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Abstract—With the advances in semiconductor technology, the
sizes of transistors are getting smaller, which has led to an
increasingly severe impact of IR drop. Consequently, this trend
has amplified the significance of IR drop analysis within the realm
of chip design. However, analyzing IR drop is resource-intensive
and time-consuming, since numerous simulation patterns are
required to verify the power integrity of circuits. Additionally,
with every engineering change order (ECO) step, a reevaluation
is necessary. In this paper, we propose a machine learning-based
method to predict IR drop levels and present an algorithm for
reducing simulation patterns, which could reduce the time and
computing resources required for IR drop analysis within the
ECO flow. Experimental results show that our approach can
reduce the number of patterns by approximately 50%, thereby
decreasing the analysis time while maintaining accuracy.

I. INTRODUCTION

With the advances in semiconductor technology, the transis-
tor dimensions are getting smaller, which has led to a reduction
in size and increased portability of electronic products in our
daily lives. However, this size reduction has brought some
challenges in IC design, for example, the electric field effect,
the increasing complexity of semiconductor manufacturing,
etc. IR drop issue is also a critical problem to be dealt with
before design signoff [2].

IR drop refers to the voltage drop that occurs when current
flows through the power delivery network. As semiconductor
manufacturing processes advance, the narrowing of metal wire
widths leads to increased wire resistance. Consequently, the
problem of voltage drop becomes more severe.

IR drop harms the performance and reliability of the circuit.
Excessive IR drop can lead to a downgrade in the operating
voltage of the circuit, resulting in slower circuit operations.
Furthermore, IR drop raises the chip’s temperature due to
increased resistance-generated heat, leading to reduced cir-
cuit performance and reliability. Hence, IR drop signoff has
become an increasingly critical step in the design flow, es-
pecially for high-end products using advanced manufacturing
processes.

There are two approaches for analyzing a design’s IR drop
levels: static analysis [1] and dynamic analysis [10]. Static
analysis involves using static circuit analysis to determine
voltage drop in the circuit. It calculates the current and

resistance in each wire to determine the voltage drop. Since
static analysis does not involve intensive computation, it costs
less CPU time, but the IR drop analyzed from static analysis
cannot represent the actual IR drop in the design.

On the other hand, dynamic analysis of IR drop involves
using dynamic circuit analysis to determine voltage drop.
This method simulates the circuit with patterns over time
and analyzes the voltage drop that occurs under the different
operations of the circuit. Hence, it is more computation-
intensive and yields more precise estimations [7]. Although
commercial tools for IR drop analysis, e.g., Redhawk-SC
[13] and Voltus [14], are available, they are time-consuming.
Having an efficient approach to IR drop analysis with accurate
results is desired.

Vector-based dynamic IR drop analysis usually requires
significant time and computing resources due to numerous
simulation patterns [7]. In IR drop analysis, a pattern refers
to a sequence of input vectors used to simulate a circuit’s
behavior over a specified time frame. A typical simulation
pattern has a duration of 300ns and is divided into multiple
10ns slices. Both 300ns patterns and 30ns slices are essential
for our analysis because they represent different time slots for
IR drop assessment. Typically, numerous 300ns patterns need
to be analyzed, and analyzing a 30ns slice may take up to
6.5 hours with commercial tools. Additionally, in the current
design flow, after completing an Engineering Change Order
(ECO) task, we must reanalyze all the IR drop patterns. This
underscores the critical importance of IR drop signoff.

To reduce the time required for IR drop analysis, some
previous works [4]–[9], [11], [12] estimated IR drop based
on machine learning (ML) techniques. Experimental results
revealed that using ML models to predict IR drop is highly
feasible.

In this paper, we build an ML model to predict the IR
drop in a circuit. Furthermore, we identify key characteristics
within simulation patterns and introduce an algorithm aimed
at minimizing the number of patterns necessitating simulation.
Our approach empowers ECO tasks to streamline the analysis
by focusing on the chosen patterns, which could decrease the
time required for IR drop signoff.

The contributions of this work are twofold: 1.) We propose
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a novel IR drop signoff methodology that reduces the number
of patterns required for IR drop analysis, thereby reducing
the overall effort of the signoff process. 2.) This is the first
work that considers the package effect on IR drop analysis.
The proposed new features related to the package elevates the
accuracy of the predicted results.

The rest of the paper is organized as follows. Section II
introduces the background related to IR drop and ML models.
Section III reviews the previous works on IR drop analysis.
Section IV presents the proposed approach. Section V shows
the experimental results. Finally, Section VI concludes this
work.

