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Abstract— The demand for deep learning has in-

creased, and many accelerators have been proposed.

Although they perform inference at high speed, many

of them have problems in training. We present the

”tail layer training” for a convolutional neural net-

work (CNN). In this method, only the tail layer of the

model is trained. Since the number of neurons in the

output and classes must be the same for image classi-

fication, it is effective for retraining to count the num-

ber of classes. Accuracy loss is negligible when train-

ing only the tail layer with two added categories in

CIFAR10. Even on large datasets such as ImageNet,

underfitting of additional classes can be avoided by us-

ing data augmentation. And since only the tail layer

is trained, fast computation using a CNN accelerator

is possible. Therefore, lightweight learning on FPGAs

is achieved. Our scheme can be applied to the all ex-

isting SoC-FPGA-based CNN accelerator.

I. Introduction

Deep learning models are widely used in a variety of
fields, with image classification at the top of the list,
for example Classification[1], Object Detection[2], Face
Detection[3], Segmentation[4], Pose Estimation[5], Molec-
ular Depth Estimation[6], Super Resolution[7], GAN:
Generative Advisal Network[8], etc. Most of these ap-
plications are based on Convolutional Neural Network
(CNN)[9].

CNNs need a massive number of parameters and
computational complexity compared to existing machine
learning models. Therefore, while they are suitable for
training complex tasks with large amounts of data, they
are also computationally demanding. Thus, CNN-specific
accelerators have been developed and used in embedded
systems that require high speed and low power consump-
tion. However, many accelerators cannot train on the
accelerator because they require pre-optimization (quan-
tization and sparsification) and compilation of the trained
model. In FPGAs, DPU (Deep learning Processor Unit)
developed by Xilinx can be used for fast inference with

learned models, but it does not support training. In con-
trast, embedded systems may require training on edge
after design with additional functionality or updates. For
example, face recognition has recently been developed as
a seamless authentication method. Face recognition sys-
tems are expected to be used in various locations, so there
may be some situations where the system is not connected
to a network. In addition, the facial photographs needed
to learn facial recognition are personal information. There
is a risk in communicating such information over a net-
work. Therefore, there is an advantage in completing the
learning within the edge terminal. In this case, it is diffi-
cult to train a new face for authentication using only an
edge terminal.

In this paper, we propose Tail Layer Training as a
lightweight learning method on FPGA. In this method,
additional hardware and training algorithms in a DPU,
one of the CNN accelerators, and perform other train-
ing on the CPU. Typically, CNNs are trained using back-
propagation. It calculates the error between the training
data and the correct data for all layers and updates the
parameters while controlling overfitting by the learning
rate. Therefore, it requires many computer resources and
time and is unsuitable for embedded systems. In con-
trast, adding or updating functionality in embedded sys-
tems is often limited, and the tasks are often the same
with limited additional data. Fine-tuning is a method for
fast convergence of CNN training. It replicates some of
the parameters of the trained model to a part of the CNN
model to be trained. Thus, making the trend of the target
model closer to that of the trained model. For example,
fine-tuning on ImageNet can converge in a short train-
ing epoch in image recognition tasks. In this paper, we
target a classification task and propose to add a training
function to the accelerator by making only the tail layer
of the CNN independent. Only the tail layer is trained
in software using an ARM processor on an FPGA, and
the trained parameters are reflected in the hardware ded-
icated to the tail layer. In the classification task, the first
part of the CNN is considered the feature extraction of the
image. The last part is considered to be the encoding of
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the extracted features into a class index that humans can
understand. If this assumption is correct, the classifica-
tion task can be re-trained by implementing a pre-trained
model in the same domain with a DPU and training only
the encoding part at the tail layer. This method can be
applied in other models where labeling is based on fea-
tures. It can also be applied to CNN accelerators other
than DPU.
It was found that this tail layer learning tended to un-

derfitting for additional classes. This effect is sufficiently
small when small data sets are used and the proportion
of additional classes is large. However, when using a large
data set, the problem is that the ratio of additional classes
to existing classes is so small that they are not adequately
trained. Therefore, we solved this issue by using data aug-
mentation.
The structure of this paper is as follows. Chapter 2 de-

scribes related research and tools. Chapter 3 describes the
proposed method of tail layer training and data augmen-
tation. Chapter 4 presents experiments and a discussion
of the proposed method, and Chapter 5 concludes the pa-
per.
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Fig. 1. Convolutional Layer Overview.

