power estimation for gate-level
netlists. As mentioned earlier, the major objective of our work is to
identify critical cycles resulting in great power for RTL. Therefore,
PRIMAL is the target state-of-the-art work that will be detailed in
the following and compared in the experiments. Fig. 1 illustrates the
idea proposed in PRIMAL. For a given RTL netlist in Fig. 1(a), the
switching waveform of each register (as well as each I/O signal) is
also given, as shown in Fig. 1(b), where each edge corresponds to a
clock rising edge. For cycle-by-cycle power estimation, the switching
states of all registers and I/O signals at a single clock rising edge are
transferred into a switching encoding, as illustrated in Fig. 1(c), where
a switching or a non-switching event is represented by a binary bit or
few binary bits. By regarding the switching encoding as the input of
a machine learning model, an estimated power value can be derived
at the output.

As mentioned in [4], the application of PRIMAL is limited
to reusable intellectual properties (IPs). The major reason is that
PRIMAL trains the estimation model with the design testbench of an
IP, and then the model is applied when the IP is reused (or embedded
in another design) with various workloads. The great runtime speedup

SASIMI 2024 ProceedingsR2-11

- 138 -



Fig. 2. The application of ML-based power estimation for general
designs.

(50X on average) is achieved when the IP is reused. However, for a
general design whose power analysis is only performed on the design
testbench, the speedup may not be so significant if a large amount of
training data is required. Fig. 2 illustrates a practical power estimation
scenario with ML methods. For example, if 80% of clock cycles in the
testbench are used for training, the labels (ground-truth power values)
of the 80% data are still derived by running the power analysis with
an EDA tool. Even if the rest 20% data can be efficiently inferenced,
the overall runtime speedup must be less than 1.25X. Obviously,
using 80% of the data for model training is very unfavorable for fast
power estimation of general designs.

Recently, the concept of active learning has been widely adopted
in ML-related studies especially in the situation that obtaining data
labels is either expensive or time-consuming. In active learning, a
relatively small set of unlabeled data with the largest amount of
hidden information is selected. Performing labeling for the selected
data and training an ML model based on the selected data, the ML
model with comparable accuracy to the model trained by using all
data with labels is expected. In this paper, we propose an active
learning approach that can use less training data to derive an RTL
power estimation model with sufficient accuracy, and thus more
speedup can be achieved in power analysis for general designs. Our
main contributions are as follows:
• A new switching encoding method is proposed to improve

prediction accuracy. In addition, the features for glitch power
consumption can also be integrated if gate-level circuit infor-
mation is available.

• A recurrent neural network (RNN)-based auto-encoder is
adopted in the prediction model to handle the designs with
multiple-cycle (multi-cycle) paths.

• Active learning techniques are proposed to select representative
data to train the power estimation model and provide sufficient
model performance.

• Experimental results show that the proposed switching encoding
and the data selection mechanisms make our model outperform
a state-of-the-art work, and the adopted RNN-based auto-
encoder can further enhance estimation accuracy for the designs
with multi-cycle paths.

The rest of this paper is organized as follows: Section II introduces
the proposed methodologies. Section III presents the experimental
results. Finally, a short conclusion is given in Section IV.

II. PROPOSED ENHANCEMENT METHOD

In this section, the proposed model architecture, the new feature
representation, the multi-cycle path handling, and the active learning-
based training flow are separately detailed in the following subsec-
tions.

Fig. 3. The proposed model architecture.

A. Model Architecture
The proposed model architecture is shown in Fig. 3. A new switch-

ing encoding is used to differentiate different types of switching
transitions. In addition, if gate-level circuit information is available,
a glitching encoding is also constructed and cascaded after the
switching encoding. Due to the huge dimension of the input feature
vector, principal components analysis (PCA) is first applied for
dimension reduction and to avoid overfitting. The reduced dimension
of the feature vector is 512× 1, which is fixed for any input circuit.
For the design of multi-cycle paths, an RNN-based auto-encoder
is adopted to reduce the dimension of each feature vector from
512 × (k + 1) of k + 1 consecutive cycles to a feature vector
of 512 × 1. After that, each reduced feature vector is fed into a
deep neural network (DNN) composed of three MLPs. Finally, an
estimated power value can be derived at the model output.

