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Abstract—As large-scale integrated circuits (LSIs)

grow in size and complexity, improving LSI test qual-

ity without increasing test costs becomes challenging.

LSIs manufactured with advanced technologies exhibit

significant variation in characteristics. The variation

makes it difficult to determine the pass/fail thresh-

old that distinguishes good and bad chips. Therefore,

the yield loss and test escape ratios are increasing.

Particularly, automotive semiconductors must comply

with test standards set by the Automotive Electronics

Council (AEC), resulting in increased yield loss and

test escape compared to carefully designed threshold.

To address this issue, a method that utilizes Gaussian

process regression to determine the pass/fail threshold

with has been proposed for power MOSFETs [1]. This

paper applies this approach to industrial LSI test data

and confirms that it is equally effective for both power

MOSFETs and LSIs. The method reduces yield losses

and test escapes by 0.019% and 35.5% when compared

to conventional methods in compliance with the AEC

standard.

I. Introduction

The manufactured large-scale integrated circuits (LSIs)
are tested with various test items under multiple environ-
ments before shipping. It is considered defective if the LSI
fails to meet any of the requirements. In other words, only
LSIs that meet all required specifications are shipped as
good products [2]. However, due to variations in the man-
ufacturing process, characteristics of the LSI vary greatly,
making it challenging to differentiate between good and
faulty products. “Yield loss,” in which faulty products
are classified as faulty even if they are good products,
and “test escape,” in which faulty products are shipped
as good ones, have become a serious problem. Further-
more, automotive semiconductor products must comply
with the test standard (AEC-Q001) established by the
Automotive Electronics Council (AEC) [3]. AEC-Q001
utilizes the dynamic part average testing (DPAT) method
to determine the threshold based on Six Sigma for each
wafer. The DPAT method has limitations in capturing

chips with local deviation as it is based on wafer-wide
distribution. This makes it difficult to test automotive
LSIs without causing yield losses and test escapes.

Many studies have been conducted to appropriately set
pass/fail thresholds. The example includes nearest neigh-
bor residual (NNR) method [4]. The NNR method pre-
dicts trends based on the characteristics of adjacent chips,
utilizing local trends on a wafer. However, when there are
multiple failed LSIs present, the predictions may be biased
due to the utilization of only a limited number of adja-
cent chips for the prediction. Recently, a new method has
been proposed for setting pass/fail thresholds by learning
the characteristics of good LSIs through machine learn-
ing [5,6]. However, the results of machine learning lack
clear explanation why the chip is passed/failed, thus have
limited application in actual testing environments.

This study reports the results of applying the method
proposed in [1] to industrial LSI test data. This method
utilizes Gaussian process regression (GPR) [7] to predict
the measurement result of the target LSI and compare
the with the actual measurement result. GPR calculates
the prediction accuracy based on Bayes’ theorem, thus
enabling probabilistic comparisons. In [1], silicon carbide
(SiC) power MOSFET was targeted, and their threshold
voltage and on-resistance were adopted as the test items.
As there is no essential difference between SiC MOSFETs
and silicon LSIs in terms of semiconductor manufacturing
variations, the GPR-based method is also expected to be
effective for LSIs. This evaluation indicates that yield
losses and test escapes are reduced by 0.019% and 35.5%,
compared to the DPAT and NNR methods, respectively.
Furthermore, analysis of the LSIs that could be revealed
that the LSIs that could be detected by the GPR-based
method included those detected by the DPAT and NNR
methods. It is expected that AEC-Q001 can be replaced
by the GPR-based method.

The remainder of this paper is organized as follows:
Sec. II briefly summarizes the GPR, which is the core
technique in [1]. This section also provides an overview
of the DPAT and NNR methods as conventional methods
and discusses these issues. Sec. III describes the details of
the GPR-based method [1]. In Sec. IV, we evaluated the
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GPR-based method utilizing industrial LSI test data for
comparison with the DPAT and NNR methods. Finally,
we will conclude this paper in Sec. V.