II. BACKGROUND

A. IR drop

IR drop refers to the voltage drop that occurs in the power
delivery network of an integrated circuit (IC) due to the
resistance of interconnects and active devices.

When current (I) flows through an interconnect or a device,
the resistance (R) causes a voltage drop (V), as described by
Ohm’s Law (V = IR). This voltage drop results in a decrease
in the operation voltage of transistors in the circuit, which
may cause functional failure, timing violation, or reliability
degradation of a design.

IR drop can be classified into two types: static and dynamic.
The IR drop analyzed by static analysis is called static IR drop.
Static IR drop occurs in a steady state when the current flows
through interconnects under a stable active device. Static IR
drop focuses on the impact of the design’s power delivery
network, power domain partitioning, and wiring. Dynamic IR
drop is analyzed by dynamic analysis. Dynamic IR drop occurs
when the large current flows through the power network due
to the high switching activity of the cell. This transient current
induces additional voltage drops and leads to dynamic IR drop.
High switching activity and the corresponding large transient
current usually cause severe dynamic IR drop. Hence, dynamic
IR drop has a significant impact on timing and reliability of
circuits. Dynamic IR drop focuses on power management,
timing optimization, and the effect of power supply noise.
Hence, in this work, we focus on dynamic IR drop.

B. ML model

eXtreme Gradient Boosting (XGBoost) [3] is a machine
learning model for supervised learning problems, e.g, classifi-
cation and regression. It is an ensemble learning method that
combines the results of multiple decision trees. XGBoost uses
a gradient-boosting framework, which means that it iteratively
builds models to reach the final model. It starts with a simple
model and then adds more complex models to correct the
errors made by the previous models. XGBoost provides a
way to assess the importance of different features in making
predictions, which is valuable for feature selection. Compared
to other types of models, XGBoost can build models and make
predictions more quickly. In this work, we use XGBoost as our
ML model.

III. RELATED WORKS

In this section, we review some related works on IR drop
prediction and address their issues for exploring potential
improvements to enhance the model’s accuracy.

In the previous works [4]–[9], [11], [12], the authors did not
consider the package effect on IR drop prediction. In fact, the
package of IC is an important factor affecting IR drop. After
conducting the same preliminary experiments associated with
the commercial tool, we observed a notable increase in IR
drop when accounting for the package effect, as compared to
when it was not taken into consideration. The main reason for
this phenomenon would be the resistance and inductance of
the package. Therefore, we will incorporate this information
into the features of our model in this work.

Resistance is definitely an important factor for IR drop. [12]
assumed that the power delivery network (PDN) is uniform
such that the resistance is uniformly distributed throughout the
design. Therefore, resistance calculation is not necessary. [4],
[5], [8], [9] calculates Euclidean distance from instances to
power pads to estimate resistance. [7] [11] [6] consider effec-
tive resistance as a feature in their models, but the calculated
resistance is not precise enough. In this paper, we calculate
the effective resistance with a commercial tool to obtain a
more accurate resistance. In addition to the effective resistance,
we also consider the resistance of the least-resistance path
(RLRP) as a feature of our model, providing comprehensive
information about resistance in a design.

Although ML approaches significantly reduce the time spent
on analyzing IR drop, an error exists in between the predicted
IR drop and the golden IR drop. Therefore, we cannot entirely
rely on the predicted IR drop. However, we can exploit the
predicted IR drop to filter out the slices that may cause critical
instances such that the impact of error can be mitigated.
[5] used the predicted IR drop to select some slices, which
are called critical slices, that may cause critical instances.
Nonetheless, for front-end designers, each pattern has its
specific importance, and selecting some slices arbitrarily from
each pattern is meaningless for just reducing the time cost.
Therefore, we propose an algorithm to select fewer patterns,
thereby the time cost required for running IR analysis in each
ECO process is greatly reduced.

IV. PROPOSED APPROACH

The overall flow of the proposed approach is shown in Fig.
1. When a design is completed, designers release patterns for
design sign off. We randomly select some patterns as training
data. First, we use commercial tools, e.g., Voltus, to extract
features from these patterns. Then, we train our model, which
is a two-level XGBoost model, to improve the accuracy of IR
drop prediction.

Once we obtain the predicted IR drop from the model, we
can perform the pattern selection algorithm. The combination
of the golden IR drop and the predicted IR drop is the input
of the pattern selection algorithm. Then, we preserve patterns
that cause critical IR drops, called critical patterns, and discard
the other patterns.
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Fig. 1: The overall flow of proposed approach.