B. Switching Feature Representation
Due to the high correlation with dynamic power, the switching

activities of registers are the key features and have been commonly
used in power estimation models in previous work. The switching
encoding adopted in the MLP model of [4] only records whether a
register toggles in a clock cycle or not. For the CNN model proposed
in [4], the switching encoding only categorizes each register as non-
switching, rising transition, or falling transition in each clock cycle. In
order to better learn the relationship between switching activities and
the power consumption, we explicitly define 16 types of switching
transitions. Each type of transitions consists of an original state
(FROM state) and a switched state (TO state), as shown in Fig. 4.
Each of the transition types including an unknown FROM state or an
unknown TO state is encoded as 0, because the power consumption of
a switching transition of these types is not considered and counted
in the adopted power analysis tool. In addition, each of the other
transition types is encoded as one of the integer between 1 and 16.
Empirically, how to assign the 16 integers to the 16 transition types
does not significantly affect the model performance, and thus the 16
integers are only used for differentiate the differences among the 16
transition types.

C. Glitching Feature Representation
It can be observed from some industrial benchmarks that glitching

power may account for a large portion of total power. However, signal
glitches cannot be derived before a gate-level netlist is synthesized.
Therefore, once the gate-level circuit information is available, the
proposed model can also be applied to cycle-by-cycle gate-level
power estimation. Since glitch power is only consumed by combi-
national cells and may cause multiple and additional signal toggles
in a single cycle, another feature representation method is required
to characterize glitches. Recording the number of toggles for each
combinational cell is not applicable since the dimension of feature
vectors will explosively increase. Therefore, for each combinational
cell, the corresponding cell type in the standard cell library is

- 139 -



Fig. 4. The table of 16 transition types and their encoding used in
our model, each of which consists a FROM state and a TO state.

Fig. 5. The proposed glitching feature encoding added after the
switching encoding.

identified, and the number of additional signal toggles of each cell
is accumulated to the corresponding cell type for a single clock
cycle. Fig. 5 illustrates an example, where T indicates the number
of additional signal toggles at the output of each combinational cell.
Since there are two cells of the same type INV 1, the number of
toggles of INV 1 is computed by summing up the toggles of the two
cells. The feature representation vector with glitch consideration can
be constructed by cascading the glitching encoding after the switching
encoding.

D. Multi-cycle Path Handling
During the development of our power estimation model, we found

that two very similar (the similarity ¿ 99%) feature vectors can
result in very different power values (power difference ¿ 30%),
which can cause great errors in the cycle-by-cycle power estimation
process. Our investigation on this problem shows that it may be due
to the multi-cycle paths in advanced industrial designs, where the
delays of some signal paths specified by designers are allowed to
be more than one clock cycle. The existence of multi-cycle paths in
a design may cause the power value of a target cycle significantly
affected by the switching activities of the previous cycles. Since the
switching activities of successive clock cycles are not independent,
it is desirable to simultaneously consider multiple feature vectors
for a design with multi-cycle paths. However, directly cascading
multiple feature vectors greatly increases the input dimension of the
DNN, which not only causes difficulties in training but may cause
overfitting. Thus, maintaining the dimension of feature vectors while
considering successive clock cycles is a preferred option.

To achieve this goal, we adopt an RNN-based auto-encoder, which
is originated from the RNN encoder–decoder proposed in [11]. The
RNN encoder–decoder is a neural network composed of a “many-to-
one” RNN encoder and a “one-to-many” RNN decoder, as shown
in Fig. 6. The encoder compresses the input vector X into an
intermediate vector Z, and the decoder restores Z to a reconstructed

Fig. 6. An encoder–decoder architecture composed of a “many-to-
one” RNN encoder and a “one-to-many” RNN decoder.

Fig. 7. The training phase of the implemented RNN-based auto-
encoder with k = 2.

vector X ′. By minimizing the error between X and X ′, Z can be
regarded as a reduced version of X with a lower dimension.