II. Preliminaries

A. Gaussian process regression

A Gaussian process is employed to estimate the func-
tion y = f(x) from the input variable x to the output
variable y [7]. The estimated function f(·) has nonlinear
characteristics and can be predicted even if it is a complex
model. In addition, the Gaussian process is based on the
Bayes’ theorem, and the estimated function is obtained
not as a single function but as a distribution function, al-
lowing the uncertainty of the estimation to be expressed
as a predictive distribution.
Here, we will explain the GPR. The variables

(Xtrain,ytrain) = ((x1, y1), (x2, y2), . . . , (xN , yN )) and
Xtest = (x∗

1,x
∗
2, . . . ,x

∗
M ) denote the training and test

datasets, respectively, where M ≫ N . Furthermore, the
kernel function fkern is provided as an input. From these
inputs, the GPR utilizes the calculated prediction model
f(·) to return the mean µ = (µ1, µ2, · · · , µM ) and vari-
ance υ = (υ1, υ2, · · · , υM ) of the predicted values corre-
sponding to the test input Xtest.
For each element of Xtrain, the kernel matrix K of

the training dataset is calculated with a kernel function.
Then, by modeling the multidimensional normal distribu-
tion, as in

p(y∗m|x∗
m,Xtrain,ytrain)

=N (kT
∗ K

−1ytrain,k∗∗ − kT
∗ K

−1k∗),
(1)

the probability density function of the predicted value Y ∗
m

corresponding to X∗
m is derived. In Eq. (1), k∗ is the

covariance matrix between the training and test datasets
and k∗∗ is the covariance matrix of test datasets.
From Eq. (1), the mean and variance of Y ∗

m can be
derived analytically. The examples of the kernel function
include linear kernels, squared exponential kernels, and
Matern kernels [8]. The appropriate kernel can be selected
based on the specific situation.
In Eq. (1), because K is a covariance matrix,

fkern(x,x
′) becomes larger when x and x′ have similar

values. Consequently, f(x) and f(x′) exhibit similar val-
ues. In predicting the characteristic distribution of wafer
space, the variance υ is utilized to check the uncertainty
of the prediction against the predicted mean µ. Neigh-
boring chips on a wafer are known to have similar char-
acteristics, and this characteristic makes Gaussian pro-
cesses, which estimate the characteristic variance on a
wafer in a Bayesian manner, highly compatible with the
prediction of smoothly varying characteristics in the wafer
space [9,10]. Furthermore, verifying the reliability of the
predicted function through variance facilitates operation
in an actual test environment.

Threshold Threshold

FaultyFaulty Normal

Fig. 1. Concept of the DPAT
method.

Target LSI

Neighboring
LSI2

3 4 5
6
781

Fig. 2. Eight neighbors for
interpolation.

B. Related works

B.1. Dynamic part average testing (DPAT)

The DPAT method has been standardized as AEC-Q001
and must be applied to automotive semiconductors. As
illustrated in Fig. 1, the DPAT method sets a single
pass/fail threshold for all the chips on a wafer. The aver-
age is calculated from the measured values of all N chips
on the wafer, and ±6σ, where σ is the standard deviation
of the measured values for N chips, from the average is
set as the threshold value pd for determining whether the
target chip is good or not as pd = 1

N

∑N
i=1 pi ± 6σ. In

the DPAT method, pd is determined for each wafer, and
chips with measured value of i-th chip, pi, exceeding this
value are considered as bad chips.
However, ignoring the characteristic variations occur-

ring within the LSI wafers manufactured with advanced
technologies is no longer possible. In addition, the prob-
ability distribution of the measurements does not always
follow a normal distribution. The DPAT method, which
sets a single threshold for all chips on a wafer, is inap-
propriate to use without incurring yield losses and test
escapees. LSI testing becomes more difficult as manufac-
turing processes become more complex and the relative
magnitude of manufacturing variation increases. How-
ever, AEC-Q001 has not been updated for over a decade,
and there is a strong need for new testing methods to
supersede this standard.

