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Abstract - SRAM-based system is one of the most popular design 
in various applications. However, the simulation cost for yield 
estimation is often very high due to the high yield requirement of 
SRAM circuits. Importance sampling techniques are able to 
reduce the number of samples in high sigma analysis. However, 
the complexity is still high if the entire memory system with 
peripheral circuits are simulated together. To handle this issue, 
we propose an efficient yield analysis method for the overall 
SRAM system. Instead of analyzing the whole system directly, the 
proposed methodology evaluates each circuit block first. Then, 
the interactions of circuit blocks are considered to evaluate the 
system performance accurately with the prior distribution of 
each block. In this way, the overall accurate yield estimation can 
be obtained easily. The experimental results demonstrate that the 
proposed methodology efficiently estimates the yield of SRAM-
based designs with high accuracy, especially for rare events. 

I. Introduction 

As the increasing demand for Internet of Things (IoT) and 
machine learning applications, SRAM circuit becomes one of 
the critical blocks in the system IC design [1]. Generally, 
SRAM macro is usually well-designed by foundry with high 
yield performance. However, designers usually add or change 
the peripheral circuits in SRAM system to achieve the specific 
targets in different applications [1]. Even the yield of SRAM 
macros is high enough, the SRAM-based system with new 
peripheral circuits usually cannot remain the high quality, as 
shown in Fig. 1. Therefore, to keep sufficient reliability for the 
SRAM-based system, the overall design yield still requires to 
be analyzed and optimized in sizing loops. 

A straightforward approach to observe the impact of process 
variation on Performance of Interest (PoI) is adopting multiple 
sampling simulations, such as Monte-Carlo (MC) analysis [2–
3]. The circuit yield can be estimated by the output probability 
density function (PDF). However, because SRAM-based 
system usually consists of millions of transistors, MC method 
becomes inefficient for such high dimensional analysis. 
Moreover, the yield of SRAM system is so high that the rare 
failure events can be detected by running roughly 108 random 
samples at least. Therefore, as shown in TABLE I, MC analysis 
requires very high simulation cost, which is impractical for the 
products with time-to-market pressure. 

Since the conventional MC method is computationally 
expensive for searching the rare events, importance sampling 
(IS) [4] techniques have been proposed to reduce the 
computational cost. The key idea of the importance sampling 

method is to reduce the required number of samples by shifting 
the sampling distribution toward the boundary of device 
parameters, which increases the probability of hitting the 
failure region. By using the importance sampling, more 
samples are drawn at the tail part of the yield distribution. 
However, in IS method, the complexity of determining the 
likely failure region is still high for large circuits due to the 
exploration of the complicated parameter space, which can 
only be obtained by analyzing bit-cell or cell array. In [5], a 
qualitative statistical analysis technique has been proposed to 
estimate the yield of SRAM macros. To consider the 
correlation between SA and cell array, the cumulative 
distribution function of each cell is assumed as independent 
and identical, which may cause the large yield accuracy loss. 
Therefore, an efficient and accurate yield analysis method is 
required to deal with high dimensional and high-sigma 
properties of SRAM-based systems. 

TABLE I 
Comparison between cell array and overall system 

Design 
8-bit Cell Array + SA 

(w/o peripheral 
circuits) 

SRAM-based System 
(8-bit Cell Array + SA 

+pre-charge+3-to-8 
encoder + write driver) 

Block  
Diagram 

 
Failure 

Rate 
7.9×10-6 3.2×10-5 

Simulation 
Time 

77.5 hrs 642.72 hrs (8.05X) 