Fig. 7 shows the RNN encoder–decoder used in our network.
Long Short-Term Memory (LSTM) is used to alleviate the gradient
explosion/vanish problem. Suppose k additional clock cycles need
to be considered for each cycle. After PCA, the feature vectors of
k+1 cycles are fed into the encoder. Fig. 7 shows an example with
k = 2, where the red vectors are the feature vectors of the three
cycles, the blue vectors, are RNN hidden units, and the purple vector
is the dimension-reduced feature vector. The encoder compresses the
features considering three cycles into a vector of the same size as the
feature vector of a single cycle. After the training process of the RNN
encoder–decoder architecture, the decoder network is removed, and
the encoder network serves as a dimension reducer for the feature
vectors considering multiple cycles.

E. Active Learning-based Training Flow
To reduce the required training data and achieve sufficient esti-

mation accuracy in our power model, active learning that queries
the most representative data is applied. [6] proposes to transform an
active learning problem into a core-set selection problem, which can
outperform many active learning heuristics in literature. As shown
in Fig. 8, the data are distributed on an established plane according
to their similarities. The blue points are a set of selected data to
be labeled, and the red points are the remaining unlabeled data.
Regarding the selected data as the centers, a set of circles with the
same radius rc is drawn such that all the remaining unlabeled data
points are covered by the circles. The results in [6] show that the blue
selected point can be used as a representative point for the remaining
red points in each circle. In addition, if the selection of a point to
be labeled does not reduce rc, it will not improve the accuracy of
model training. The core-set problem asks to find a set of selected
data that can minimize rc within the selection budget.

- 140 -



Fig. 8. Active learning by solving a core-set problem.

Fig. 9. 2D visualization of feature vectors with t-SNE.

Fig. 10. Two data selection mechanisms: (a) CENTER and (b)
OUTLIER.

Fig. 9 gives the 2D visualization result of the feature vectors
extracted in an industrial design by performing t-distributed stochastic
neighbor embedding (t-SNE). It can be found in Fig. 9 that the
new feature representation approach makes feature vectors with high
similarity have similar power values. As a result, it is applicable to
solve the core-set problem as our active learning oracle as well.

The core-set problem was solved with a k-Center-Greedy algo-
rithm in combination with a mixed integer program (MIP) formula-
tion in [6]. However, solving our problem with MIP is not practical
due to its prohibitively long runtime. As a result, we alternatively
use the well-known k-means algorithm for data clustering and use
the k centers derived from the k-Center-Greedy algorithm as the
initial cluster centers of the k-means algorithm. The k-Center-Greedy
algorithm can speedup the convergence of the k-means algorithm.
Two data selection mechanisms are proposed as follows:
-1- CENTER: this selection mechanism selects the data point

closest to the center of each cluster as the representative data
point. Therefore, the number of clusters is set as the number of
data selected for training. An example illustration is given in
Fig. 10(a).

-2- OUTLIER: empirically, in addition to select the points closest
to the cluster centers, selecting some outlier points can result
in better accuracy in some cases. As shown in Fig. 10(b), as
the number of clusters decreases, some data points which are
farthest away from cluster centers are also selected.

The entire training process is summarized in Fig. 11. Input is an
original VCD file with a long switching waveform to be simulated

Fig. 11. The training flow proposed in this paper.

for power analysis. Feature extraction with the new representation
method and PCA are performed for each clock cycle. For a design
with multi-cycle paths, the RNN auto-encoder is adopted to enable
multi-cycle consideration while maintaining the reduced size of
feature vectors. Then, data selection is applied using one of the above
mechanisms. The selected data are simulated with PrimePower in
PTPX [14] to derive their ground truth power values. Finally, the
DNN model is trained with the labeled data, and the power values
of the cycles that are not selected in the active learning step can be
estimated by using the trained model.

III. EXPERIMENTAL RESULTS

The process of parsing a VCD file and constructing the feature
representation vectors are implemented with the C++ programming
language, and the machine learning-based cycle-by-cycle power es-
timation framework is implemented with Python 3.7. The K-means
algorithm is implemented with scikit-learn [13], and the other models
are implemented with Keras [12]. All experiments were conducted
on a Linux machine with Intel Xeon Gold 6248 CPU @ 2.5 GHz
and 354 GB memory. The power waveform is obtained from the
PrimePower of Synopsys PTPX [14] for data labeling. Table I lists
three adopted industrial benchmark circuits, where the numbers of
registers and I/O signals (defined in the VCD files), the numbers of
circuit gate counts, the circuit clock periods (ps), the numbers of
waveform cycles, and the runtimes for full power analysis in PTPX
are separately given in Rows 2–6. Among the three cases, Design A
is a relatively small design, and Design B and Design C are two
large-scale designs, each of which contains more than 200k registers
and I/O signals. The VCDs have accounted for workload variety and
thus the power values are greatly diverse in both training and testing
data. More detailed information regarding the benchmark circuits is
not allowed to be revealed due to the IP issue.