B.2. Neighbor Nearest Residual (NNR) method

The NNR method is a test method that considers lo-
cal variation trends on a wafer [4]. The estimations are
made based on the measured values of the neighboring
chips of the target chip, as shown in Fig. 2. The NNR
method leverages the characteristics of a systematic vari-
ation component in the process variation of a manufac-
tured LSI. The systematic variation component represents
a gradual spatial change on the wafer and is modeled using
a low-order polynomial function of the chip coordinates on
the wafer. Therefore, the characteristic values measured
at neighboring coordinates on the wafer are similar.
When the NNR method is applied to the measured

value p, the NNR method estimates the average of the
measured values obtained from the nV chips around the
target chip as illustrated in Fig. 2, as the measured value
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p∗ of the target chip, as follows: p∗ = 1
nV

∑nV

i=1 pi. This
takes advantage of the fact that neighboring chips have
similar characteristics owing to the systematic variation
component. Ideally, the estimated value p∗ and the mea-
sured value p match. However, if the residual difference
between p∗ and p exceeds the threshold value, the target
chip is determined to be faulty.
The NNR method does not consider the process varia-

tion across the entire wafer and only estimates the mea-
sured value of the target chip from the neighboring chips.
If multiple faulty chips coexist among neighboring chips,
p∗ will be inaccurate, leading to a degradation in test ac-
curacy.

III. LSI test based on Gaussian process
regression

This section describes the method for setting test
pass/fail threshold based on the GPR approach proposed
in [1]. We will hereafter refer to it as the “GPR method”.
In this method, the spatial latent tendency of the chip
characteristics is regarded as a latent function f , and its
input X is a vector of coordinates (x, y) on the measured
wafer. Let y be the measured values of their LSIs at the
corresponding coordinates.
The concept of the proposed method is illustrated in

Fig. 3. The measured value y of a chip on a wafer contains
both systematic and random variation components, which
optimize the hyperparameters to describe the relationship
between the chip coordinates X and the measured value
y. Next, the posterior distribution p(y∗) corresponding
to each chip coordinate X∗ is predicted with GPR. The
mean of the distribution p(y∗) is only one expression of
the trend of y∗, which is represented by the distribution
υ. The probability that a measurement is in that distri-
bution implies the reliability of each chip based on the un-
derlying characteristic trend. Thus, from the distribution
p(y∗), we can compute a 100(1−α)% confidence interval,
where α implies a rejection rate, which is utilized in this
method to determine outlier (fail) chips. Those within
confidence interval is regarded as good chips. In Fig. 3,
although the measured values of Chips A and B are simi-
lar, the performance of Chip B deviates significantly from
the predicted performance of Chip B. Therefore, it is con-
sidered that the chip contains latent defects and classified
as fail.
In the GPR method, the ratio of chips that are deter-

mined to be faulty depends on the rejection rate α. In-
creasing α can eliminate possible outliers near the thresh-
old value. However, setting α to be too large will result
in chips that should be classified as pass being classified
as fail. In [1], assuming the fault is a random process, the
number of chips theoretically classified as outliers is com-
pared with the number of chips actually classified as out-
liers while sweeping α. It is proposed to use the smallest α
value that leads to a discrepancy between the theoretical
value and the actual value.

Unlike the DPAT method, this method can be applied
even when the distribution is non-normal. Furthermore,
the systematic trend is estimated for the entire wafer
and compared with actual measurements, unlike the NNR
method. We can expect more accurate LSI testing with
this method, as it is similar to well-established concept of
systematic and random components verified with various
measurements [11]. The obtained results are more ex-
planatory than the neural-network based methods. Note
that the GPR method is not done on the tester but in
post-processing on a server for the measurements.

IV. Experiments

Experiments were conducted with an industrial LSI test
dataset. In the experiments, three methods, i.e., GPR,
DPAT, and NNR, were applied to the dataset, and the
yield loss and fault detection rates were compared.