In this paper, we propose an efficient yield analysis 
approach for SRAM-based systems by the distribution 
consolidation process. With the pre-evaluated yield 
performance of each block, we consider the correlation 
between each block and calibrate the failure rate of each block 
according to the output signals of preceding block to obtain 
precise system design yield. Since the yield of each block can 
be obtained with lower simulation cost, the overall simulation 
cost of system yield analysis can be greatly reduced by the 
proposed approach. Moreover, because of the prior individual 
yield evaluation, it is easy to analyzed which block is the 
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bottleneck of system yield that needs further optimization. If 
there is any modification, the system yield is able to be 
obtained by just recompiling the distribution consolidation 
process rather than re-evaluating all of blocks in the system. In 
this way, redundant simulations can be greatly reduced for the 
refined system, which improves the efficiency of yield analysis 
in the system design flow. While compared to the MC analysis, 
the proposed approach can reduce 83.29% and 88.84% 
runtime for read and write stability analysis respectively in the 
experiments, with little sacrifice on yield accuracy. 

The rest of this paper is organized as follows. Section II 
briefly introduce some preliminaries of yield analysis and the 
operations of SRAM-based system. The proposed system yield 
estimation methodology is presented in Section III. The 
experimental results on the operations of SRAM-based system 
are provided in Section IV to demonstrate the accuracy and 
efficiency of the proposed approach. Finally, some conclusions 
are drawn in Section V. 

II. Process Variation in SRAM-based System 

A. Failure Rate Evaluation 

To analyze the design yield, the variations of device 
parameters should be considered in the circuit simulation. 
Without loss of generality, process parameters are supposed to 
be mutually independent, which is usually modeled by 
Gaussian distribution in (1). μ is the mean value of the 
distribution, and σ is the standard deviation of the distribution. 

𝒩(μ, σ) =
1

σ√2𝜋
exp ൬−

1

2
ቀ

𝑣 − μ

σ
ቁ

ଶ

൰ (1) 

The conventional method to estimate the yield is using MC 
method. It is the most straightforward and widely used 
approach, and is often considered as the golden answer due to 
its high accuracy. To estimate the PDFs of PoIs Y𝑀𝐶(𝑥) with the 
random variable 𝑥, we have to generate N random samples for 
simulation in the MC method. After simulating all samples, the 
indicator function is introduced to represent whether this 
sample falls into the failure region or the acceptable region. 
Assume the threshold for the performance metric is Y𝑡ℎ𝑟, then 
the indicator function can be defined as (2). Then, the yield is 
the probability of the samples falling into the acceptable region, 
which can be expressed as (3). And the probability of failure 
rate can be obtained by (4). 

I(𝑥௜) = ൜
1,      𝑦ெ஼ (𝑥௜) > 𝑦௧௛௥

0,      𝑦ெ஼ (𝑥௜) < 𝑦௧௛௥
 (2) 

𝑌ெ஼(𝑥) =
1

𝑁
෍ 𝐼(𝑥௜)

ே

௜ୀଵ

(3) 

𝑃௙ಾ಴
= 1 − 𝑌ெ஼(𝑥) (4) 

The accuracy of the probability density function depends on 
the number of samples. For a high-sigma analysis, most 
samples will fall into the acceptable region. Thus, if the 
number of samples is not enough, none of the samples will fall 
into the failure region. However, it doesn't mean that the yield 
is 100%. To ensure the estimated distribution with (1-ε) 

accuracy and (1-δ) confidence, the required number of samples 
N(ε,δ) can be determined by the function shown in (5). 

𝒩(ε, δ) ≈
log ቀ

1
δ

ቁ

εଶ 𝑃௙ಾ಴

    (5) 

For example, if both the accuracy and confidence level are 
required to achieve 95%, and the failure probability is about 
10-6 for a circuit design with high robustness (e.g., SRAM 
circuit), the required number of simulation samples in the 
Monte Carlo method should be more than 108. It is impractical 
to simulate so many samples, especially for a large-scaled 
circuit. Moreover, if the peripheral circuits around the memory 
array are also considered, the requirements for simulation 
resource will become even larger. Apparently, using Monte 
Carlo method to analyze the yield is infeasible due to the 
resource limitation. 