II. Related Work

A. CNN (Convolutional Neural Network)

A CNN (Convolutional Neural Network) is a deep learn-
ing model used for tasks such as image classification,
which automatically extracts features from images by per-
forming two-dimensional convolution. Typically, models
used for image classification require that the number of
neurons in the output layer matches the number of clas-
sification classes. Therefore, the CNN must be re-trained
with all the data when adding a class.
CNN models such as VGG[10], ResNet[11], and

MobileNetV2[12] have already been proposed, which use
a convolutional layer, a pooling layer, and a fully con-
nected layer. The convolutional layer (conv layer) has a
structure like Fig. 1. The output is determined by the
sum of the product of the weights assigned to the convo-
lution window and the input, and this process is applied
by shifting the window. It has the effect of extracting

a variety of features. The pooling layer has the effect of
compressing the size of the input by obtaining representa-
tive values. There are two methods for selecting expected
values: max pooling (selecting the maximum value within
a specific range) and average pooling (setting the average
value). These are weightless because they are determined
from the input values only. In the fully connected layer
(fc layer), the output is determined from the sum of the
product of the inputs and weights. Still, there are as many
weights as the product of the number of input dimensions
and the number of output dimensions. In VGG, ResNet
and MobileNetV2, the all-connected layer is used at the
end of the model.

B. Data Augmentation

Data augmentation is a technique that can virtually
increase the amount of data by adding preprocessing to
the data set. Typical methods include center crop and
resize. In general, data augmentation is expected to be
effective in learning and preventing overfitting even with
a small amount of data.

III. Proposed Method

Fig. 2. Tail Layer (fc3) Training in VGG16.

Fig. 3. Tail Layer (fc) Training in ResNet50.

A. Tail Layer Training

The number of neurons in the output layer of the CNN
must match the number of classes to be classified. There-
fore, when additional classes are desired, the model must
be changed to one with an increased number of output
neurons and retrained.
Assuming that features can be extracted while the in-

put passes through many layers of the CNN, it is pos-
sible to achieve sufficient accuracy by simply retraining
the mapping between features and labels in the tail layer.
This training is defined as tail layer training. In this pa-
per, we propose two methods for training the tail layer:
one is to use a randomly determined initial value, and
the other is to train only the additional classes without
updating the weights of the existing classes.
Fig. 2 shows an example of tail layer training when

VGG16 is used. Fig. 3 shows an example of tail layer
training when ResNet50 is used. The layers shown in
white in Fig. 2 and Fig. 3 are the layers whose weights
are not updated in the tail layer training. Therefore, only
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inference is performed on the input images. In contrast,
the tail layer shown in blue is the fully connected layer (fc
layer) for both VGG16 and ResNet50.
The inference-only layer reuses the same weights.

Therefore, using pre-trained weights and compiling only
the portions of VGG and ResNet without the tail layer
can be computed faster using DPUs. Since this part of
the model represents a large portion of the model, it can
significantly reduce the computational cost compared to
training the entire model. For example, VGG16 has 134M
parameters. Of these, the input for the tail layer has 4,096
dimensions and output has 1000 dimentions if we use im-
agenet. Therefore, the number of parameters in the tail
layer paramfin can be said to be

paramfin = 4096× 1000 + 1000 (1)

≃ 0.41M. (2)

Only about 0.3% of the total parameters need to be
trained. In addition, the output of the layers whose
weights do not change as the training progresses. The
training process can be made even faster in the second
and subsequent epochs by saving the output at the DPU
when training with the same image.

B. Back Propagation for Tail Layer Training

Neural networks, including CNNs, cannot make ap-
propriate inferences about the input unless the weights
have appropriate values, and the expected output and
the model output will not match. Therefore, it is nec-
essary to update the weights, one of which is the back
propagation method. Let y be the expected output and
ŷ be the model output, and let E be the error function
E = |y − ŷ|2.
The weights are changed to minimize E because E

should be adjusted to be zero and E ≥ 0 is always true in
order to make the model output the expected output.To
minimize E, the difference ∆w for modifying each weight
w is updated according to

∆w = −η
∂E

∂w
(3)

using an appropriate learning rate η.
Let zl−1

i be the input of the i-th neuron in the l − 1
layer and xl−1

i be its output. Also, let wl−1
i,j be the weight

from the i-th neuron in layer l − 1 to the j-th neuron in
layer l. When the activation function σ is

xl
j = σ(

∑
i

zl−1
i wl−1

i,j ) (4)

, then the right side of Eq.(3) is

−η
∂E

∂wl
i,j

= −η
∂E

∂xl+1
j

σ′(zl+1
j )xl

j (5)

.