We compare the performance of the proposed ML-based tech-
niques for power estimation with the previous work [4]. Two models,

TABLE I
STATISTICS OF THE BENCHMARK CIRCUITS.

Benchmark Design A Design B Design C
#Reg.+I/O Signals 410 208,850 216,284

#Cell Gates 2,391 603,114 326,164
Clock Period (ps) 4,000 952 10,000

#Total cycles 14,999 11,118 9,737
PTPX Run Time (s) 1,232 7,986 17,169

- 141 -



MLP and CNN, are majorly used and compared in [4]. We implement
the two models (the implemented MLP is the same as the DNN
architecture in our model for fair comparison) and report the better
results in the following tables. Note that we do not compare our work
with [5] since this existing work focuses on average power prediction
for a window (a period of clock cycles) of interest, while our aim is to
perform cycle-by-cycle peak power estimation. The feature extraction
approach as well as the model architecture proposed in [5] are not
applicable in cycle-by-cycle RTL power estimation.

A. Effectiveness of Active Learning and the Proposed Switch-
ing Encoding

First, we evaluate the effectiveness of the proposed feature rep-
resentation approach and the active learning method. The accuracy
of power estimation is measured by normalized root mean square
error (NRMSE). The results of Design A, Design B, and Design C
are respectively reported in Tables II, III, and IV, where the results
derived from different ratios of training data (TD) are shown in
separate columns, and “Error” and “Ratio” respectively denote the
NRMSE and the error ratio compared to the baseline work. The
results of “10% TD” are not reported for Design B since no approach
can achieve reasonable estimation accuracy. Four methods are first
compared in the three tables: “[4]” uses the binary switching encoding
in the MLP model or the three-state switching encoding in the CNN
model proposed in [4], and the training data are randomly selected
(baseline); “[4]+CENTER” uses the same switching encoding as
that of “[4]” and the “CENTER” data selection scheme proposed
in our work; “Ours CENTER” uses the 16-transition-type switching
encoding, the model architecture excluding the RNN-based autoen-
coder, and the “CENTER” data selection scheme proposed in our
work; “Ours OUTLIER” is the same as “Ours CENTER”, while the
“OUTLIER” data selection scheme is adopted. Due to the different
selection mechanisms, the testing data of different methods are not
the same. For fair comparison, the NRMSEs listed in the tables
are the NRMSEs of all cycles (i.e. training set + testing set). Note
that the NRMSE improvements derived from our approach are more
significant if only testing set is counted (about 2X improvements
compared to those made in Tables II–IV). Observing from the
tables, for the relatively small design Design A, the proposed 16-
transition-type switching encoding and active learning-based selec-
tion mechanism are helpful for model training when a small ratio
of training data (10% or 20%) is selected, where 32% and 9%
accuracy improvement can be achieved by one of the two data
selection methods. For the other two large-scale designs Design B
and Design C, the accuracy improvements are more significant. For
example, the accuracy improvements can be up to 76% and 47%
respectively for Design B and Design C when 40% data are selected
for training, and 85% and 63% improvements can respectively be
achieved when 80% data are selected.

The great accuracy improvements achieved in large-scale designs
can, for example, be understood by the scatter charts of Design B
with “80% TD” shown in Fig. 12, where the x-axis is the golden
power values and the y-axis is the estimated power values. When
the data are more scattered on the 45◦ line, the estimated values
are more accurate. The highlighted red points are the real data with
the top 30 power values. The correct estimations of these data with
higher power values can contribute to the power analysis and signoff
in the later design stages. Figs. 12(a) and (b) respectively show the
scatter charts of training data for [4] and our approach, and Figs. 12(c)
and (d) respectively show those of testing data. It can be found that
although [4] can achieve fine estimation accuracy on training data, it
suffers from large NRMSE on testing data. In contrast, our approach
performs well on both training data and testing data.