A. Feature Extraction

Our model considers two categories of features, instance-
based features and tile-based features, with 56 features in
total. Table I lists the features used in our model.

Instance-based feature: We use two commercial tools
to generate instance-level information from designs. We use
the automatic placement & routing (APR) tool to obtain
the physical location information of cells (#1). Additionally,
we use Voltus to get the values of effective resistance (#2)
and RLRP (#3). Both effective resistance and RLRP have
three features, which are the resistance at the power supply
terminal, the resistance at the ground terminal, and both.
We get bumps’ resistance (#4) and inductance (#5) from the
package information files. Like the effective resistance, each
bump resistance has three features since each instance has a
bump at the power supply terminal and a bump at the ground
terminal. Besides, we use power information and the toggle
rate obtained from Voltus as our features.

There are three types of power consumption in devices, i.e.,
internal power (Pi, #6), switching power (Ps, #7), and leakage
power (Pl, #8). Internal power refers to the power consumed
by the active components of a circuit during operation. Switch-
ing power, also known as dynamic power, is consumed during
the signal transition of circuits. Leakage power is consumed in
a circuit in the standby or idle state. It comes from the small
leakage currents in transistors. As transistor sizes continue to
shrink, leakage power has significantly contributed to overall
power consumption.

In addition to these three components of power informa-
tion generated from Voltus, we also refer to the work [5]
and add four power features: total power (Pt, #9), scaled
power (PScaled, #10), overlapped-switching power (#11), and
overlapped-scaled power (#12), into our model. The formulas
for total power and scaled power are shown in Table I. Formula

Fig. 2: The target tile of each instance.

(1) is the formula of scaled power in [5].

PScaled = (Pi + Ps)× τ + Pl (1)

We modify this formula to reflect the actual situation as shown
in Formula 2.

PScaled = Pi × τi + Ps × τo + Pl (2)

Overlapped power is obtained by summing up the power of
the nine surrounding tiles of an instance. Using this, the model
can be trained to learn the local effect of IR drop.

The toggle rate (#13, #14) is the rate that a signal changes
its state from low to high or high to low. It quantifies the
frequency of transitions occurring in a circuit and is measured
as the average number of signal transitions per clock cycle.
The toggle rate consists of the input toggle rate and output
toggle rate.

Tile-based feature: Tile-based features are converted from
instance-based features. The tile-based features are inspired
by the density map feature in [2]. We improved the fea-
ture for representing the information more effectively. The
features that require conversion are five types of power
(Pi, Ps, Pl, Pt, PScaled) and toggle rate. We have to determine
each instance’s target tile before performing the conversion.
In this work, the selection of the target tile is based on the
center point of each instance like Fig. 2.

Each instance includes information from five neighboring
tiles as shown in Fig. 2, allowing the model to learn the local
effect of IR drop. For the conversion, we sum up the powers
and toggle rates of all the instances in the tile. If there is an
instance across multiple tiles, the value is calculated according
to the cross-area ratio. Fig. 3 is an example of conversion,

Fig. 3: The example of tile-based feature conversion.

In summary, we use 56 features, including 21 instance-
based features and 35 tile-based features. Since we utilize
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TABLE I: The features for training our model.

# Feature Set Extraction Method Remark
Physical Features

Tile processing:
• Accumulate up the power of all the instances within

the tile.
• For the instance that crosses different tiles,

its power is calculated based on the area ratio.

Overlap power processing:
• Accumulate up the power within the neighboring 3x3 tiles.

Tile + Instance-based features
Instance-based features

1 Cell physical location (X, Y) Extracted from APR tool
2 Effective resistance (Reff) Extracted from Voltus
3 Shortest path resistance (RLRP)
4 Bump resistance Extracted from package information files
5 Bump inductance
Power Features
6 Internal power

Extracted from Voltus7 Switching power
8 Leakage power
9 Total power Internal power + Switching power + Leakage power
10 Scaled power Internal power × τi + Switching power × τo + Leakage power
11 Overlapped-switching power Summation of neighboring cells’ switching power
12 Overlapped-scaled power Summation of neighboring cells’ scaled power
Timing Features
13 Input toggle rate (τi) Toggle rate of the input pin
14 Output toggle rate (τo) Toggle rate of the output pin

(a)

(b)

Fig. 4: Training phase of the proposed two-level model.
(a)Training classifier. (b)Training regressors.

the XGBoost model, which operates in a tabular manner for
predictions, the output is also an instance-based IR drop.