A. Experimental setup

A set of industrial production test data with approx-
imately 4,000 chips per wafer was provided by a semi-
conductor manufacturing company. Among multiple test
items, we utilized a standby-current test in the following
experiments. The test data includes nonfaulty (pass) and
faulty chips. The faulty/nonfaulty labeling was carefully
performed by LSI testing experts for all the wafers. The
faulty chips include latent defects that conventional test
items cannot detect. The measurement results for the
first wafer of the first lot are presented in Fig. 4(a), where
the systematic variation components are distributed in
concentric circles.
All programs employed in the experiment were imple-

mented in Python. GPR was performed with GPy [12]
which is a Python package with a radial basis function
(RBF) kernel [8] as fkern. Assuming we do not have prior
information, the estimation was performed on all chips.
The NNR method uses eight neighboring chips for esti-
mation, as illustrated in Fig. 2.
To quantitatively evaluate the test performance, we de-

fined yield-loss ratio and fault-detection ratio as follows.

Yield-loss ratio: Percentage of fault-free chips classified
as faulty

Fault-detection ratio Percentage of faulty chips classi-
fied as faulty

Ideally, The yield-loss ratio should be 0%, and the fault-
detection ratio should be 100%. Considering the semicon-
ductor business, the yield-loss ratio should be less than
1%. In our experiment, we maximized the fault-detection
ratio while maintaining a yield-loss ratio of less than 1%.

B. Estimation result

The NNR and GPR methods estimated the measured
values of the LSI under testing. The results estimated
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Fig. 3. Concept of a method for determining pass/fail threshold using Gaussian process regression [1]. The chips that fall outside the
confidence interval (blue area) are determined as faulty.

(a) Measurement

(b) Estimation (NNR) (c) Estimation (GPR)

Fig. 4. Heat maps of the first wafer.

(a) NNR (b) GPR

Fig. 5. Scatter plots between the measured and predicted values
for the first wafer.

with each method are presented in Figs. 4(b) and 4(c). As
described in Sec. II, p∗ calculated with the NNR method
gives biased estimations when there exist faulty chips in
the neighborhood, as shown in Fig. 4(b). In contrast, in

(a) x = 12

(b) x = 46

Fig. 6. Comparison of actual measurement data of the first wafer
of the lot, estimations by GPR method and DPAT method.

the GPR method, a concentric trend in Fig. 4(a) was
reproduced with the average value estimates, as shown
in Fig. 4(c). Fig. 5 presents scatter plots comparing the
measured and estimated values for a quantitative com-
parison. The correlation coefficients were 0.679 and 0.697
for the NNR and GPR methods, respectively. This result
indicates that the Gaussian process method yields better
prediction results.

Fig. 6 presents the y-coordinate plane with a fixed x-
coordinate for the measured values and the estimated and
DPAT method thresholds obtained by the GPR method
for the first wafer. Here, the rejection rate α given to the
GPR method is 0.0005, and the results at x = 12 and
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Fig. 7. ROC curve obtained from results for all wafers. Here, the
yield-loss ratio is evaluated at 1% or less.

x = 46 are presented. As illustrated in the figure, the
DPAT method provides a single pass/fail threshold for
each wafer. In contrast, the GPR method can adaptively
set the threshold for each chip, which is expected to pro-
vide a more flexible determination of pass and fail chips.
In addition, the GPR method can identify faulty chips
that deviate from the characteristic trend, which cannot
be detected with the DPAT method. For example, in the
results presented in Fig. 6, the chips with different trends
deviating from the confidence interval can be confirmed.
Because of page limitations, only the results for x = 12
and x = 46 on the first wafer are presented. Similar re-
sults were confirmed for the other wafers and coordinates.

C. Test performance comparison

C.1. Comparison of the fault-detection ratio

To compare the test performance of each method, the
results of the evaluation utilizing the receiver operating
characteristic (ROC) curve are presented in Fig. 7. Here,
we present the results for all the wafers. The horizon-
tal and vertical axes represent the yield-loss and fault-
detection ratios, respectively. When a curve is drawn in
the upper left of the figure, it indicates better test perfor-
mance result. In the figure, the result of DPAT is shown as
a point because it determines the pass/fail threshold with
Six Sigma. The GPR method has a higher fault-detection
ratio than the DPAT and NNR methods. Specifically,
the GPR method improved the fault-detection ratio by
37.1% compared with the DPAT method and by 30.9%
compared with the NNR method when the yield-loss ra-
tio of the DPAT method was considered, confirming an
improvement in the detection performance of faulty chips.
The above evaluation does not discuss how to determine