In the tail layer, for ∂E

∂xl+1
j

in Eq.(5), when the number

of layers of the CNN is n, xn
j = ŷj . By E = |y − ŷ|2, it

can calculated as

∆wl
i,j = −η

∂E

∂wl
i,j

(6)

= −η
∂E

∂xl+1
j

σ′(zl+1
j )xl

j (7)

= −η
∂|y − ŷ|2

∂ŷj
σ′(zl+1

j )xl
j (8)

= 2η(yj − ŷj)σ
′(zl+1

j )xl
j (9)

. This shows that only the tail layer can be trained.
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Fig. 4. Hardware Configuration of Tail Layer Training.
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C. Implemented Platforms

The hardware configuration for tail-layer training is
shown in Fig. 4, where models compiled from ResNet ex-
cept for the tail layer are computed on a DPU. On the
other hand, the tail layer for training is computed on the
CPU.
The model creation method is shown in Fig. 5. Except

for the tail layer of ResNet, it needs to be converted into
a format executable by DPU. xmodel files are generated
by compiling after quantization using Vitis AI and then
transferred to the board to be read. The system can be
used for the following purposes. The tail layer can be
loaded with weights trained in advance.

D. Data Augmentation for large dataset

For small datasets such as CIFAR10, sufficient accu-
racy has been confirmed even with Tail Layer Training.
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On the other hand, when using a large dataset such as
ImageNet, the proportion of training data for additional
classes is extremely small, resulting in underfitting and
loss of accuracy. Therefore, we propose a method to im-
prove the ratio by applying data augmentation only to
the additional classes. Some well-known augmentation
methods are center cropping, resizing, and flipping. Pre-
liminary experiments were conducted on center cropping
and resizing, where the scale factor can be set continu-
ously, and it was found that resizing in particular works
effectively. Consequently, we decided to perform resizing
of various magnifications only on the additional classes
without augmentation on the existing classes to change
their proportions in the data set.

IV. Experiments and Discussions

A. Experimental Environment

Python 3.8.8, PyTorch 1.7.1, and Torchvision 0.8.2 were
used to train the model. The DPU was created using
Vitis-AI 2021.1 and implemented on a ZCU104 board.

TABLE I
Classification accuracy of CIFAR10 using VGG16.

domain 8 classifications Tail layer training existing method
ALL 91% 86% 89%
plane 94% 71% 92%
car 98% 84% 93%
bird 86% 87% 85%
cat 84% 83% 88%
deer 93% 91% 91%
dog 83% 86% 88%
frog 98% 94% 92%
horse 91% 92% 93%
ship −− 98% 97%
truck −− 83% 92%

TABLE II
Classification accuracy of CIFAR10 using ResNet18.

domain 8 classifications Tail layer training existing method
ALL 95% 94% 95%
plane 98% 96% 96%
car 99% 93% 98%
bird 94% 93% 93%
cat 90% 88% 98%
deer 95% 94% 96%
dog 92% 92% 91%
frog 98% 98% 97%
horse 99% 96% 97%
ship −− 96% 96%
truck −− 94% 97%

B. Accuracy of Tail Layer Training Using CIFAR10

The results of the tail layer training using VGG16 are
shown in Table I. Eight classes of VGG16, excluding ship
and truck, were trained using the weights learned in Im-
ageNet as initial values, resulting in a 91% correct re-
sponse rate. Using this 8-class classification model as a

TABLE III
Classification accuracy of CIFAR10 using ResNet50.

domain 8 classifications Tail layer training existing method
ALL 96% 96% 96%
plane 99% 95% 97%
car 99% 97% 97%
bird 94% 96% 95%
cat 93% 93% 91%
deer 97% 98% 97%
dog 94% 94% 95%
frog 97% 97% 99%
horse 98% 98% 97%
ship −− 96% 98%
truck −− 95% 97%

TABLE IV
Classification Accuracy of CIFAR10 Using MobileNetV2.

domain 8 classifications Tail layer training existing method
ALL 95% 94% 95%
plane 98% 93% 97%
car 99% 94% 97%
bird 94% 93% 96%
cat 90% 89% 89%
deer 96% 96% 96%
dog 90% 92% 90%
frog 98% 97% 98%
horse 97% 96% 96%
ship −− 95% 96%
truck −− 91% 97%

base, we trained only the tail layer using all CIFAR10
images and obtained an overall accuracy rate of 86%.
On the other hand, VGG16, in which the entire model
was trained with CIFAR10, had a correct response rate
of 89%. Tail layer training shows only three-point accu-
racy degradation compared to existing methods.
Similarly, the results of tail layer training using

ResNet18, ResNet50, and MobileNetV2 are shown in Ta-
ble II, Table III, and Table IV, respectively. These models
achieve recognition accuracies of 94% or better. The re-
sults with Tail Layer Training showed only a 1% degrada-
tion in accuracy compared to existing methods. This sug-