Fig. 12. The scatter charts of Design B with 80% TD. (a) Training
data of [4]. (b) Training data of our approach. (c) Testing data of [4].
(d) Testing data of our approach.

B. Effectiveness of the RNN-based Auto-Encoder

We show the effectiveness of adopting the proposed RNN-based
auto-encoder for multi-cycle path handling. Since only Design B and
Design C contain multi-cycle paths, the results are only shown in
Tables III and IV. In the two tables, “Ours CENTER +RNN 4”
indicates k = 4 in the RNN-based auto-encoder, which means that the
proposed model considers the switching features of five consecutive
clock cycles. The “CENTER” selection scheme is used in this
experiment. Similarly, “Ours CENTER +RNN 8” indicates k = 8
in the RNN-based auto-encoder. The results show that the adoption
of the RNN-based encoder can further enhance estimation accuracy
when fewer proportions of data are selected for training (≤ 40%
TD). Compared to the method “Ours CENTER”, for example, an
additional 11% accuracy improvement is obtained in Design B with
“40% TD”, and an additional 44% accuracy improvement is obtained
in Design C with “20% TD”. It can also be found that when the
proportion of training data increases, using k = 8 in the auto-encoder
decreases estimation accuracy, which may be due to the training error
of the auto-encoder itself.

C. Effectiveness of the Glitching Encoding

This section further shows the effectiveness of the proposed
glitching encoding. Note that this encoding can only be applied
when gate-level circuit information is available and is also applicable
in cycle-by-cycle power estimation. The results are also reported
for the two large-scale designs in Tables III and IV, where the
two sets of data respectively denoted by “glitch I” and “glitch O”
indicate that each glitch belongs to the input of the cells behind
or belongs to the output of the cell ahead. Both the two methods
count the number of rising transitions in each glitch and use the
“CENTER” data selection method. The results in Table III do not
show great accuracy improvement when the glitching encoding is
adopted, because the glitching power in Design B does not contribute
much in the total power. On the other hand, the results in Table IV
show that the glitching encoding can further enhance the estimation
accuracy when training data are sufficient (≥ 40% TD). In addition,
counting the glitches at cell inputs usually leads to better performance
than counting them at outputs.

- 142 -



TABLE II
THE NRMSES OF DIFFERENT APPROACHES WITH DIFFERENT RATIOS OF TRAINING DATA FOR DESIGN A.

Methods 10% TD 20% TD 40% TD 60% TD 80% TD
error (%) Ratio Error (%) Ratio Error (%) Ratio Error (%) Ratio Error (%) Ratio

[4] 10.5 1.00 6.2 1.00 5.4 1.00 5.2 1.00 5.2 1.00
[4]+CENTER 8.3 0.79 7.3 1.17 6.6 1.22 6.7 1.29 6.3 1.21

Ours CENTER 8.6 0.82 5.7 0.91 5.5 1.01 5.0 0.97 4.9 0.95
Ours OUTLIER 7.1 0.68 5.8 0.94 5.1 0.95 5.2 1.00 4.8 0.92

TABLE III
THE NRMSES OF DIFFERENT APPROACHES WITH DIFFERENT RATIOS OF TRAINING DATA FOR DESIGN B.

Methods 20% TD 40% TD 60% TD 80% TD
Error (%) Ratio Error (%) Ratio Error (%) Ratio Error (%) Ratio

[4] 133.4 1.00 83.1 1.00 56.8 1.00 45.0 1.00
[4]+CENTER 72.0 0.54 35.9 0.43 18.8 0.33 15.0 0.33

Ours CENTER 59.6 0.45 28.7 0.35 9.8 0.17 7.8 0.17
Ours OUTLIER 65.5 0.49 20.0 0.24 10.6 0.19 6.7 0.15

Ours CENTER+RNN 4 55.0 0.41 20.1 0.24 9.9 0.17 10.2 0.23
Ours CENTER+RNN 8 58.4 0.44 24.8 0.30 17.8 0.31 16.9 0.38
Ours CENTER+glitch I 55.7 0.42 19.2 0.23 8.4 0.15 7.3 0.16
Ours CENTER+glitch O 55.9 0.42 21.9 0.26 8.4 0.15 7.6 0.17

TABLE IV
THE NRMSES OF DIFFERENT APPROACHES WITH DIFFERENT RATIOS OF TRAINING DATA FOR DESIGN C.