α, which is an important issue from a practical viewpoint.
As mentioned in Sec. III, the threshold determination in
the GPR method depends on the rejection rate α. Fig. 8
illustrates the relationship between the number of chips
theoretically determined to be defective based on the re-
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(b) Second wafer

Fig. 8. Comparison of theoretical and actual values of the number
of chips determining defective products for each rejection rate α.

jection rate α (a straight line with y = x) and the number
of chips determined to be faulty. Although the results for
the first and second wafers are presented here as exam-
ples, similar trends have been observed for many other
wafers. In [1], the usage of the smallest α that devi-
ates from the theoretical value and the actual number
was proposed because the number of fault detection chips
increased along the theoretical value in the range where α
was small. However, as shown in Fig 8, no similar trend
was identified in this dataset. In this experiment, α is
evaluated in the increments of 0.0001. The evaluation
point alpha in the GPR method was 0.0001, which was
the onset of a significant increase in the number of chips
determined as defective, and the following evaluation was
performed.

Based on the above discussion, the ROC curve at the
rejection rate α = 0.0001 is illustrated in Fig. 9. From this
figure, by comparing the fault-detection rate of the GPR
method with that of the NNR method, which yielded the
same yield-loss ratio, we confirmed that the GPR method
improved the detection rate by 35.5%. In addition, the
GPR method improved the yield-loss ratio by 0.019%
compared with the DPAT method, where this corresponds
to an increase of ten good chips per wafer.

- 225 -



GP

NNR

35.5 ％

α = 0.0001

Fa
ul

t 
de

te
ct

io
n 

ra
ti

o（
%
）

Yield loss ratio (%)

Fig. 9. Evaluation of the fault-detection ratio at evaluation points.

DPAT

GPR method

NNR

55.5 ％

30.9 ％

6.2％

(a) Case in which
the yield-loss ratio
is equal to that of
DPAT

DPAT

GPR method

NNR

55.5 ％

30.9 ％

0.9％

(b) α = 0.0001

Fig. 10. Relationship between the number of the faulty chips
detected by each method.

C.2. Classification of detected faults

Finally, detectable defective chips for each method were
analyzed. Fig. 10 presents a Venn diagram illustrating
the relationship between the chips identified as defective
by each method. We present the ratio of the number of
chips detected to the total number of failures. Addition-
ally, the results of α are shown in Figs. 7 and 9. These
results indicate an increase in fault-detection rate in the
order of DPAT, NNR, and GPR methods. Furthermore,
both the NNR and GPR methods can detect the same
chip failures as the DPAT method, indicating that they
have an inclusion relationship. The NNR method is in-
cluded in the GPR method. When the yield-loss ratio of
the DPAT method was equal to that of the GPR method,
only 92.6% of all failed chips could be detected by ap-
plying the GPR method. This indicates that the GPR
method can substitute the DPAT and NNR methods and
potentially replace AEC-Q001, as a novel test standard
for automotive semiconductors.

V. Conclusion

We applied the GPR-based adaptive test-threshold de-
termination method proposed in [1] to industrial LSI test
data. The conventional methods, such as the DPAT
method, which automotive semiconductors need to com-
ply with, determine the pass/fail threshold for each wafer

and cannot consider local process variation. In contrast,
the GPR-based method utilizes GPR to estimate the
systematic variation component on the wafer and eval-
uates the result between the measured and estimated val-
ues with confidence intervals, achieving accurate adaptive
testing on a wafer.
The result of the measured value and the estimated

value are evaluated with confidence intervals to determine
whether the target LSI is pass or fail. When applied to
industrial test data, the GPR method was confirmed to
improve the fault detection ratio by 37.1% and the yield
loss ratio by 0.019% compared with the DPAT method,
a test method standardized in AEC-Q001. Furthermore,
compared to the existing NNR method, the GPR method
improved the fault detection ratio by 35.5%. By analyzing
the LSIs detected by each method, the faulty LSIs were
found to be detectable by the NNR and DPAT methods
could be detected by the GP method, suggesting that this
method can replace these methods.
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