B. Interactive Effects Analysis in SRAM-based System 

Process variations may impact the characteristics of 
transistors, thus inducing the variation of circuit performance. 
PoI is the performance used to judge the functional correctness 
or whether the specification is met. In the yield analysis of 
system design, the PoIs are the signals that communicate 
between sub-circuits. According to the interactions of sub-
circuits in the read operation, whose signal direction is shown 
in Fig. 1(a), the PoI of pre-charge circuit is the bit-line voltage 
that can be charged. It determines the initial values of the bit-
lines in the cell array. However, the pre-charge circuit is not 
considered in most existing works, in which the initial bit-lines 
voltages are assumed to be ideal at the supply voltage. PoI of 
the decoder is the pulse duration time for turning on the pre-
charge circuit or word-line, which determines the required 
time to discharge one of the bit-lines. Offset voltage is the PoI 
of SA, which determines the correctness of functionality. 

Take the write operation of a SRAM circuit as an example, 
the overall signal path is shown in Fig. 1(b). The failure of 
write operation occurs if the data is not flipped after the word 
line pulse duration. Since the circuit behaviors are the same in 
read and write operations, PoI of the pre-charge circuit and the 
decoder are also same. Because process variation may lead to 
the different discharge ability of a write driver, PoI of the write 
driver is the voltage of discharged bit-line. 

III. SRAM-based Yield Estimation Methodology 

The proposed efficient yield analysis flow for SRAM-based 
system is shown in Fig. 2. The typical SRAM-based system is 
partitioned as five functional blocks: write buffer, decoder, 
pre-charge circuit, SA and cell array. After obtaining the PDF 
of each block, the distribution consolidation process is applied 
to predict the yield of two blocks with signal interaction 
between them. The consolidation operations are orderly 
applied by following the signal path of SRAM-based system 
until the read/write operation is completed. The final failure 
rate is obtained after the last block is finished. The details of 
this process are explained as follows. 

- 268 -



 
Fig. 1. Signal paths of the (a)read and (b)write operations 

 
Fig. 2. The proposed fast yield analysis for SRAM-based system 

A. Block-level Yield Analysis 

When we design the system circuit, each circuit block is 
often designed first instead of designing the whole system 
circuit directly. When we analyze each sub-circuit separately, 
the interactive effects between sub-circuits are not considered. 
Without the interactive effects, all sub-circuits are assumed to 
be independent of each other. While considering interactive 
effects, the simple Gaussian distribution can be used as the 
input PDFs for the block-level yield analysis. However, the 
real distribution may not be the same as the assumed PDF, 
which will cause the predictive yield loss. Therefore, after the 
output PDFs of each sub-circuit are obtained, they will be used 
as the new input PDFs of the next stage sub-circuit. The 
original output PDF is consolidated to produce an accurate 
distribution by using the proposed transfer function. The 
modified output PDF will be the input distribution of the next 
stage. The consolidation process will be performed iteratively 
until obtaining the primary output yield of the system. 

B. Transfer Function for Distribution Consolidation 

The overall distribution consolidation process is shown in 
Fig. 3. In the block-level yield analysis, the raw output PDFs 
are produced, which are the initial distributions have not 
considered interactive effects yet. That is, the circuit property 
is already recorded by sufficient samples. Next, to consolidate 
the two raw output PDFs, a fine-tune layer is added after the 
individual circuit analysis to reshape the PDF of the 
succeeding stage while considering the interactive effects 
between two circuit blocks. In order to enhance the efficiency 

 

Fig. 3. Overall flow of distribution consolidation. 

of training the fine-tune layer, we concentrate the samples of a 
specific region into a super point, which is called as 
characteristic points (CPs) in this work. Via allocating 
sampling resources on CPs, we can ensure sufficient data on 
the critical tail region of PDF while training the fine-tune layer. 
Lastly, by calibrating every sample in the raw PDF with the 
trained fine-tune layer, the raw PDF is able to be reconstructed 
into a new PDF that considers the interactive effects between 
two circuit blocks. 