B. XGBoost Model

We build a two-level XGBoost model for training as de-
picted in Fig. 4. We first train a classifier to distinguish
between high and low IR drop instances. In the second level
of the model, we train two regressors, one for predicting high
IR drop, and the other is for predicting low IR drop. We define
the threshold for high IR drop as 120mV, which is about 15%
of the supply voltage.

In the inference phase, as shown in Fig. 5, the testing data
is first passed through the classifier to classify the instances
into respective groups. Then, the corresponding regressor is
selected to predict the accurate IR drop.

C. Pattern Reduction

In the industrial flow, the simulation patterns provided by
the front-end designers are assigned to each sign off team.
However, only a few of these patterns are IR-critical patterns
that can cause high IR drop. The purpose of pattern reduction
is to identify these IR-critical patterns.

Fig. 5: Inference phase of the proposed two-level model.

Fig. 6 shows the flow of the algorithm. The training data we
use is extracted from the 30ns slices, and thus the predicted
IR drop output from the model corresponds to the 30ns slices.
We combine the 30ns labeled IR drop and the 30ns predicted
IR drop, then use them as inputs for pattern reduction.

First, we calculate the critical instances coverage score for
each non-selected slice. The critical instances refer to those
instances in which the IR drop exceeds the threshold. The
scoring algorithm unifies the critical instances of the slice with
the selected slices. Next, we use a greedy approach to select
the slices with the highest scores as candidates. Among these
candidates, we choose the slice that has the most relevance to
the selected slices, and add them to the selected slices. We also
update the coverage score accordingly. We repeat the process
until the coverage of critical instances reaches 90%.

Table II shows an example, in which there are three patterns
and a total of 7 slices, and the candidate count is set to 3. In the
first iteration, the three candidates with the highest coverage
scores are “1st 030”, “3rd 030”, and “1st 060”. Thus, we
choose “1st 030” in this iteration.

In the second iteration, based on the updated scores, the top
three candidates are “3rd 030”, “2nd 030”, and “1st 060”.
Although “3rd 030” has the highest score, “1st 060” is pri-
oritized since it belongs to the same pattern as the previously
selected slice. Then, the overall score is updated to 70.

In the third iteration, the highest scores are “3rd 030”,
“3rd 060”, and “2nd 030”. None of these three candidates is
related to the selected slices. Therefore, we choose “3rd 030”,
which has the highest score. After these iterations, the score
reaches 95, surpassing the threshold of 90, and the algorithm
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TABLE II: An example for pattern reduction.

Total Coverage Score : 0/100 Chosen Slices : none
Slice Critical Instance Update Score Candidate Choose?

1st 030 50 50 1
√

1st 060 40 40 3
1st 090 30 30
2nd 030 25 25
2nd 060 35 35
3rd 030 45 45 2
3rd 060 35 35

(a) First iteration.

Total Coverage Score : 50/100 Chosen Slices : 1st 030
Slice Critical Instance Update Score Candidate Choose?

1st 030 50 - -
√

1st 060 40 70 3
√

1st 090 30 60
2nd 030 25 70 2
2nd 060 35 65
3rd 030 45 75 1
3rd 060 35 65

(b) Second iteration.

Total Coverage Score : 70/100 Chosen Slices : 1st 030, 1st 060
Slice Critical Instance Update Score Candidate Choose?

1st 030 50 - -
√

1st 060 40 - -
√

1st 090 30 75
2nd 030 25 85 3
2nd 060 35 80
3rd 030 45 95 1

√

3rd 060 35 90 2

(c) Third iteration.

Total Coverage Score : 95/100 Chosen Slices : 1st 030, 1st 060, 3rd 030
Slice Critical Instance Update Score Candidate Choose?

1st 030 50 - -
√

1st 060 40 - -
√

1st 090 30
2nd 030 25
2nd 060 35
3rd 030 45 - -

√

3rd 060 35
Output Critical Pattern : 1, 3

(d) Final result.

Fig. 6: The flow of pattern reduction.

TABLE III: The profile of design.

Design |Instance| |Pattern| |TotalSlice|
Design 1 3508819 9 76

is terminated.
Finally, the selected slices are “1st 030”, “1st 060”, and

“3rd 030”. Thus, the chosen patterns are the 1st pattern and
the 3rd pattern.