Methods 10% TD 20% TD 40% TD 60% TD 80% TD
Error (%) Ratio Error (%) Ratio Error (%) Ratio Error (%) Ratio Error (%) Ratio

[4] 17.7 1.00 12.0 1.00 9.3 1.00 8.4 1.00 7.8 1.00
[4]+CENTER 17.6 0.99 10.3 0.86 7.6 0.81 7.2 0.86 7.2 0.92

Ours CENTER 16.9 0.95 12.1 1.01 4.9 0.53 3.4 0.40 2.9 0.37
Ours OUTLIER 18.0 1.01 10.5 0.88 5.5 0.59 4.5 0.53 3.7 0.48

Ours CENTER+RNN 4 10.9 0.61 7.1 0.59 4.8 0.51 3.6 0.42 2.9 0.37
Ours CENTER+RNN 8 9.0 0.51 6.9 0.57 4.8 0.52 3.7 0.44 3.2 0.41
Ours CENTER+glitch I 12.7 0.72 8.5 0.71 3.1 0.34 1.5 0.18 1.0 0.13
Ours CENTER+glitch O 14.6 0.82 8.4 0.70 3.8 0.41 2.1 0.25 1.3 0.16

IV. CONCLUSION

In this paper, we propose a machine learning-based cycle-by-cycle
power estimation model with multi-cycle path consideration. With
the proposed active learning mechanisms, the amount of required
training data can be reduced with sufficient estimation accuracy, and
thereby the time for running a power analysis tool for data labeling
can be reduced. The experimental results show that the proposed
switching encoding and the data selection mechanisms make our
model outperform an existing method, and the adopted RNN-based
auto-encoder can further enhance estimation accuracy for the designs
with multi-cycle paths when fewer proportions of data are selected
for training.

REFERENCES

[1] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli, “Regression-based
RTL power modeling,” ACM Transactions on Design Automation of Electronic
Systems, vol. 5, no. 3, pp. 337—372, 2000.

[2] Jason H. Anderson and Farid N. Najm, “Power estimation techniques for FPGAs,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 10
pp. 1015–1027, 2004.

[3] Jianlei Yang, Liwei Ma, Kang Zhao, Yici Cai and Tin-Fook Ngai, “Early stage
real-time SoC power estimation using RTL instrumentation,” in Proceedings of
Asia and South Pacific Design Automation Conference, 2015.

[4] Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru
Zhang, “PRIMAL: Power Inference using Machine Learning,” in Proceedings of
Design Automation Conference, 2019.

[5] Yanqing Zhang, Haoxing Ren, and Brucek Khailany, “GRANNITE: graph neural
network inference for transferable power estimation,” in Proceedings of Design
Automation Conference, 2020.

[6] Ozan Sener and Silvio Savarese, “Active learning for convolutional neural net-
works: A core-set approach,” in Proceedings of International Conference on
Learning Representations, 2018.

[7] Burr Settles, ”Active learning literature survey,” in Computer Sciences Technical
Report 1648, University of Wisconsin–Madison, 2009.

[8] Yasi Wang, Hongxun Yao, Sicheng Zhao, and Ying Zheng, “Dimensionality
reduction strategy based on auto-encoder,” in Proceedings of International
Conference on Internet Multimedia Computing and Service, 2015.

[9] David D. Lewis and William A. Gale, “A sequential algorithm for training text
classifiers,” in Proceedings of the ACM SIGIR Conference on Research and
Development in Information Retrieval, 1994.

[10] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-term memory,” in Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[11] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio, “Learning phrase representations
using RNN encoder-decoder for statistical machine translation,” in Proceedings of
the Empirical Methods in Natural Language Processing, 2014.

[12] Keras: The Python Deep Learning library. https://keras.io/, 2018
[13] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu
Brucher, Matthieu Perrot, and Édouard Duchesnay, “Scikit-Learn: machine learn-
ing in python.” The Journal of Machine Learning Research,, vol. 12, pp. 2825–
2830, 2011.

[14] Synopsys PrimeTime PX. https://www.synopsys.com/support/training/signoff/
primetimepx-fcd.html.

- 143 -