In the block-level yield analysis, we use a Gaussian 
distribution as the input noise of the block B1, which is shown 
in the orange PDF curve fin(B1) in Fig. 4, to obtain the raw 
output PDF fout(B1) in Fig. 4. The orange dots in Fig. 4 depict 
the data samples generated in block-level analysis. As the 
previous block B2 has finished the block-level analysis, the 
fin(B1) will be updated by fin(B12) = fout(B2), and the output 
should be altered to fout(B12) as well. Instead of simulating the 
whole system, we use the ML model to predict the output 
movement of samples directly. Our ML model has two layers, 
the circuit performance evaluating layer and the input noise 
fine-tune layer. In the first layer, the preliminary output 
performance will be obtained based on the knowledge learned 
in block-level analysis. In the second fine-tune layer, the 
impact coming from the noise of previous stage will be 
augmented to the output result. The fine-tune layer consists of 
two parts, the arrangement and learning kernels. In the 
arrangement, data will be allocated to different predictive 
kernels according to their output level of CP. We use the first-
order regression model as the predict kernel in this paper to 
determine the magnitude of output movement. 

After the consolidation step, the sub-system PDF of B1 and 
B2, fout(B12), can be evaluated easily by inference with the 
changed input fout(B1) the raw PDF fout(B2). In inference 
process, each previous sample s is adjusted by two information, 
the difference between input noise and the performance 
change rate estimated by fine-tuning layer, which are depicted 
as input and output movements in Fig. 4. fout(B12) can be 
formed, and the failure rate can be determined easily with these 
updated samples. 
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Fig. 4. PDF adaptation considering interactive effect. 

IV. Experimental Result 

In the experiments, the 64-bit 6T-SRAM memory array with 
peripheral circuits including encoder/decoder, write buffer and 
SA is used to demonstrate the proposed design yield estimation 
method. The variation of threshold voltage in each transistor is 
20%, which is set by a gauss function with 6 sigma analyses in 
HSPICE simulator. The accuracy of the proposed approach is 
verified by Monte Carlo analysis on the whole SRAM design 
directly, which is regarded as Golden in the following. Because 
of rare failure event, 107 simulations are required in each 
Monte Carlo analysis with 95% accuracy and 95% confidence 
level and extra 30 samples for training the scaling factor. All 
the experiments are performed by using Synopsys HSPICE 
and executed on an Intel Xeon Gold 6248 CPU at 2.5GHz with 
186GB memory.  

Table II shows the required time and the obtained accuracy 
of each yield analysis approach for read/write stability. 
Compared to the golden result, the mathematical approach [5] 
reduces simulation time for read/write stabilities by 54%, but 
the predicted yield is 10 times higher. In our approach, the 
required time can be reduced by 88%. When compared to [5], 
the required time can also be reduced by 75%. During read 
operations, the proposed approach is able to provide very 
similar yield result compared to the golden result. Fig. 5 shows 
the three output distributions produced by the three approaches. 
The result demonstrates that our method can still predict 
accurate system yield on these rare failure events. While 
reducing the computational cost, the estimation accuracy can 
still be kept in our approach. 

TABLE II 
The comparison between golden, [3] and this work. 

 

 
Fig. 5. The comparisons of output distributions for read stability. 

V. Conclusions 

In this paper, we propose an efficient yield analysis 
methodology to consider the impact of peripheral circuits in 
SRAM-based system design. After analyzing each block in the 
system separately, we consolidate the output distribution 
stage-by-stage using the proposed distribution consolidation 
approach. The transfer learning technique is used to adapt the 
PDF with the proposed characteristic points to deal with the 
non-Gaussian tail accurately. Then, the overall system yield 
can be estimated without expensive simulations of the entire 
system design. Furthermore, after redesigning or substituting 
the sub-circuits, the system yield of modified system design 
can be easily obtained by the proposed consolidation process 
since only the modified blocks need to be re-analyzed. 
Therefore, the proposed methodology significantly improves 
the efficiency of yield estimation in the SRAM-based system 
design flow. 
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