V. EXPERIMENTAL RESULTS

We conducted the experiments on an industrial design with
9 simulation patterns, which can be divided into 76 30ns
slices. The profile of the design is shown in Table III. The
supply voltage is 0.9V and the process technology is TSMC
5nm process. The length and width of a tile are twice the
maximum instance length and width. The model is trained by
using golden instance IR drop labels obtained from Voltus. To
evaluate the performance, we used Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE), which are defined
in Formula (3) and (4). In these formula, ŷi is the golden IR
drop of ith instance, and yi is the predicted IR drop of ith

instance. N is the total number of instances.

RMSE =

√∑N
i=1 (yi − ŷi)

2

N
(3)

MAE =

∑N
i=1 |ŷi − yi|

N
(4)

CC =

∑N
i=1 [ŷi −mean(ŷ)] [yi −mean(y)]√∑N
i=1[ŷi −maen(ŷ)]2[yi −mean(y)]2

(5)

The correlation coefficient (CC) is represented by Formula (5)
and takes on values between -1 and 1. A value of 1 indicates
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a perfect positive correlation, -1 indicates a perfect negative
correlation, and 0 indicates no correlation.

A. IR Drop Prediction Results

The results are shown in Table IV. We used 30% of the
slices for training and the other 70% for testing. To validate
whether our model can successfully predict the IR drop, we
attempted different combinations of training and testing data.
For Set A, we randomly select 23 slices out of the 76 slices as
the training data. For Set B, we randomly select 3 patterns out
of the 9 patterns, and use the slices of the selected patterns as
the training data. Finally, for Set C, we select 23 slices that
have a better balance of high IR drop and low IR drop as the
training data. For the best case, the MAE is 3.954mV and the
RMSE is 5.462mV. The CC is 0.95, which means that our
predicted results are similar to the label.

TABLE IV: The result of IR drop prediction by XGBoost.

Design 1 MAE RMSE MaxE MinE

Set A Normal 4.983 6.336 97.185 -139.944
Best 4.970 6.265 88.279 -63.153

Set B Normal 4.356 5.940 105.683 -145.045
Best 4.344 5.854 93.665 -67.404

Set C Normal 3.968 5.556 120.747 -139.504
Best 3.954 5.462 93.486 -67.441

For the CPU time, we only spent about 1300 seconds for
training, and about 2300 seconds for inference. The total CPU
time is about 1 hour.

B. Pattern Reduction Results

To evaluate the effectiveness of pattern reduction, we es-
tablish the following criteria. We only select up to half of
all patterns, and the critical instance coverage of the selected
patterns must be greater than 90%. We use the Brute-force
algorithm to find the golden critical pattern. By calculating the
critical instance coverage for each combination of patterns, we
select the one with the highest coverage as the golden pattern.

Table V shows the results of pattern reduction. We adjust
the number of the candidates (N) in the algorithm for the
experiments. When the threshold of critical IR drop is 120mV,
the golden critical patterns are (1, 2, 3, 7) or (1, 2, 3). Our
experimental results show that our algorithm can precisely
identify the same critical patterns. Specifically, when we set
the value of N to 5 and 7, our algorithm chooses three patterns,
(1, 2, 3), which is the same as the golden critical patterns.
When we set the value of N to 1 and 3, our algorithm chooses
four patterns, (1, 2, 3, 7), which is the same as the golden
critical patterns.

To show the scalability of this method, we modified the
threshold of critical IR drop. When we set the threshold to
100mV and 80mV, our algorithm can choose the same patterns
as the golden critical patterns.

For the CPU time of our pattern reduction algorithm, we
need about 600 seconds; but for the Brute-force algorithm, it
cost 2 hours to identify the critical patterns. Hence, our algo-
rithm can efficiently and effectively identify critical patterns
for IR drop analysis.

TABLE V: The result of IR drop prediction by XGBoost.

Threshold Golden
Patterns |Candidate| |Slice| ≥ 90% Chosen

Patterns

120mV
(1, 2, 3, 7)/ 1 11 1,2,3,7

3 11 1,2,3,7

(1, 2, 3) 5 11 1,2,3
7 11 1,2,3

100mV
(1, 2, 3, 7)/ 1 11 1,2,3,7

3 11 1,2,3,7

(1, 2, 3) 5 11 1,2,3
7 11 1,2,3

80mV
(1, 2, 3, 7)/ 1 10 1,2,3

3 10 1,2,3

(1, 2, 3) 5 10 1,2,3
7 10 1,2,3

VI. CONCLUSION

In this paper, we propose the first IR drop analysis approach
considering package, which improves the accuracy of IR drop
prediction. Additionally, we propose an algorithm to identify
critical patterns, which significantly reduces the time for IR
drop analysis.
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