TABLE V
Classification accuracy of CIFAR10 when pretrains with

ResNet50 are used as is.

domain 8 classifications Tail layer training existing method
ALL 85% 83% 96%
plane 91% 79% 97%
car 96% 89% 97%
bird 76% 77% 95%
cat 75% 75% 91%
deer 83% 75% 97%
dog 85% 84% 95%
frog 90% 88% 99%
horse 88% 86% 97%
ship −− 91% 98%
truck −− 89% 97%
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Fig. 6. The Process of Tail Layer Training

gests that the higher the accuracy of the original model,
the less the accuracy degradation may be when Tail Layer
Training is performed.
The results of the same tail layer training experiment

are shown in Table V. It decreases in accuracy for all
items compared to Table III, which was tested using the
same model and data set. It may suggest that when ex-
tracting features in layers other than the tail layer, the
training results from the existing domain are effective even
in the new domain in the additional training.

C. Accuracy of Tail Layer Training Using ImageNet

ResNet50 trained with 999 classes, excluding n15075141
(toilet tissue), which corresponds to the last label in Ima-
geNet, yielded a correct response rate of 74%. Using this
model as a base, we trained only the tail layer from initial
values given by random numbers using all images in Im-
ageNet. We obtained a correct overall rate of 75% (Fig.
6). On the other hand, the added classes only resulted
in a 32% correct response rate. In this experiment, the
class with the highest error rate was n03887697 (paper
towel), which classified 24%. This suggests that the dis-
tinction between similar images remains ambiguous and
underfitting is occurring.

D. Data Augmentation for Tail Layer Training

To improve underfitting, data augmentation was per-
formed on the additional data. While the train data for
the existing classes remained unchanged, the number of
images for the additional classes could be increased to
any number by adding images resized to various magnifi-
cations. Specifically, the following settings were used, we
experimented with the following settings.

• Add an image with one side multiplied by
√
2 to dou-

ble the total amount

• Add an image with one side multiplied by 1.1, 1.2,
..., 1.9 to increase the total amount by 10

Fig. 7. Learning curve with double augmentation of data

Fig. 8. Learning curve with 10x augmentation of data

• Add an image with 1.1, 1.2, ..., 2.9 times one side to
increase the total amount by 20

The results are shown in Fig. 7, 8, and 9, respectively.
The overall accuracy in all figures was a finally 75%. The
final accuracy for the additional classes was 54% in Fig. 7,
60% in Fig. 8, and 74% in Fig. 9. Compared to Fig. 6, the
accuracy of the additional class was improved in all cases,
and the overall accuracy was not significantly affected. In
the case of Fig. 7, the accuracy of the additional class
is clearly lower than the overall accuracy. However, as
the total amount of additional data is increased by aug-
mentation, the accuracy approaches the overall accuracy.
In particular, in Fig. 9, the two results show almost the
same learning curve, which is considered to be the ideal
learning state in which neither underfitting nor overfitting
occurs.

E. DPU Modeling and Inference

The ResNet50 model trained with PyTorch using Vitis-
AI can be quantized and compiled for ZCU104 to cre-
ate xmodel files. The tutorial provided on DPU on
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Fig. 9. Learning curve with 20x augmentation of data

PYNQ[13] includes inference using ResNet50, with a per-
formance of 26.02 FPS. On the other hand, the remainder
of ResNet50, excluding the tail fully connected layer, was
inferred using DPUs. Only the tail layer was inferred us-
ing a model that can be trained with PyTorch, resulting
in a performance of 18.27 FPS. Although the tail fully
connected layer is implemented with PyTorch on a CPU,
the inference speed is sufficient.

F. Increased Learning Costs When Using Data Augmen-
tation

To find out how much learning cost is required by data
augmentation, we performed the following experiment:
For training on ZCU104, we prepared a dataset that is
1/10 of ImageNet and trained with a batch size of 1, which
took 12139 seconds per epoch. For the same dataset,
training with augmentation to increase the amount of ad-
ditional classes by a factor of 20 took 12260 seconds per
epoch. Thus, the augmentation is expected to increase
the training cost by 1%.

V. Conclusion

We trained only the tail layer on the CPU/DPU hybrid
system. Using a CNN accelerator allowed faster inference.
However, the almost weights were not updated. It sep-
arates the tail layer from the CNN accelerator while the
CPU is used for training, such as adding classes. Although
tail layer training on large datasets tends to underfitting
for additional classes, this is resolved by data augmen-
tation. We showed that our CPU/DPU hybrid system
only had a few performance degradation with a training
functionality. Our scheme can be applied to the existing
SoC-FPGA-based CNN accelerator.
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